Data Exports
- class datarobot.models.deployment.data_exports.PredictionDataExport(id, period, created_at, model_id, status, data=None, error=None, batches=None, deployment_id=None)
A prediction data export.
Added in version v3.4.
- Attributes:
- id: str
The ID of the prediction data export.
- model_id: str
The ID of the model (or null if not specified).
- created_at: datetime
Prediction data export creation timestamp.
- period: Period
A prediction data time range definition.
- status: ExportStatus
A prediction data export processing state.
- error: ExportError
Error description, appears when prediction data export job failed (status is FAILED).
- batches: ExportBatches
Metadata associated with exported batch.
- deployment_id: str
The ID of the deployment.
- classmethod list(deployment_id, status=None, model_id=None, batch=None, offset=0, limit=100)
Retrieve a list of prediction data exports.
- Parameters:
- deployment_id: str
The ID of the deployment.
- model_id: Optional[str]
The ID of the model used for prediction data export.
- status: Optional[ExportStatus]
A prediction data export processing state.
- batch: Optional[bool]
If true, only return batch exports. If false, only return real-time exports. If not provided, return both real-time and batch exports.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (0 means no limit).
- offset: Optional[int]
The starting offset of the results. The default is 0.
- Returns:
- prediction_data_exports: list
A list of PredictionDataExport objects.
- Return type:
List
[PredictionDataExport
]
Examples
from datarobot.models.deployment import PredictionDataExport prediction_data_exports = PredictionDataExport.list(deployment_id='5c939e08962d741e34f609f0')
- classmethod get(deployment_id, export_id)
Retrieve a single prediction data export.
- Parameters:
- deployment_id: str
The ID of the deployment.
- export_id: str
The ID of the prediction data export.
- Returns:
- prediction_data_export: PredictionDataExport
A prediction data export.
- Return type:
Examples
from datarobot.models.deployment import PredictionDataExport prediction_data_export = PredictionDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fbe59aaa3f847bd5acc75b' )
- classmethod create(deployment_id, start, end, model_id=None, batch_ids=None, max_wait=600)
Create a deployment prediction data export. Waits until ready and fetches PredictionDataExport after the export finishes. This method is blocking.
- Parameters:
- deployment_id: str
The ID of the deployment.
- start: Union[datetime, str]
Inclusive start of the time range.
- end: Union[datetime, str]
Exclusive end of the time range.
- model_id: Optional[str]
The ID of the model.
- batch_ids: Optional[List[str]]
IDs of batches to export. Null for real-time data exports.
- max_wait: int,
Seconds to wait for successful resolution.
- Returns:
- prediction_data_export: PredictionDataExport
A prediction data export.
- Return type:
Examples
from datetime import datetime, timedelta from datarobot.models.deployment import PredictionDataExport now=datetime.now() prediction_data_export = PredictionDataExport.create( deployment_id='5c939e08962d741e34f609f0', start=now - timedelta(days=7), end=now )
- fetch_data()
Return data from prediction export as datarobot Dataset.
- Returns:
- prediction_datasets: List[Dataset]
List of datasets for a given export, most often it is just one.
- Return type:
List
[Dataset
]
Examples
from datarobot.models.deployment import PredictionDataExport prediction_data_export = PredictionDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fbe59aaa3f847bd5acc75b' ) prediction_datasets = prediction_data_export.fetch_data()
- class datarobot.models.deployment.data_exports.ActualsDataExport(id, period, created_at, model_id, status, data=None, error=None, only_matched_predictions=None, deployment_id=None)
An actuals data export.
Added in version v3.4.
- Attributes:
- id: str
The ID of the actuals data export.
- model_id: str
The ID of the model (or null if not specified).
- created_at: datetime
Actuals data export creation timestamp.
- period: Period
A actuals data time range definition.
- status: ExportStatus
A data export processing state.
- error: ExportError
Error description, appears when actuals data export job failed (status is FAILED).
- only_matched_predictions: bool
If true, exports actuals with matching predictions only.
- deployment_id: str
The ID of the deployment.
- classmethod list(deployment_id, status=None, offset=0, limit=100)
Retrieve a list of actuals data exports.
- Parameters:
- deployment_id: str
The ID of the deployment.
- status: Optional[ExportStatus]
Actuals data export processing state.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (0 means no limit).
- offset: Optional[int]
The starting offset of the results. The default is 0.
- Returns:
- actuals_data_exports: list
A list of ActualsDataExport objects.
- Return type:
List
[ActualsDataExport
]
Examples
from datarobot.models.deployment import ActualsDataExport actuals_data_exports = ActualsDataExport.list(deployment_id='5c939e08962d741e34f609f0')
- classmethod get(deployment_id, export_id)
Retrieve a single actuals data export.
- Parameters:
- deployment_id: str
The ID of the deployment.
- export_id: str
The ID of the actuals data export.
- Returns:
- actuals_data_export: ActualsDataExport
An actuals data export.
- Return type:
Examples
from datarobot.models.deployment import ActualsDataExport actuals_data_export = ActualsDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fb0a6c9bb187781cfdea36' )
- classmethod create(deployment_id, start, end, model_id=None, only_matched_predictions=None, max_wait=600)
Create a deployment actuals data export. Waits until ready and fetches ActualsDataExport after the export finishes. This method is blocking.
- Parameters:
- deployment_id: str
The ID of the deployment.
- start: Union[datetime, str]
Inclusive start of the time range.
- end: Union[datetime, str]
Exclusive end of the time range.
- model_id: Optional[str]
The ID of the model.
- only_matched_predictions: Optional[bool]
If true, exports actuals with matching predictions only.
- max_wait: int
Seconds to wait for successful resolution.
- Returns:
- actuals_data_export: ActualsDataExport
An actuals data export.
- Return type:
Examples
from datetime import datetime, timedelta from datarobot.models.deployment import ActualsDataExport now=datetime.now() actuals_data_export = ActualsDataExport.create( deployment_id='5c939e08962d741e34f609f0', start=now - timedelta(days=7), end=now )
- fetch_data()
Return data from actuals export as datarobot Dataset.
- Returns:
- actuals_datasets: List[Dataset]
List of datasets for a given export, most often it is just one.
- Return type:
List
[Dataset
]
Examples
from datarobot.models.deployment import ActualsDataExport actuals_data_export = ActualsDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fb0a6c9bb187781cfdea36' ) actuals_datasets = actuals_data_export.fetch_data()
- class datarobot.models.deployment.data_exports.TrainingDataExport(id, created_at, model_id, model_package_id, data=None, deployment_id=None)
A training data export.
Added in version v3.4.
- Attributes:
- id: str
The ID of the training data export.
- model_id: str
The ID of the model (or null if not specified).
- model_package_id: str
The ID of the model package.
- created_at: datetime
Training data export creation timestamp.
- deployment_id: str
The ID of the deployment.
- classmethod list(deployment_id)
Retrieve a list of successful training data exports.
- Parameters:
- deployment_id: str
The ID of the deployment.
- Returns:
- training_data_exports: list
A list of TrainingDataExport objects.
- Return type:
List
[TrainingDataExport
]
Examples
from datarobot.models.deployment import TrainingDataExport training_data_exports = TrainingDataExport.list(deployment_id='5c939e08962d741e34f609f0')
- classmethod get(deployment_id, export_id)
Retrieve a single training data export.
- Parameters:
- deployment_id: str
The ID of the deployment.
- export_id: str
The ID of the training data export.
- Returns:
- training_data_export: TrainingDataExport
A training data export.
- Return type:
Examples
from datarobot.models.deployment import TrainingDataExport training_data_export = TrainingDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fbf2356124f1daa3acc522' )
- classmethod create(deployment_id, model_id=None, max_wait=600)
Create a single training data export. Waits until ready and fetches TrainingDataExport after the export finishes. This method is blocking.
- Parameters:
- deployment_id: str
The ID of the deployment.
- model_id: Optional[str]
The ID of the model.
- max_wait: int
Seconds to wait for successful resolution.
- Returns:
- dataset_id: str
A created dataset with training data.
- Return type:
str
Examples
from datarobot.models.deployment import TrainingDataExport dataset_id = TrainingDataExport.create(deployment_id='5c939e08962d741e34f609f0')
- fetch_data()
Return data from training data export as datarobot Dataset.
- Returns:
- training_dataset: Dataset
A datasets for a given export.
- Return type:
Examples
from datarobot.models.deployment import TrainingDataExport training_data_export = TrainingDataExport.get( deployment_id='5c939e08962d741e34f609f0', export_id='65fbf2356124f1daa3acc522' ) training_data_export = training_data_export.fetch_data()
- class datarobot.models.deployment.data_exports.DataQualityExport(association_id, timestamp, prompt, predicted_value, actual_value=None, context=None, metrics=None, deployment_id=None)
A data quality export record.
Added in version v3.6.
- Attributes:
- association_id: str
The association ID of the data quality export.
- timestamp: datetime
The data quality export creation timestamp.
- deployment_id: str
The ID of the deployment.
- prompt: Optional[str]
The LLM prompt of the data quality export.
- predicted_value: str
The predicted value of the data quality export.
- actual_value: Optional[str]
The actual value (if available) of the data quality export.
- context: List[Dict[str, str]]
Context data (context and link data) for the contexts associated with the data quality export.
- metrics: List[Dict[str, Any]]
Custom-metrics data for the data quality export.
- classmethod list(deployment_id, start, end, model_id=None, prediction_pattern=None, prompt_pattern=None, actual_pattern=None, order_by=None, order_metric=None, filter_metric=None, filter_value=None, offset=0, limit=100)
Retrieve a list of data-quality export records for a given deployment. :rtype:
List
[DataQualityExport
]Added in version v3.6.
- Parameters:
- deployment_id: str
The ID of the deployment.
- start: Union[str, datetime]
The earliest time of the objects to return.
- end: Union[str, datetime]
The latest time of the objects to return.
- model_id: Optional[str]
The ID of the model.
- prediction_pattern: Optional[str]
The keywords to search in a predicted value for a text generation target.
- prompt_pattern: Optional[str]
The keywords to search in a prompt value for a text generation target.
- actual_pattern: Optional[str]
The keywords to search in an actual value for a text generation target.
- order_by: Optional[str]
The field to sort by (e.g. associationId, timestamp, or customMetrics). Use a leading ‘-’ to indicate descending order. When ordering by a custom-metric, must also specify ‘order_metric’. The default is None, which equates to ‘-timestamp’.
- order_metric: Optional[str]
When ‘order_by’ is a custom-metric, this specifies the custom-metric name or ID to use for ordering. The default is None.
- filter_metric: Optional[str]
Specifies the metric name or ID to use for matching. Must also use ‘filter_value’ to specify the value that must be matched. The default is None.
- filter_value: Optional[str]
Specifies the value associated with ‘filter_metric’ that must be matched. The default is None.
- offset: Optional[int]
The starting offset of the results. The default is 0.
- limit: Optional[int]
The maximum number of objects to return. The default is 100 (which is maximum).
- Returns:
- data_quality_exports: list
A list of DataQualityExport objects.
Examples
from datarobot.models.deployment import DataQualityExport data_quality_exports = DataQualityExport.list( deployment_id='5c939e08962d741e34f609f0', start_time='2024-07-01', end_time='2024-08-01 )