Deployment
- class datarobot.models.Deployment(id, label=None, description=None, status=None, default_prediction_server=None, model=None, model_package=None, capabilities=None, prediction_usage=None, permissions=None, service_health=None, model_health=None, accuracy_health=None, importance=None, fairness_health=None, governance=None, owners=None, prediction_environment=None)
A deployment created from a DataRobot model.
- Attributes:
- idstr
the id of the deployment
- labelstr
the label of the deployment
- descriptionstr
the description of the deployment
- statusstr
(New in version v2.29) deployment status
- default_prediction_serverdict
Information about the default prediction server for the deployment. Accepts the following values:
id: str. Prediction server ID.
url: str, optional. Prediction server URL.
datarobot-key: str. Corresponds the to the
PredictionServer
’s “snake_cased”datarobot_key
parameter that allows you to verify and access the prediction server.
- importancestr, optional
deployment importance
- modeldict
information on the model of the deployment
- model_packagedict
(New in version v3.4) information on the model package of the deployment
- capabilitiesdict
information on the capabilities of the deployment
- prediction_usagedict
information on the prediction usage of the deployment
- permissionslist
(New in version v2.18) user’s permissions on the deployment
- service_healthdict
information on the service health of the deployment
- model_healthdict
information on the model health of the deployment
- accuracy_healthdict
information on the accuracy health of the deployment
- fairness_healthdict
information on the fairness health of a deployment
- governancedict
information on approval and change requests of a deployment
- ownersdict
information on the owners of a deployment
- prediction_environmentdict
information on the prediction environment of a deployment
- classmethod create_from_learning_model(model_id, label, description=None, default_prediction_server_id=None, importance=None, prediction_threshold=None, status=None, max_wait=600)
Create a deployment from a DataRobot model. :rtype:
TypeVar
(TDeployment
, bound= Deployment)Added in version v2.17.
- Parameters:
- model_idstr
id of the DataRobot model to deploy
- labelstr
a human-readable label of the deployment
- descriptionstr, optional
a human-readable description of the deployment
- default_prediction_server_idstr, optional
an identifier of a prediction server to be used as the default prediction server
- importancestr, optional
deployment importance
- prediction_thresholdfloat, optional
threshold used for binary classification in predictions
- statusstr, optional
deployment status
- max_wait: int, optional
Seconds to wait for successful resolution of a deployment creation job. Deployment supports making predictions only after a deployment creating job has successfully finished.
- Returns:
- deploymentDeployment
The created deployment
Examples
from datarobot import Project, Deployment project = Project.get('5506fcd38bd88f5953219da0') model = project.get_models()[0] deployment = Deployment.create_from_learning_model(model.id, 'New Deployment') deployment >>> Deployment('New Deployment')
- classmethod create_from_leaderboard(model_id, label, description=None, default_prediction_server_id=None, importance=None, prediction_threshold=None, status=None, max_wait=600)
Create a deployment from a Leaderboard. :rtype:
TypeVar
(TDeployment
, bound= Deployment)Added in version v2.17.
- Parameters:
- model_idstr
id of the Leaderboard to deploy
- labelstr
a human-readable label of the deployment
- descriptionstr, optional
a human-readable description of the deployment
- default_prediction_server_idstr, optional
an identifier of a prediction server to be used as the default prediction server
- importancestr, optional
deployment importance
- prediction_thresholdfloat, optional
threshold used for binary classification in predictions
- statusstr, optional
deployment status
- max_waitint, optional
The amount of seconds to wait for successful resolution of a deployment creation job. Deployment supports making predictions only after a deployment creating job has successfully finished.
- Returns:
- deploymentDeployment
The created deployment
Examples
from datarobot import Project, Deployment project = Project.get('5506fcd38bd88f5953219da0') model = project.get_models()[0] deployment = Deployment.create_from_leaderboard(model.id, 'New Deployment') deployment >>> Deployment('New Deployment')
- classmethod create_from_custom_model_version(custom_model_version_id, label, description=None, default_prediction_server_id=None, max_wait=600, importance=None)
Create a deployment from a DataRobot custom model image.
- Parameters:
- custom_model_version_idstr
The ID of the DataRobot custom model version to deploy. The version must have a base_environment_id.
- labelstr
A label of the deployment.
- descriptionstr, optional
A description of the deployment.
- default_prediction_server_idstr
An identifier of a prediction server to be used as the default prediction server. Required for SaaS users and optional for Self-Managed users.
- max_waitint, optional
Seconds to wait for successful resolution of a deployment creation job. Deployment supports making predictions only after a deployment creating job has successfully finished.
- importancestr, optional
Deployment importance level.
- Returns:
- deploymentDeployment
The created deployment
- Return type:
TypeVar
(TDeployment
, bound= Deployment)
- classmethod create_from_registered_model_version(model_package_id, label, description=None, default_prediction_server_id=None, prediction_environment_id=None, importance=None, user_provided_id=None, additional_metadata=None, max_wait=600)
Create a deployment from a DataRobot model package (version).
- Parameters:
- model_package_idstr
The ID of the DataRobot model package (version) to deploy.
- labelstr
A human readable label of the deployment.
- descriptionstr, optional
A human readable description of the deployment.
- default_prediction_server_idstr, optional
an identifier of a prediction server to be used as the default prediction server When working with prediction environments, default prediction server Id should not be provided
- prediction_environment_idstr, optional
An identifier of a prediction environment to be used for model deployment.
- importancestr, optional
Deployment importance level.
- user_provided_idstr, optional
A user-provided unique ID associated with a deployment definition in a remote git repository.
- additional_metadatadict, optional
‘Key/Value pair dict, with additional metadata’
- max_waitint, optional
The amount of seconds to wait for successful resolution of a deployment creation job. Deployment supports making predictions only after a deployment creating job has successfully finished.
- Returns:
- deploymentDeployment
The created deployment
- Return type:
TypeVar
(TDeployment
, bound= Deployment)
- classmethod list(order_by=None, search=None, filters=None, offset=0, limit=0)
List all deployments a user can view. :rtype:
List
[TypeVar
(TDeployment
, bound= Deployment)]Added in version v2.17.
- Parameters:
- order_bystr, optional
(New in version v2.18) the order to sort the deployment list by, defaults to label
Allowed attributes to sort by are:
label
serviceHealth
modelHealth
accuracyHealth
recentPredictions
lastPredictionTimestamp
If the sort attribute is preceded by a hyphen, deployments will be sorted in descending order, otherwise in ascending order.
For health related sorting, ascending means failing, warning, passing, unknown.
- searchstr, optional
(New in version v2.18) case insensitive search against deployment’s label and description.
- filtersdatarobot.models.deployment.DeploymentListFilters, optional
(New in version v2.20) an object containing all filters that you’d like to apply to the resulting list of deployments. See
DeploymentListFilters
for details on usage.- offset: Optional[int]
The starting offset of the results. The default is 0.
- limit: Optional[int]
The maximum number of objects to return. The default is 0 to maintain previous behavior. The default on the server is 20, with a maximum of 100.
- Returns:
- deploymentslist
a list of deployments the user can view
Examples
from datarobot import Deployment deployments = Deployment.list() deployments >>> [Deployment('New Deployment'), Deployment('Previous Deployment')]
from datarobot import Deployment from datarobot.enums import DEPLOYMENT_SERVICE_HEALTH_STATUS filters = DeploymentListFilters( role='OWNER', service_health=[DEPLOYMENT_SERVICE_HEALTH.FAILING] ) filtered_deployments = Deployment.list(filters=filters) filtered_deployments >>> [Deployment('Deployment I Own w/ Failing Service Health')]
- classmethod get(deployment_id)
Get information about a deployment. :rtype:
TypeVar
(TDeployment
, bound= Deployment)Added in version v2.17.
- Parameters:
- deployment_idstr
the id of the deployment
- Returns:
- deploymentDeployment
the queried deployment
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') deployment.id >>>'5c939e08962d741e34f609f0' deployment.label >>>'New Deployment'
- predict_batch(source, passthrough_columns=None, download_timeout=None, download_read_timeout=None, upload_read_timeout=None)
A convenience method for making predictions with csv file or pandas DataFrame using a batch prediction job.
For advanced usage, use
datarobot.models.BatchPredictionJob
directly. :rtype:DataFrame
Added in version v3.0.
- Parameters:
- source: str, pd.DataFrame or file object
Pass a filepath, file, or DataFrame for making batch predictions.
- passthrough_columnslist[string] (optional)
Keep these columns from the scoring dataset in the scored dataset. This is useful for correlating predictions with source data.
- download_timeout: int, optional
Wait this many seconds for the download to become available. See
datarobot.models.BatchPredictionJob.score()
.- download_read_timeout: int, optional
Wait this many seconds for the server to respond between chunks. See
datarobot.models.BatchPredictionJob.score()
.- upload_read_timeout: int, optional
Wait this many seconds for the server to respond after a whole dataset upload. See
datarobot.models.BatchPredictionJob.score()
.
- Returns:
- pd.DataFrame
Prediction results in a pandas DataFrame.
- Raises:
- InvalidUsageError
If the source parameter cannot be determined to be a filepath, file, or DataFrame.
Examples
from datarobot.models.deployment import Deployment deployment = Deployment.get("<MY_DEPLOYMENT_ID>") prediction_results_as_dataframe = deployment.predict_batch( source="./my_local_file.csv", )
- get_uri()
- Returns:
- urlstr
Deployment’s overview URI
- Return type:
str
- update(label=None, description=None, importance=None)
Update the label and description of this deployment. :rtype:
None
Added in version v2.19.
- delete()
Delete this deployment. :rtype:
None
Added in version v2.17.
- activate(max_wait=600)
Activates this deployment. When succeeded, deployment status become active. :rtype:
None
Added in version v2.29.
- Parameters:
- max_waitint, optional
The maximum time to wait for deployment activation to complete before erroring
- deactivate(max_wait=600)
Deactivates this deployment. When succeeded, deployment status become inactive. :rtype:
None
Added in version v2.29.
- Parameters:
- max_waitint, optional
The maximum time to wait for deployment deactivation to complete before erroring
- replace_model(new_model_id, reason, max_wait=600, new_registered_model_version_id=None)
- Return type:
None
- Replace the model used in this deployment. To confirm model replacement eligibility, use
validate_replacement_model()
beforehand.
Added in version v2.17.
Model replacement is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
Predictions made against this deployment will start using the new model as soon as the request is completed. There will be no interruption for predictions throughout the process.
- Parameters:
- new_model_idOptional[str]
The id of the new model to use. If replacing the deployment’s model with a CustomInferenceModel, a specific CustomModelVersion ID must be used. If None, new_registered_model_version_id must be specified.
- reasonMODEL_REPLACEMENT_REASON
The reason for the model replacement. Must be one of ‘ACCURACY’, ‘DATA_DRIFT’, ‘ERRORS’, ‘SCHEDULED_REFRESH’, ‘SCORING_SPEED’, or ‘OTHER’. This value will be stored in the model history to keep track of why a model was replaced
- max_waitint, optional
(new in version 2.22) The maximum time to wait for model replacement job to complete before erroring
- new_registered_model_version_idOptional[str]
(new in version 3.4) The registered model version (model package) ID of the new model to use. Must be passed if new_model_id is None.
Examples
from datarobot import Deployment from datarobot.enums import MODEL_REPLACEMENT_REASON deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') deployment.model['id'], deployment.model['type'] >>>('5c0a979859b00004ba52e431', 'Decision Tree Classifier (Gini)') deployment.replace_model('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.ACCURACY) deployment.model['id'], deployment.model['type'] >>>('5c0a969859b00004ba52e41b', 'Support Vector Classifier (Linear Kernel)')
- perform_model_replace(new_registered_model_version_id, reason, max_wait=600)
- Return type:
None
- Replace the model used in this deployment. To confirm model replacement eligibility, use
validate_replacement_model()
beforehand.
Added in version v3.4.
Model replacement is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
Predictions made against this deployment will start using the new model as soon as the request is completed. There will be no interruption for predictions throughout the process.
- Parameters:
- new_registered_model_version_idstr
The registered model version (model package) ID of the new model to use.
- reasonMODEL_REPLACEMENT_REASON
The reason for the model replacement. Must be one of ‘ACCURACY’, ‘DATA_DRIFT’, ‘ERRORS’, ‘SCHEDULED_REFRESH’, ‘SCORING_SPEED’, or ‘OTHER’. This value will be stored in the model history to keep track of why a model was replaced
- max_waitint, optional
The maximum time to wait for model replacement job to complete before erroring
Examples
from datarobot import Deployment from datarobot.enums import MODEL_REPLACEMENT_REASON deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') deployment.model_package['id'] >>>'5c0a979859b00004ba52e431' deployment.perform_model_replace('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.ACCURACY) deployment.model_package['id'] >>>'5c0a969859b00004ba52e41b'
- validate_replacement_model(new_model_id=None, new_registered_model_version_id=None)
Validate a model can be used as the replacement model of the deployment. :rtype:
Tuple
[str
,str
,Dict
[str
,Any
]]Added in version v2.17.
- Parameters:
- new_model_idOptional[str]
the id of the new model to validate
- new_registered_model_version_idOptional[str]
(new in version 3.4) The registered model version (model package) ID of the new model to use.
- Returns:
- statusstr
status of the validation, will be one of ‘passing’, ‘warning’ or ‘failing’. If the status is passing or warning, use
replace_model()
to perform a model replacement. If the status is failing, refer tochecks
for more detail on why the new model cannot be used as a replacement.- messagestr
message for the validation result
- checksdict
explain why the new model can or cannot replace the deployment’s current model
- get_features()
Retrieve the list of features needed to make predictions on this deployment.
- Returns:
- features: list
a list of feature dict
- Return type:
List
[FeatureDict
]
Notes
Each feature dict contains the following structure:
name
: str, feature namefeature_type
: str, feature typeimportance
: float, numeric measure of the relationship strength between the feature and target (independent of model or other features)date_format
: str or None, the date format string for how this feature was interpreted, null if not a date feature, compatible with https://docs.python.org/2/library/time.html#time.strftime.known_in_advance
: bool, whether the feature was selected as known in advance in a time series model, false for non-time series models.
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') features = deployment.get_features() features[0]['feature_type'] >>>'Categorical' features[0]['importance'] >>>0.133
- submit_actuals(data, batch_size=10000)
Submit actuals for processing. The actuals submitted will be used to calculate accuracy metrics.
- Parameters:
- data: list or pandas.DataFrame
- batch_size: the max number of actuals in each request
- If `data` is a list, each item should be a dict-like object with the following keys and
- values; if `data` is a pandas.DataFrame, it should contain the following columns:
- - association_id: str, a unique identifier used with a prediction,
max length 128 characters
- - actual_value: str or int or float, the actual value of a prediction;
should be numeric for deployments with regression models or string for deployments with classification model
- - was_acted_on: bool, optional, indicates if the prediction was acted on in a way that
could have affected the actual outcome
- - timestamp: datetime or string in RFC3339 format, optional. If the datetime provided
does not have a timezone, we assume it is UTC.
- Raises:
- ValueError
if input data is not a list of dict-like objects or a pandas.DataFrame if input data is empty
- Return type:
None
Examples
from datarobot import Deployment, AccuracyOverTime deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') data = [{ 'association_id': '439917', 'actual_value': 'True', 'was_acted_on': True }] deployment.submit_actuals(data)
- submit_actuals_from_catalog_async(dataset_id, actual_value_column, association_id_column, dataset_version_id=None, timestamp_column=None, was_acted_on_column=None)
Submit actuals from AI Catalog for processing. The actuals submitted will be used to calculate accuracy metrics.
- Parameters:
- dataset_id: str,
The ID of the source dataset.
- dataset_version_id: str, optional
The ID of the dataset version to apply the query to. If not specified, the latest version associated with dataset_id is used.
- association_id_column: str,
The name of the column that contains a unique identifier used with a prediction.
- actual_value_column: str,
The name of the column that contains the actual value of a prediction.
- was_acted_on_column: str, optional,
The name of the column that indicates if the prediction was acted on in a way that could have affected the actual outcome.
- timestamp_column: str, optional,
The name of the column that contains datetime or string in RFC3339 format.
- Returns:
- status_check_jobStatusCheckJob
Object contains all needed logic for a periodical status check of an async job.
- Raises:
- ValueError
if dataset_id not provided if actual_value_column not provided if association_id_column not provided
- Return type:
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') status_check_job = deployment.submit_actuals_from_catalog_async(data)
- get_predictions_by_forecast_date_settings()
Retrieve predictions by forecast date settings of this deployment. :rtype:
ForecastDateSettings
Added in version v2.27.
- Returns:
- settingsdict
Predictions by forecast date settings of the deployment is a dict with the following format:
- enabledbool
Is ‘’True’’ if predictions by forecast date is enabled for this deployment. To update this setting, see
update_predictions_by_forecast_date_settings()
- column_namestring
The column name in prediction datasets to be used as forecast date.
- datetime_formatstring
The datetime format of the forecast date column in prediction datasets.
- update_predictions_by_forecast_date_settings(enable_predictions_by_forecast_date, forecast_date_column_name=None, forecast_date_format=None, max_wait=600)
Update predictions by forecast date settings of this deployment. :rtype:
None
Added in version v2.27.
Updating predictions by forecast date setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- enable_predictions_by_forecast_datebool
set to ‘’True’’ if predictions by forecast date is to be turned on or set to ‘’False’’ if predictions by forecast date is to be turned off.
- forecast_date_column_name: string, optional
The column name in prediction datasets to be used as forecast date. If ‘’enable_predictions_by_forecast_date’’ is set to ‘’False’’, then the parameter will be ignored.
- forecast_date_format: string, optional
The datetime format of the forecast date column in prediction datasets. If ‘’enable_predictions_by_forecast_date’’ is set to ‘’False’’, then the parameter will be ignored.
- max_waitint, optional
seconds to wait for successful
Examples
# To set predictions by forecast date settings to the same default settings you see when using # the DataRobot web application, you use your 'Deployment' object like this: deployment.update_predictions_by_forecast_date_settings( enable_predictions_by_forecast_date=True, forecast_date_column_name="date (actual)", forecast_date_format="%Y-%m-%d", )
- get_challenger_models_settings()
Retrieve challenger models settings of this deployment. :rtype:
ChallengerModelsSettings
Added in version v2.27.
- Returns:
- settingsdict
Challenger models settings of the deployment is a dict with the following format:
- enabledbool
Is ‘’True’’ if challenger models is enabled for this deployment. To update existing ‘’challenger_models’’ settings, see
update_challenger_models_settings()
- update_challenger_models_settings(challenger_models_enabled, max_wait=600)
Update challenger models settings of this deployment. :rtype:
None
Added in version v2.27.
Updating challenger models setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- challenger_models_enabledbool
set to ‘’True’’ if challenger models is to be turned on or set to ‘’False’’ if challenger models is to be turned off
- max_waitint, optional
seconds to wait for successful resolution
- get_segment_analysis_settings()
Retrieve segment analysis settings of this deployment. :rtype:
SegmentAnalysisSettings
Added in version v2.27.
- Returns:
- settingsdict
Segment analysis settings of the deployment containing two items with keys
enabled
andattributes
, which are further described below.- enabledbool
Set to ‘’True’’ if segment analysis is enabled for this deployment. To update existing setting, see
update_segment_analysis_settings()
- attributeslist
To create or update existing segment analysis attributes, see
update_segment_analysis_settings()
- update_segment_analysis_settings(segment_analysis_enabled, segment_analysis_attributes=None, max_wait=600)
Update segment analysis settings of this deployment. :rtype:
None
Added in version v2.27.
Updating segment analysis setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- segment_analysis_enabledbool
set to ‘’True’’ if segment analysis is to be turned on or set to ‘’False’’ if segment analysis is to be turned off
- segment_analysis_attributes: list, optional
A list of strings that gives the segment attributes selected for tracking.
- max_waitint, optional
seconds to wait for successful resolution
- get_bias_and_fairness_settings()
Retrieve bias and fairness settings of this deployment.
..versionadded:: v3.2.0
- Returns:
- settingsdict in the following format:
- protected_featuresList[str]
A list of features to mark as protected.
- preferable_target_valuebool
A target value that should be treated as a positive outcome for the prediction.
- fairness_metric_setstr
Can be one of <datarobot.enums.FairnessMetricsSet>. A set of fairness metrics to use for calculating fairness.
- fairness_thresholdfloat
Threshold value of the fairness metric. Cannot be less than 0 or greater than 1.
- Return type:
Optional
[BiasAndFairnessSettings
]
- update_bias_and_fairness_settings(protected_features, fairness_metric_set, fairness_threshold, preferable_target_value, max_wait=600)
Update bias and fairness settings of this deployment.
..versionadded:: v3.2.0
Updating bias and fairness setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- protected_featuresList[str]
A list of features to mark as protected.
- preferable_target_valuebool
A target value that should be treated as a positive outcome for the prediction.
- fairness_metric_setstr
Can be one of <datarobot.enums.FairnessMetricsSet>. The fairness metric used to calculate the fairness scores.
- fairness_thresholdfloat
Threshold value of the fairness metric. Cannot be less than 0 or greater than 1.
- max_waitint, optional
seconds to wait for successful resolution
- Return type:
None
- get_challenger_replay_settings()
Retrieve challenger replay settings of this deployment. :rtype:
ChallengerReplaySettings
Added in version v3.4.
- Returns:
- settingsdict in the following format:
- enabledbool
If challenger replay is enabled. To update existing ‘’challenger_replay’’ settings, see
update_challenger_replay_settings()
- scheduleSchedule
The recurring schedule for the challenger replay job.
- update_challenger_replay_settings(enabled, schedule=None)
Update challenger replay settings of this deployment. :rtype:
None
Added in version v3.4.
- Parameters:
- enabledbool
If challenger replay is enabled.
- scheduleOptional[Schedule]
The recurring schedule for the challenger replay job.
- get_drift_tracking_settings()
Retrieve drift tracking settings of this deployment. :rtype:
DriftTrackingSettings
Added in version v2.17.
- Returns:
- settingsdict
Drift tracking settings of the deployment containing two nested dicts with key
target_drift
andfeature_drift
, which are further described below.Target drift
setting contains:- enabledbool
If target drift tracking is enabled for this deployment. To create or update existing ‘’target_drift’’ settings, see
update_drift_tracking_settings()
Feature drift
setting contains:- enabledbool
If feature drift tracking is enabled for this deployment. To create or update existing ‘’feature_drift’’ settings, see
update_drift_tracking_settings()
- update_drift_tracking_settings(target_drift_enabled=None, feature_drift_enabled=None, max_wait=600)
Update drift tracking settings of this deployment. :rtype:
None
Added in version v2.17.
Updating drift tracking setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- target_drift_enabledbool, optional
if target drift tracking is to be turned on
- feature_drift_enabledbool, optional
if feature drift tracking is to be turned on
- max_waitint, optional
seconds to wait for successful resolution
- get_association_id_settings()
Retrieve association ID setting for this deployment. :rtype:
str
Added in version v2.19.
- Returns:
- association_id_settingsdict in the following format:
- column_nameslist[string], optional
name of the columns to be used as association ID,
- required_in_prediction_requestsbool, optional
whether the association ID column is required in prediction requests
- update_association_id_settings(column_names=None, required_in_prediction_requests=None, max_wait=600)
Update association ID setting for this deployment. :rtype:
None
Added in version v2.19.
- Parameters:
- column_nameslist[string], optional
name of the columns to be used as association ID, currently only support a list of one string
- required_in_prediction_requestsbool, optional
whether the association ID column is required in prediction requests
- max_waitint, optional
seconds to wait for successful resolution
- get_predictions_data_collection_settings()
Retrieve predictions data collection settings of this deployment. :rtype:
Dict
[str
,bool
]Added in version v2.21.
- Returns:
- predictions_data_collection_settingsdict in the following format:
- enabledbool
If predictions data collection is enabled for this deployment. To update existing ‘’predictions_data_collection’’ settings, see
update_predictions_data_collection_settings()
- update_predictions_data_collection_settings(enabled, max_wait=600)
Update predictions data collection settings of this deployment. :rtype:
None
Added in version v2.21.
Updating predictions data collection setting is an asynchronous process, which means some preparatory work may be performed after the initial request is completed. This function will not return until all preparatory work is fully finished.
- Parameters:
- enabled: bool
if predictions data collection is to be turned on
- max_waitint, optional
seconds to wait for successful resolution
- get_prediction_warning_settings()
Retrieve prediction warning settings of this deployment. :rtype:
PredictionWarningSettings
Added in version v2.19.
- Returns:
- settingsdict in the following format:
- enabledbool
If target prediction_warning is enabled for this deployment. To create or update existing ‘’prediction_warning’’ settings, see
update_prediction_warning_settings()
- custom_boundariesdict or None
- If None default boundaries for a model are used. Otherwise has following keys:
- upperfloat
All predictions greater than provided value are considered anomalous
- lowerfloat
All predictions less than provided value are considered anomalous
- update_prediction_warning_settings(prediction_warning_enabled, use_default_boundaries=None, lower_boundary=None, upper_boundary=None, max_wait=600)
Update prediction warning settings of this deployment. :rtype:
None
Added in version v2.19.
- Parameters:
- prediction_warning_enabledbool
If prediction warnings should be turned on.
- use_default_boundariesbool, optional
If default boundaries of the model should be used for the deployment.
- upper_boundaryfloat, optional
All predictions greater than provided value will be considered anomalous
- lower_boundaryfloat, optional
All predictions less than provided value will be considered anomalous
- max_waitint, optional
seconds to wait for successful resolution
- get_prediction_intervals_settings()
Retrieve prediction intervals settings for this deployment. :rtype:
PredictionIntervalsSettings
Added in version v2.19.
- Returns:
- dict in the following format:
- enabledbool
Whether prediction intervals are enabled for this deployment
- percentileslist[int]
List of enabled prediction intervals’ sizes for this deployment. Currently we only support one percentile at a time.
Notes
Note that prediction intervals are only supported for time series deployments.
- update_prediction_intervals_settings(percentiles, enabled=True, max_wait=600)
Update prediction intervals settings for this deployment. :rtype:
None
Added in version v2.19.
- Parameters:
- percentileslist[int]
The prediction intervals percentiles to enable for this deployment. Currently we only support setting one percentile at a time.
- enabledbool, optional (defaults to True)
Whether to enable showing prediction intervals in the results of predictions requested using this deployment.
- max_waitint, optional
seconds to wait for successful resolution
- Raises:
- AssertionError
If
percentiles
is in an invalid format- AsyncFailureError
If any of the responses from the server are unexpected
- AsyncProcessUnsuccessfulError
If the prediction intervals calculation job has failed or has been cancelled.
- AsyncTimeoutError
If the prediction intervals calculation job did not resolve in time
Notes
Updating prediction intervals settings is an asynchronous process, which means some preparatory work may be performed before the settings request is completed. This function will not return until all work is fully finished.
Note that prediction intervals are only supported for time series deployments.
- get_health_settings()
Retrieve health settings of this deployment. :rtype:
HealthSettings
Added in version v3.4.
- Returns:
- settingsdict in the following format:
- servicedict
Service health settings.
- data_driftdict
Data drift health settings.
- accuracydict
Accuracy health settings.
- fairnessdict
Fairness health settings.
- custom_metricsdict
Custom metrics health settings.
- predictions_timelinessdict
Predictions timeliness health settings.
- actuals_timelinessdict
Actuals timeliness health settings.
- update_health_settings(service=None, data_drift=None, accuracy=None, fairness=None, custom_metrics=None, predictions_timeliness=None, actuals_timeliness=None)
Update health settings of this deployment. :rtype:
HealthSettings
Added in version v3.4.
- Parameters:
- servicedict
Service health settings.
- data_driftdict
Data drift health settings.
- accuracydict
Accuracy health settings.
- fairnessdict
Fairness health settings.
- custom_metricsdict
Custom metrics health settings.
- predictions_timelinessdict
Predictions timeliness health settings.
- actuals_timelinessdict
Actuals timeliness health settings.
- get_default_health_settings()
Retrieve default health settings of this deployment. :rtype:
HealthSettings
Added in version v3.4.
- Returns:
- settingsdict in the following format:
- servicedict
Service health settings.
- data_driftdict
Data drift health settings.
- accuracydict
Accuracy health settings.
- fairnessdict
Fairness health settings.
- custom_metricsdict
Custom metrics health settings.
- predictions_timelinessdict
Predictions timeliness health settings.
- actuals_timelinessdict
Actuals timeliness health settings.
- get_service_stats(model_id=None, start_time=None, end_time=None, execution_time_quantile=None, response_time_quantile=None, slow_requests_threshold=None, segment_attribute=None, segment_value=None)
Retrieves values of many service stat metrics aggregated over a time period. :rtype:
ServiceStats
Added in version v2.18.
- Parameters:
- model_idstr, optional
the id of the model
- start_timedatetime, optional
start of the time period
- end_timedatetime, optional
end of the time period
- execution_time_quantilefloat, optional
quantile for executionTime, defaults to 0.5
- response_time_quantilefloat, optional
quantile for responseTime, defaults to 0.5
- slow_requests_thresholdfloat, optional
threshold for slowRequests, defaults to 1000
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- service_statsServiceStats
the queried service stats metrics information
- get_service_stats_over_time(metric=None, model_id=None, start_time=None, end_time=None, bucket_size=None, quantile=None, threshold=None, segment_attribute=None, segment_value=None)
Retrieves values of a single service stat metric over a time period. :rtype:
ServiceStatsOverTime
Added in version v2.18.
- Parameters:
- metricSERVICE_STAT_METRIC, optional
the service stat metric to retrieve
- model_idstr, optional
the id of the model
- start_timedatetime, optional
start of the time period
- end_timedatetime, optional
end of the time period
- bucket_sizestr, optional
time duration of a bucket, in ISO 8601 time duration format
- quantilefloat, optional
quantile for ‘executionTime’ or ‘responseTime’, ignored when querying other metrics
- thresholdint, optional
threshold for ‘slowQueries’, ignored when querying other metrics
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- service_stats_over_timeServiceStatsOverTime
the queried service stats metric over time information
- get_target_drift(model_id=None, start_time=None, end_time=None, metric=None, segment_attribute=None, segment_value=None)
Retrieve target drift information over a certain time period. :rtype:
TargetDrift
Added in version v2.21.
- Parameters:
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- metricstr
(New in version v2.22) metric used to calculate the drift score
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- target_driftTargetDrift
the queried target drift information
- get_feature_drift(model_id=None, start_time=None, end_time=None, metric=None, segment_attribute=None, segment_value=None)
Retrieve drift information for deployment’s features over a certain time period. :rtype:
List
[FeatureDrift
]Added in version v2.21.
- Parameters:
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- metricstr
(New in version v2.22) The metric used to calculate the drift score. Allowed values include psi, kl_divergence, dissimilarity, hellinger, and js_divergence.
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns
- ——-
- feature_drift_data[FeatureDrift]
the queried feature drift information
- get_predictions_over_time(model_ids=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, include_percentiles=False, segment_attribute=None, segment_value=None)
Retrieve stats of deployment’s prediction response over a certain time period. :rtype:
PredictionsOverTime
Added in version v3.2.
- Parameters:
- model_idslist[str]
ID of models to retrieve prediction stats
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizeBUCKET_SIZE
time duration of each bucket
- target_classeslist[str]
class names of target, only for deployments with multiclass target
- include_percentilesbool
if the returned data includes percentiles, only for a deployment with a binary and regression target
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- predictions_over_timePredictionsOverTime
the queried predictions over time information
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') predictions_over_time = deployment.get_predictions_over_time() predictions_over_time.buckets[0]['mean_predicted_value'] >>>0.3772 predictions_over_time.buckets[0]['row_count'] >>>2000
- get_accuracy(model_id=None, start_time=None, end_time=None, start=None, end=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieves values of many accuracy metrics aggregated over a time period. :rtype:
Accuracy
Added in version v2.18.
- Parameters:
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- target_classeslist[str], optional
Optional list of target class strings
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- accuracyAccuracy
the queried accuracy metrics information
- get_accuracy_over_time(metric=None, model_id=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieves values of a single accuracy metric over a time period. :rtype:
AccuracyOverTime
Added in version v2.18.
- Parameters:
- metricACCURACY_METRIC
the accuracy metric to retrieve
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizestr
time duration of a bucket, in ISO 8601 time duration format
- target_classeslist[str], optional
Optional list of target class strings
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- accuracy_over_timeAccuracyOverTime
the queried accuracy metric over time information
- get_predictions_vs_actuals_over_time(model_ids=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieve information for deployment’s predictions vs actuals over a certain time period. :rtype:
PredictionsVsActualsOverTime
Added in version v3.3.
- Parameters:
- model_idslist[str]
The ID of models to retrieve predictions vs actuals stats for.
- start_timedatetime
Start of the time period.
- end_timedatetime
End of the time period.
- bucket_sizeBUCKET_SIZE
Time duration of each bucket.
- target_classeslist[str]
Class names of target, only for deployments with a multiclass target.
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- predictions_vs_actuals_over_timePredictionsVsActualsOverTime
The queried predictions vs actuals over time information.
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') predictions_over_time = deployment.get_predictions_vs_actuals_over_time() predictions_over_time.buckets[0]['mean_actual_value'] >>>0.6673 predictions_over_time.buckets[0]['row_count_with_actual'] >>>500
- get_fairness_scores_over_time(start_time=None, end_time=None, bucket_size=None, model_id=None, protected_feature=None, fairness_metric=None)
Retrieves values of a single fairness score over a time period. :rtype:
FairnessScoresOverTime
Added in version v3.2.
- Parameters:
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizestr
time duration of a bucket, in ISO 8601 time duration format
- protected_featurestr
name of protected feature
- fairness_metricstr
A consolidation of the fairness metrics by the use case.
- Returns:
- fairness_scores_over_timeFairnessScoresOverTime
the queried fairness score over time information
- update_secondary_dataset_config(secondary_dataset_config_id, credential_ids=None)
Update the secondary dataset config used by Feature discovery model for a given deployment. :rtype:
str
Added in version v2.23.
- Parameters:
- secondary_dataset_config_id: str
Id of the secondary dataset config
- credential_ids: list or None
List of DatasetsCredentials used by the secondary datasets
Examples
from datarobot import Deployment deployment = Deployment(deployment_id='5c939e08962d741e34f609f0') config = deployment.update_secondary_dataset_config('5df109112ca582033ff44084') config >>> '5df109112ca582033ff44084'
- get_secondary_dataset_config()
Get the secondary dataset config used by Feature discovery model for a given deployment. :rtype:
str
Added in version v2.23.
- Returns:
- secondary_dataset_configSecondaryDatasetConfigurations
Id of the secondary dataset config
Examples
from datarobot import Deployment deployment = Deployment(deployment_id='5c939e08962d741e34f609f0') deployment.update_secondary_dataset_config('5df109112ca582033ff44084') config = deployment.get_secondary_dataset_config() config >>> '5df109112ca582033ff44084'
- get_prediction_results(model_id=None, start_time=None, end_time=None, actuals_present=None, offset=None, limit=None)
Retrieve a list of prediction results of the deployment. :rtype:
List
[Dict
[str
,Any
]]Added in version v2.24.
- Parameters:
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- actuals_presentbool
filters predictions results to only those who have actuals present or with missing actuals
- offsetint
this many results will be skipped
- limitint
at most this many results are returned
- Returns:
- prediction_results: list[dict]
a list of prediction results
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') results = deployment.get_prediction_results()
- download_prediction_results(filepath, model_id=None, start_time=None, end_time=None, actuals_present=None, offset=None, limit=None)
Download prediction results of the deployment as a CSV file. :rtype:
None
Added in version v2.24.
- Parameters:
- filepathstr
path of the csv file
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- actuals_presentbool
filters predictions results to only those who have actuals present or with missing actuals
- offsetint
this many results will be skipped
- limitint
at most this many results are returned
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') results = deployment.download_prediction_results('path_to_prediction_results.csv')
- download_scoring_code(filepath, source_code=False, include_agent=False, include_prediction_explanations=False, include_prediction_intervals=False, max_wait=600)
Retrieve scoring code of the current deployed model. :rtype:
None
Added in version v2.24.
- Parameters:
- filepathstr
path of the scoring code file
- source_codebool
whether source code or binary of the scoring code will be retrieved
- include_agentbool
whether the scoring code retrieved will include tracking agent
- include_prediction_explanationsbool
whether the scoring code retrieved will include prediction explanations
- include_prediction_intervalsbool
whether the scoring code retrieved will support prediction intervals
- max_wait: int, optional
Seconds to wait for successful resolution of a deployment creation job. Deployment supports making predictions only after a deployment creating job has successfully finished
Notes
When setting include_agent or include_predictions_explanations or include_prediction_intervals to True, it can take a considerably longer time to download the scoring code.
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') results = deployment.download_scoring_code('path_to_scoring_code.jar')
- download_model_package_file(filepath, compute_all_ts_intervals=False)
Retrieve model package file (mlpkg) of the current deployed model. :rtype:
None
Added in version v3.3.
- Parameters:
- filepathstr
The file path of the model package file.
- compute_all_ts_intervalsbool
Includes all time series intervals into the built Model Package (.mlpkg) if set to True.
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') deployment.download_model_package_file('path_to_model_package.mlpkg')
- delete_monitoring_data(model_id, start_time=None, end_time=None, max_wait=600)
Delete deployment monitoring data.
- Parameters:
- model_idstr
id of the model to delete monitoring data
- start_timedatetime, optional
start of the time period to delete monitoring data
- end_timedatetime, optional
end of the time period to delete monitoring data
- max_waitint, optional
seconds to wait for successful resolution
- Return type:
None
Get a list of users, groups and organizations that have an access to this user blueprint
- Parameters:
- id: str, Optional
Only return the access control information for a organization, group or user with this ID.
- name: string, Optional
Only return the access control information for a organization, group or user with this name.
- share_recipient_type: enum(‘user’, ‘group’, ‘organization’), Optional
Only returns results with the given recipient type.
- limit: int (Default=0)
At most this many results are returned.
- offset: int (Default=0)
This many results will be skipped.
- Returns:
- List[DeploymentSharedRole]
- Return type:
List
[DeploymentSharedRole
]
Share a deployment with a user, group, or organization
- Parameters:
- roles: list(or(GrantAccessControlWithUsernameValidator, GrantAccessControlWithIdValidator))
Array of GrantAccessControl objects, up to maximum 100 objects.
- Return type:
None
- list_challengers()
Get a list of challengers for this deployment. :rtype:
List
[Challenger
]Added in version v3.4.
- Returns:
- list(Challenger)
- get_champion_model_package()
Get a champion model package for this deployment.
- Returns:
- champion_model_packageChampionModelPackage
A champion model package object.
- Return type:
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') champion_model_package = deployment.get_champion_model_package()
- list_prediction_data_exports(model_id=None, status=None, batch=None, offset=0, limit=100)
Retrieve a list of asynchronous prediction data exports.
- Parameters:
- model_id: Optional[str]
The ID of the model used for prediction data export.
- status: Optional[str]
A prediction data export processing state.
- batch: Optional[bool]
If true, only return batch exports. If false, only return real-time exports. If not provided, return both real-time and batch exports.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (0 means no limit).
- offset: Optional[int]
The starting offset of the results. The default is 0.
- Returns:
- prediction_data_exports: List[PredictionDataExport]
A list of prediction data exports.
- Return type:
List
[PredictionDataExport
]
- list_actuals_data_exports(status=None, offset=0, limit=100)
Retrieve a list of asynchronous actuals data exports.
- Parameters:
- status: Optional[str]
Actuals data export processing state.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (0 means no limit).
- offset: Optional[int]
The starting offset of the results. The default is 0.
- Returns:
- actuals_data_exports: List[ActualsDataExport]
A list of actuals data exports.
- Return type:
List
[ActualsDataExport
]
- list_training_data_exports()
Retrieve a list of successful training data exports.
- Returns:
- training_data_export: List[TrainingDataExport]
A list of training data exports.
- Return type:
List
[TrainingDataExport
]
- list_data_quality_exports(start, end, model_id=None, prediction_pattern=None, prompt_pattern=None, actual_pattern=None, order_by=None, order_metric=None, filter_metric=None, filter_value=None, offset=0, limit=100)
Retrieve a list of data-quality export records for a given deployment. :rtype:
List
[DataQualityExport
]Added in version v3.6.
- Parameters:
- start: Union[str, datetime]
The earliest time of the objects to return.
- end: Union[str, datetime]
The latest time of the objects to return.
- model_id: Optional[str]
The ID of the model.
- prediction_pattern: Optional[str]
The keywords to search in a predicted value for a text generation target.
- prompt_pattern: Optional[str]
The keywords to search in a prompt value for a text generation target.
- actual_pattern: Optional[str]
The keywords to search in an actual value for a text generation target.
- order_by: Optional[str]
The field to sort by (e.g. associationId, timestamp, or customMetrics). Use a leading ‘-’ to indicate descending order. When ordering by a custom-metric, must also specify ‘order_metric’. The default is None, which equates to ‘-timestamp’.
- order_metric: Optional[str]
When ‘order_by’ is a custom-metric, this specifies the custom-metric name or ID to use for ordering. The default is None.
- filter_metric: Optional[str]
Specifies the metric name or ID to use for matching. Must also use ‘filter_value’ to specify the value that must be matched. The default is None.
- filter_value: Optional[str]
Specifies the value associated with ‘filter_metric’ that must be matched. The default is None.
- offset: Optional[int]
The starting offset of the results. The default is 0.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (which is maximum).
- Returns:
- data_quality_exports: list
A list of DataQualityExport objects.
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') data_quality_exports = deployment.list_data_quality_exports(start_time='2024-07-01', end_time='2024-08-01')
- get_capabilities()
Get a list capabilities for this deployment. :rtype:
List
[Capability
]Added in version v3.5.
- Returns:
- list(Capability)
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') capabilities = deployment.get_capabilities()
- get_segment_attributes(monitoringType='serviceHealth')
Get a list of segment attributes for this deployment. :rtype:
List
[str
]Added in version v3.6.
- Parameters:
- monitoringType: str, Optional
The monitoring type for which segment attributes are being retrieved.
- Returns:
- list(str)
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') segment_attributes = deployment.get_segment_attributes(DEPLOYMENT_MONITORING_TYPE.SERVICE_HEALTH)
- get_segment_values(segment_attribute=None, limit=100, offset=0, search=None)
Get a list of segment values for this deployment. :rtype:
List
[str
]Added in version v3.6.
- Parameters:
- segment_attribute: str, Optional
Represents the different ways that prediction requests can be viewed.
- limit: int, Optional
The maximum number of values to return.
- offset: int, Optional
The starting point of the values to be returned.
- search: str, Optional
A string to filter the values.
- Returns:
- list(str)
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') segment_values = deployment.get_segment_values(segment_attribute=ReservedSegmentAttributes.CONSUMER)
- get_moderation_events(limit=100, offset=0)
Get a list of moderation events for this deployment
- Parameters:
- limit: int (Default=100)
The maximum number of values to return.
- offset: int (Default=0)
The starting point of the values to be returned.
- Returns:
- events: List[MLOpsEvent]
- Return type:
List
[MLOpsEvent
]
- get_accuracy_metrics_settings()
Get accuracy metrics settings for this deployment.
- Returns:
- accuracy_metrics: list(str)
A list of deployment accuracy metric names.
- Return type:
List
[ACCURACY_METRIC
]
Examples
from datarobot import Deployment deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') accuracy_metrics = deployment.get_accuracy_metrics_settings()
- update_accuracy_metrics_settings(accuracy_metrics)
Update accuracy metrics settings for this deployment.
- Parameters:
- accuracy_metrics: list(str)
A list of accuracy metric names.
- Returns:
- accuracy_metrics: list(str)
A list of deployment accuracy metric names.
- Return type:
List
[ACCURACY_METRIC
]
Examples
from datarobot import Deployment from datarobot.enums import ACCURACY_METRIC deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') payload = [ACCURACY_METRIC.AUC, ACCURACY_METRIC.LOGLOSS] accuracy_metrics = deployment.update_accuracy_metrics_settings(payload)
- classmethod from_data(data)
Instantiate an object of this class using a dict.
- Parameters:
- datadict
Correctly snake_cased keys and their values.
- Return type:
TypeVar
(T
, bound= APIObject)
- classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have the wrong camel casing
- Parameters:
- datadict
The directly translated dict of JSON from the server. No casing fixes have taken place
- keep_attrsiterable
List, set or tuple of the dotted namespace notations for attributes to keep within the object structure even if their values are None
- Return type:
TypeVar
(T
, bound= APIObject)
- open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.
Note: If text-mode browsers are used, the calling process will block until the user exits the browser.
- Return type:
None
- class datarobot.models.deployment.DeploymentListFilters(role=None, service_health=None, model_health=None, accuracy_health=None, execution_environment_type=None, importance=None)
- class datarobot.models.deployment.ServiceStats(period=None, metrics=None, model_id=None, segment_attribute=None, segment_value=None)
Deployment service stats information.
- Attributes:
- model_idstr
the model used to retrieve service stats metrics
- perioddict
the time period used to retrieve service stats metrics
- metricsdict
the service stats metrics
- classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, execution_time_quantile=None, response_time_quantile=None, segment_attribute=None, segment_value=None, slow_requests_threshold=None)
Retrieve value of service stat metrics over a certain time period. :rtype:
ServiceStats
Added in version v2.18.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idstr, optional
the id of the model
- start_timedatetime, optional
start of the time period
- end_timedatetime, optional
end of the time period
- execution_time_quantilefloat, optional
quantile for executionTime, defaults to 0.5
- response_time_quantilefloat, optional
quantile for responseTime, defaults to 0.5
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- slow_requests_thresholdfloat, optional
threshold for slowRequests, defaults to 1000
- Returns:
- service_statsServiceStats
the queried service stats metrics
- class datarobot.models.deployment.ServiceStatsOverTime(buckets=None, summary=None, metric=None, model_id=None, segment_attribute=None, segment_value=None)
Deployment service stats over time information.
- Attributes:
- model_idstr
the model used to retrieve accuracy metric
- metricstr
the service stat metric being retrieved
- bucketsdict
how the service stat metric changes over time
- summarydict
summary for the service stat metric
- classmethod get(deployment_id, metric=None, model_id=None, start_time=None, end_time=None, bucket_size=None, quantile=None, threshold=None, segment_attribute=None, segment_value=None)
Retrieve information about how a service stat metric changes over a certain time period. :rtype:
ServiceStatsOverTime
Added in version v2.18.
- Parameters:
- deployment_idstr
the id of the deployment
- metricSERVICE_STAT_METRIC, optional
the service stat metric to retrieve
- model_idstr, optional
the id of the model
- start_timedatetime, optional
start of the time period
- end_timedatetime, optional
end of the time period
- bucket_sizestr, optional
time duration of a bucket, in ISO 8601 time duration format
- quantilefloat, optional
quantile for ‘executionTime’ or ‘responseTime’, ignored when querying other metrics
- thresholdint, optional
threshold for ‘slowQueries’, ignored when querying other metrics
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- service_stats_over_timeServiceStatsOverTime
the queried service stat over time information
- property bucket_values: OrderedDict[str, int | float | None]
The metric value for all time buckets, keyed by start time of the bucket.
- Returns:
- bucket_values: OrderedDict
- class datarobot.models.deployment.TargetDrift(period=None, metric=None, model_id=None, target_name=None, drift_score=None, sample_size=None, baseline_sample_size=None, segment_attribute=None, segment_value=None)
Deployment target drift information.
- Attributes:
- model_idstr
the model used to retrieve target drift metric
- perioddict
the time period used to retrieve target drift metric
- metricstr
the data drift metric
- target_namestr
name of the target
- drift_scorefloat
target drift score
- sample_sizeint
count of data points for comparison
- baseline_sample_sizeint
count of data points for baseline
- classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, metric=None, segment_attribute=None, segment_value=None)
Retrieve target drift information over a certain time period. :rtype:
TargetDrift
Added in version v2.21.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- metricstr
(New in version v2.22) metric used to calculate the drift score
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns
- ——-
- target_driftTargetDrift
the queried target drift information
Examples
from datarobot import Deployment, TargetDrift deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') target_drift = TargetDrift.get(deployment.id) target_drift.period['end'] >>>'2019-08-01 00:00:00+00:00' target_drift.drift_score >>>0.03423 accuracy.target_name >>>'readmitted'
- class datarobot.models.deployment.FeatureDrift(period=None, metric=None, model_id=None, name=None, drift_score=None, feature_impact=None, sample_size=None, baseline_sample_size=None, segment_attribute=None, segment_value=None)
Deployment feature drift information.
- Attributes:
- model_idstr
the model used to retrieve feature drift metric
- perioddict
the time period used to retrieve feature drift metric
- metricstr
the data drift metric
- namestr
name of the feature
- drift_scorefloat
feature drift score
- sample_sizeint
count of data points for comparison
- baseline_sample_sizeint
count of data points for baseline
- classmethod list(deployment_id, model_id=None, start_time=None, end_time=None, metric=None, segment_attribute=None, segment_value=None)
Retrieve drift information for deployment’s features over a certain time period. :rtype:
List
[FeatureDrift
]Added in version v2.21.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- metricstr
(New in version v2.22) metric used to calculate the drift score
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- feature_drift_data[FeatureDrift]
the queried feature drift information
Examples
from datarobot import Deployment, TargetDrift deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') feature_drift = FeatureDrift.list(deployment.id)[0] feature_drift.period >>>'2019-08-01 00:00:00+00:00' feature_drift.drift_score >>>0.252 feature_drift.name >>>'age'
- class datarobot.models.deployment.PredictionsOverTime(baselines=None, buckets=None)
Deployment predictions over time information.
- Attributes:
- baselinesList
target baseline for each model queried
- bucketsList
predictions over time bucket for each model and bucket queried
- classmethod get(deployment_id, model_ids=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, include_percentiles=False, segment_attribute=None, segment_value=None)
Retrieve information for deployment’s prediction response over a certain time period. :rtype:
PredictionsOverTime
Added in version v3.2.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idslist[str]
ID of models to retrieve prediction stats
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizeBUCKET_SIZE
time duration of each bucket
- target_classeslist[str]
class names of target, only for deployments with multiclass target
- include_percentilesbool
if the returned data includes percentiles, only for a deployment with a binary and regression target
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- predictions_over_timePredictionsOverTime
the queried predictions over time information
- class datarobot.models.deployment.Accuracy(period=None, metrics=None, model_id=None)
Deployment accuracy information.
- Attributes:
- model_idstr
the model used to retrieve accuracy metrics
- perioddict
the time period used to retrieve accuracy metrics
- metricsdict
the accuracy metrics
- classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieve values of accuracy metrics over a certain time period. :rtype:
Accuracy
Added in version v2.18.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- target_classeslist[str], optional
Optional list of target class strings
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- accuracyAccuracy
the queried accuracy metrics information
Examples
from datarobot import Deployment, Accuracy deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') accuracy = Accuracy.get(deployment.id) accuracy.period['end'] >>>'2019-08-01 00:00:00+00:00' accuracy.metric['LogLoss']['value'] >>>0.7533 accuracy.metric_values['LogLoss'] >>>0.7533
- property metric_values: Dict[str, int | None]
The value for all metrics, keyed by metric name.
- Returns:
- metric_values: Dict
- property metric_baselines: Dict[str, int | None]
The baseline value for all metrics, keyed by metric name.
- Returns:
- metric_baselines: Dict
- property percent_changes: Dict[str, int | None]
The percent change of value over baseline for all metrics, keyed by metric name.
- Returns:
- percent_changes: Dict
- class datarobot.models.deployment.AccuracyOverTime(buckets=None, summary=None, baseline=None, metric=None, model_id=None, segment_attribute=None, segment_value=None)
Deployment accuracy over time information.
- Attributes:
- model_idstr
the model used to retrieve accuracy metric
- metricstr
the accuracy metric being retrieved
- bucketsdict
how the accuracy metric changes over time
- summarydict
summary for the accuracy metric
- baselinedict
baseline for the accuracy metric
- classmethod get(deployment_id, metric=None, model_id=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieve information about how an accuracy metric changes over a certain time period. :rtype:
AccuracyOverTime
Added in version v2.18.
- Parameters:
- deployment_idstr
the id of the deployment
- metricACCURACY_METRIC
the accuracy metric to retrieve
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizestr
time duration of a bucket, in ISO 8601 time duration format
- target_classeslist[str], optional
Optional list of target class strings
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- accuracy_over_timeAccuracyOverTime
the queried accuracy metric over time information
Examples
from datarobot import Deployment, AccuracyOverTime from datarobot.enums import ACCURACY_METRICS deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0') accuracy_over_time = AccuracyOverTime.get(deployment.id, metric=ACCURACY_METRIC.LOGLOSS) accuracy_over_time.metric >>>'LogLoss' accuracy_over_time.metric_values >>>{datetime.datetime(2019, 8, 1): 0.73, datetime.datetime(2019, 8, 2): 0.55}
- classmethod get_as_dataframe(deployment_id, metrics=None, model_id=None, start_time=None, end_time=None, bucket_size=None)
Retrieve information about how a list of accuracy metrics change over a certain time period as pandas DataFrame.
In the returned DataFrame, the columns corresponds to the metrics being retrieved; the rows are labeled with the start time of each bucket.
- Parameters:
- deployment_idstr
the id of the deployment
- metrics[ACCURACY_METRIC]
the accuracy metrics to retrieve
- model_idstr
the id of the model
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizestr
time duration of a bucket, in ISO 8601 time duration format
- Returns:
- accuracy_over_time: pd.DataFrame
- Return type:
DataFrame
- property bucket_values: Dict[datetime, int]
The metric value for all time buckets, keyed by start time of the bucket.
- Returns:
- bucket_values: Dict
- property bucket_sample_sizes: Dict[datetime, int]
The sample size for all time buckets, keyed by start time of the bucket.
- Returns:
- bucket_sample_sizes: Dict
- class datarobot.models.deployment.PredictionsVsActualsOverTime(summary=None, baselines=None, buckets=None, segment_attribute=None, segment_value=None)
Deployment predictions vs actuals over time information.
- Attributes:
- summarydict
predictions vs actuals over time summary for all models and buckets queried
- baselinesList
target baseline for each model queried
- bucketsList
predictions vs actuals over time bucket for each model and bucket queried
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- classmethod get(deployment_id, model_ids=None, start_time=None, end_time=None, bucket_size=None, target_classes=None, segment_attribute=None, segment_value=None)
Retrieve information for deployment’s predictions vs actuals over a certain time period. :rtype:
PredictionsVsActualsOverTime
Added in version v3.3.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idslist[str]
ID of models to retrieve predictions vs actuals stats
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- bucket_sizeBUCKET_SIZE
time duration of each bucket
- target_classeslist[str]
class names of target, only for deployments with multiclass target
- segment_attributestr, optional
(New in Version v3.6) the segment attribute
- segment_valuestr, optional
(New in Version v3.6) the segment value
- Returns:
- predictions_vs_actuals_over_timePredictionsVsActualsOverTime
the queried predictions vs actuals over time information
- class datarobot.models.deployment.bias_and_fairness.FairnessScoresOverTime(summary=None, buckets=None, protected_feature=None, fairness_threshold=None, model_id=None, model_package_id=None, favorable_target_outcome=None)
Deployment fairness over time information.
- Attributes:
- bucketsList
fairness over time bucket for each model and bucket queried
- summarydict
summary for the fairness score
- protected_featurestr
name of protected feature
- fairnessThresholdfloat
threshold used to compute fairness results
- modelIdstr
model id for which fairness is computed
- modelPackageIdstr
model package (version) id for which fairness is computed
- favorableTargetOutcomebool
preferable class of the target
- classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, bucket_size=None, fairness_metric=None, protected_feature=None)
Retrieve information for deployment’s fairness score response over a certain time period. :rtype:
FairnessScoresOverTime
Added in version FUTURE.
- Parameters:
- deployment_idstr
the id of the deployment
- model_idstr
id of models to retrieve fairness score stats
- start_timedatetime
start of the time period
- end_timedatetime
end of the time period
- protected_featurestr
name of the protected feature
- fairness_metricstr
A consolidation of the fairness metrics by the use case.
- bucket_sizeBUCKET_SIZE
time duration of each bucket
- Returns:
- fairness_scores_over_timeFairnessScoresOverTime
the queried fairness score over time information
- Parameters:
- share_recipient_type: enum(‘user’, ‘group’, ‘organization’)
Describes the recipient type, either user, group, or organization.
- role: str, one of enum(‘CONSUMER’, ‘USER’, ‘OWNER’)
The role of the org/group/user on this deployment.
- id: str
The ID of the recipient organization, group or user.
- name: string
The name of the recipient organization, group or user.
- Parameters:
- share_recipient_type: enum(‘user’, ‘group’, ‘organization’)
Describes the recipient type, either user, group, or organization.
- role: enum(‘OWNER’, ‘USER’, ‘OBSERVER’, ‘NO_ROLE’)
The role of the recipient on this entity. One of OWNER, USER, OBSERVER, NO_ROLE. If NO_ROLE is specified, any existing role for the recipient will be removed.
- id: str
The ID of the recipient.
- Parameters:
- role: string
The role of the recipient on this entity. One of OWNER, USER, CONSUMER, NO_ROLE. If NO_ROLE is specified, any existing role for the user will be removed.
- username: string
Username of the user to update the access role for.
- class datarobot.models.deployment.deployment.FeatureDict(*args, **kwargs)
- class datarobot.models.deployment.deployment.ForecastDateSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.ChallengerModelsSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.SegmentAnalysisSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.BiasAndFairnessSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.ChallengerReplaySettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.HealthSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.DriftTrackingSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.PredictionWarningSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.PredictionIntervalsSettings(*args, **kwargs)
- class datarobot.models.deployment.deployment.Capability(*args, **kwargs)
- class datarobot.enums.ACCURACY_METRIC