Data Exports

class datarobot.models.deployment.data_exports.PredictionDataExport(id, period, created_at, model_id, status, data=None, error=None, batches=None, deployment_id=None)

A prediction data export.

Added in version v3.4.

Attributes:
id: str

The ID of the prediction data export.

model_id: str

The ID of the model (or null if not specified).

created_at: datetime

Prediction data export creation timestamp.

period: Period

A prediction data time range definition.

status: ExportStatus

A prediction data export processing state.

error: ExportError

Error description, appears when prediction data export job failed (status is FAILED).

batches: ExportBatches

Metadata associated with exported batch.

deployment_id: str

The ID of the deployment.

classmethod list(deployment_id, status=None, model_id=None, batch=None, offset=0, limit=100)

Retrieve a list of prediction data exports.

Parameters:
deployment_id: str

The ID of the deployment.

model_id: Optional[str]

The ID of the model used for prediction data export.

status: Optional[ExportStatus]

A prediction data export processing state.

batch: Optional[bool]

If true, only return batch exports. If false, only return real-time exports. If not provided, return both real-time and batch exports.

limit: Optional[int]

The maximum number of objects to return. The default is 100 (0 means no limit).

offset: Optional[int]

The starting offset of the results. The default is 0.

Returns:
prediction_data_exports: list

A list of PredictionDataExport objects.

Return type:

List[PredictionDataExport]

Examples

from datarobot.models.deployment import PredictionDataExport

prediction_data_exports = PredictionDataExport.list(deployment_id='5c939e08962d741e34f609f0')
classmethod get(deployment_id, export_id)

Retrieve a single prediction data export.

Parameters:
deployment_id: str

The ID of the deployment.

export_id: str

The ID of the prediction data export.

Returns:
prediction_data_export: PredictionDataExport

A prediction data export.

Return type:

PredictionDataExport

Examples

from datarobot.models.deployment import PredictionDataExport

prediction_data_export = PredictionDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fbe59aaa3f847bd5acc75b'
    )
classmethod create(deployment_id, start, end, model_id=None, batch_ids=None, max_wait=600)

Create a deployment prediction data export. Waits until ready and fetches PredictionDataExport after the export finishes. This method is blocking.

Parameters:
deployment_id: str

The ID of the deployment.

start: Union[datetime, str]

Inclusive start of the time range.

end: Union[datetime, str]

Exclusive end of the time range.

model_id: Optional[str]

The ID of the model.

batch_ids: Optional[List[str]]

IDs of batches to export. Null for real-time data exports.

max_wait: int,

Seconds to wait for successful resolution.

Returns:
prediction_data_export: PredictionDataExport

A prediction data export.

Return type:

PredictionDataExport

Examples

from datetime import datetime, timedelta
from datarobot.models.deployment import PredictionDataExport

now=datetime.now()
prediction_data_export = PredictionDataExport.create(
    deployment_id='5c939e08962d741e34f609f0', start=now - timedelta(days=7), end=now
    )
fetch_data()

Return data from prediction export as datarobot Dataset.

Returns:
prediction_datasets: List[Dataset]

List of datasets for a given export, most often it is just one.

Return type:

List[Dataset]

Examples

from datarobot.models.deployment import PredictionDataExport

prediction_data_export = PredictionDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fbe59aaa3f847bd5acc75b'
    )
prediction_datasets = prediction_data_export.fetch_data()
class datarobot.models.deployment.data_exports.ActualsDataExport(id, period, created_at, model_id, status, data=None, error=None, only_matched_predictions=None, deployment_id=None)

An actuals data export.

Added in version v3.4.

Attributes:
id: str

The ID of the actuals data export.

model_id: str

The ID of the model (or null if not specified).

created_at: datetime

Actuals data export creation timestamp.

period: Period

A actuals data time range definition.

status: ExportStatus

A data export processing state.

error: ExportError

Error description, appears when actuals data export job failed (status is FAILED).

only_matched_predictions: bool

If true, exports actuals with matching predictions only.

deployment_id: str

The ID of the deployment.

classmethod list(deployment_id, status=None, offset=0, limit=100)

Retrieve a list of actuals data exports.

Parameters:
deployment_id: str

The ID of the deployment.

status: Optional[ExportStatus]

Actuals data export processing state.

limit: Optional[int]

The maximum number of objects to return. The default is 100 (0 means no limit).

offset: Optional[int]

The starting offset of the results. The default is 0.

Returns:
actuals_data_exports: list

A list of ActualsDataExport objects.

Return type:

List[ActualsDataExport]

Examples

from datarobot.models.deployment import ActualsDataExport

actuals_data_exports = ActualsDataExport.list(deployment_id='5c939e08962d741e34f609f0')
classmethod get(deployment_id, export_id)

Retrieve a single actuals data export.

Parameters:
deployment_id: str

The ID of the deployment.

export_id: str

The ID of the actuals data export.

Returns:
actuals_data_export: ActualsDataExport

An actuals data export.

Return type:

ActualsDataExport

Examples

from datarobot.models.deployment import ActualsDataExport

actuals_data_export = ActualsDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fb0a6c9bb187781cfdea36'
    )
classmethod create(deployment_id, start, end, model_id=None, only_matched_predictions=None, max_wait=600)

Create a deployment actuals data export. Waits until ready and fetches ActualsDataExport after the export finishes. This method is blocking.

Parameters:
deployment_id: str

The ID of the deployment.

start: Union[datetime, str]

Inclusive start of the time range.

end: Union[datetime, str]

Exclusive end of the time range.

model_id: Optional[str]

The ID of the model.

only_matched_predictions: Optional[bool]

If true, exports actuals with matching predictions only.

max_wait: int

Seconds to wait for successful resolution.

Returns:
actuals_data_export: ActualsDataExport

An actuals data export.

Return type:

ActualsDataExport

Examples

from datetime import datetime, timedelta
from datarobot.models.deployment import ActualsDataExport

now=datetime.now()
actuals_data_export = ActualsDataExport.create(
    deployment_id='5c939e08962d741e34f609f0', start=now - timedelta(days=7), end=now
    )
fetch_data()

Return data from actuals export as datarobot Dataset.

Returns:
actuals_datasets: List[Dataset]

List of datasets for a given export, most often it is just one.

Return type:

List[Dataset]

Examples

from datarobot.models.deployment import ActualsDataExport

actuals_data_export = ActualsDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fb0a6c9bb187781cfdea36'
    )
actuals_datasets = actuals_data_export.fetch_data()
class datarobot.models.deployment.data_exports.TrainingDataExport(id, created_at, model_id, model_package_id, data=None, deployment_id=None)

A training data export.

Added in version v3.4.

Attributes:
id: str

The ID of the training data export.

model_id: str

The ID of the model (or null if not specified).

model_package_id: str

The ID of the model package.

created_at: datetime

Training data export creation timestamp.

deployment_id: str

The ID of the deployment.

classmethod list(deployment_id)

Retrieve a list of successful training data exports.

Parameters:
deployment_id: str

The ID of the deployment.

Returns:
training_data_exports: list

A list of TrainingDataExport objects.

Return type:

List[TrainingDataExport]

Examples

from datarobot.models.deployment import TrainingDataExport

training_data_exports = TrainingDataExport.list(deployment_id='5c939e08962d741e34f609f0')
classmethod get(deployment_id, export_id)

Retrieve a single training data export.

Parameters:
deployment_id: str

The ID of the deployment.

export_id: str

The ID of the training data export.

Returns:
training_data_export: TrainingDataExport

A training data export.

Return type:

TrainingDataExport

Examples

from datarobot.models.deployment import TrainingDataExport
training_data_export = TrainingDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fbf2356124f1daa3acc522'
    )
classmethod create(deployment_id, model_id=None, max_wait=600)

Create a single training data export. Waits until ready and fetches TrainingDataExport after the export finishes. This method is blocking.

Parameters:
deployment_id: str

The ID of the deployment.

model_id: Optional[str]

The ID of the model.

max_wait: int

Seconds to wait for successful resolution.

Returns:
dataset_id: str

A created dataset with training data.

Return type:

str

Examples

from datarobot.models.deployment import TrainingDataExport
dataset_id = TrainingDataExport.create(deployment_id='5c939e08962d741e34f609f0')
fetch_data()

Return data from training data export as datarobot Dataset.

Returns:
training_dataset: Dataset

A datasets for a given export.

Return type:

Dataset

Examples

from datarobot.models.deployment import TrainingDataExport

training_data_export = TrainingDataExport.get(
    deployment_id='5c939e08962d741e34f609f0', export_id='65fbf2356124f1daa3acc522'
    )
training_data_export = training_data_export.fetch_data()
class datarobot.models.deployment.data_exports.DataQualityExport(association_id, timestamp, prompt, predicted_value, actual_value=None, context=None, metrics=None, deployment_id=None)

A data quality export record.

Added in version v3.6.

Attributes:
association_id: str

The association ID of the data quality export.

timestamp: datetime

The data quality export creation timestamp.

deployment_id: str

The ID of the deployment.

prompt: Optional[str]

The LLM prompt of the data quality export.

predicted_value: str

The predicted value of the data quality export.

actual_value: Optional[str]

The actual value (if available) of the data quality export.

context: List[Dict[str, str]]

Context data (context and link data) for the contexts associated with the data quality export.

metrics: List[Dict[str, Any]]

Custom-metrics data for the data quality export.

classmethod list(deployment_id, start, end, model_id=None, prediction_pattern=None, prompt_pattern=None, actual_pattern=None, order_by=None, order_metric=None, filter_metric=None, filter_value=None, offset=0, limit=100)

Retrieve a list of data-quality export records for a given deployment. :rtype: List[DataQualityExport]

Added in version v3.6.

Parameters:
deployment_id: str

The ID of the deployment.

start: Union[str, datetime]

The earliest time of the objects to return.

end: Union[str, datetime]

The latest time of the objects to return.

model_id: Optional[str]

The ID of the model.

prediction_pattern: Optional[str]

The keywords to search in a predicted value for a text generation target.

prompt_pattern: Optional[str]

The keywords to search in a prompt value for a text generation target.

actual_pattern: Optional[str]

The keywords to search in an actual value for a text generation target.

order_by: Optional[str]

The field to sort by (e.g. associationId, timestamp, or customMetrics). Use a leading ‘-’ to indicate descending order. When ordering by a custom-metric, must also specify ‘order_metric’. The default is None, which equates to ‘-timestamp’.

order_metric: Optional[str]

When ‘order_by’ is a custom-metric, this specifies the custom-metric name or ID to use for ordering. The default is None.

filter_metric: Optional[str]

Specifies the metric name or ID to use for matching. Must also use ‘filter_value’ to specify the value that must be matched. The default is None.

filter_value: Optional[str]

Specifies the value associated with ‘filter_metric’ that must be matched. The default is None.

offset: Optional[int]

The starting offset of the results. The default is 0.

limit: Optional[int]

The maximum number of objects to return. The default is 100 (which is maximum).

Returns:
data_quality_exports: list

A list of DataQualityExport objects.

Examples

from datarobot.models.deployment import DataQualityExport

data_quality_exports = DataQualityExport.list(
    deployment_id='5c939e08962d741e34f609f0', start_time='2024-07-01', end_time='2024-08-01
)