Deployments
Deployment is the central hub for users to deploy, manage and monitor their models.
Manage Deployments
The following commands can be used to manage deployments.
Create a Deployment
A new deployment can be created from:
DataRobot model - use
create_from_registered_model_version()
. Please refer to the Model Registry documentation that describes how to create a registered model version.
When creating a new deployment, a DataRobot registered_model_version_id
(also known as model_package_id
) and label
must be provided.
A description
can be optionally provided to document the purpose of the deployment.
The default prediction server is used when making predictions against the deployment,
and is a requirement for creating a deployment on DataRobot cloud.
For on-prem installations, a user must not provide a default prediction server
and a pre-configured prediction server will be used instead.
Refer to datarobot.PredictionServer.list
for more information on retrieving available prediction servers.
import datarobot as dr
project = dr.Project.get('6527eb38b9e5dead5fc12491')
model = project.get_models()[0]
prediction_server = dr.PredictionServer.list()[0]
registered_model_version = dr.RegisteredModelVersion.create_for_leaderboard_item(
model_id=model.id,
name="Name of the version(aka model package)",
registered_model_name='Name of the registered model unique across the org '
)
deployment = dr.Deployment.create_from_registered_model_version(
registered_model_version.id, label='New Deployment', description='A new deployment',
default_prediction_server_id=prediction_server.id)
>>> Deployment('New Deployment')
List Deployments
Use the following command to list deployments a user can view.
import datarobot as dr
deployments = dr.Deployment.list()
deployments
>>> [Deployment('New Deployment'), Deployment('Previous Deployment')]
Refer to Deployment
for properties of the deployment object.
You can also filter the deployments that are returned by passing an instance of the
DeploymentListFilters
class to the filters
keyword argument.
import datarobot as dr
filters = dr.models.deployment.DeploymentListFilters(
role='OWNER',
accuracy_health=dr.enums.DEPLOYMENT_ACCURACY_HEALTH_STATUS.FAILING
)
deployments = dr.Deployment.list(filters=filters)
deployments
>>> [Deployment('Deployment Owned by Me w/ Failing Accuracy 1'), Deployment('Deployment Owned by Me w/ Failing Accuracy 2')]
Retrieve a Deployment
It is possible to retrieve a single deployment with its identifier, rather than list all deployments.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.id
>>> '5c939e08962d741e34f609f0'
deployment.label
>>> 'New Deployment'
Refer to Deployment
for properties of the deployment object.
Update a Deployment
Deployment’s label and description can be updated.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update(label='new label')
Delete a Deployment
To mark a deployment as deleted, use the following command.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.delete()
Activate or deactivate a Deployment
To activate a deployment, use the following command.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.activate()
deployment.status
>>> 'active'
To deactivate a deployment, use the following command.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.deactivate()
deployment.status
>>> 'inactive'
Make batch predictions with a deployment
DataRobot provides a small utility function to make batch predictions using a deployment: Deployment.predict_batch
.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
# To note: `source` can be a file path, a file, or a pandas DataFrame
prediction_results_as_dataframe = deployment.predict_batch(
source="./my_local_file.csv",
)
Model Replacement
A deployment’s model can be replaced effortlessly with zero interruption of predictions.
Model replacement is an asynchronous process, which means some
preparatory work may be performed after the initial request is completed.
Predictions made against this deployment will start
using the new model as soon as the request is completed.
There will be no interruption for predictions throughout the process.
The replace_model()
function won’t return until the
asynchronous process is fully finished.
Alongside the identifier of the new model, a reason
is also required.
The reason is stored in model history of the deployment for bookkeeping purpose.
An enum MODEL_REPLACEMENT_REASON
is provided for convenience, all possible values are documented below:
MODEL_REPLACEMENT_REASON.ACCURACY
MODEL_REPLACEMENT_REASON.DATA_DRIFT
MODEL_REPLACEMENT_REASON.ERRORS
MODEL_REPLACEMENT_REASON.SCHEDULED_REFRESH
MODEL_REPLACEMENT_REASON.SCORING_SPEED
MODEL_REPLACEMENT_REASON.OTHER
Here is an example of model replacement:
import datarobot as dr
from datarobot.enums import MODEL_REPLACEMENT_REASON
project = dr.Project.get('5cc899abc191a20104ff446a')
model = project.get_models()[0]
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.model['id'], deployment.model['type']
>>> ('5c0a979859b00004ba52e431', 'Decision Tree Classifier (Gini)')
deployment.replace_model('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.ACCURACY)
deployment.model['id'], deployment.model['type']
>>> ('5c0a969859b00004ba52e41b', 'Support Vector Classifier (Linear Kernel)')
Validation
Before initiating the model replacement request, it is usually a good idea to use
the validate_replacement_model()
function to validate if the new model can be used as a replacement.
The validate_replacement_model()
function returns the validation status, a message and a checks dictionary.
If the status is ‘passing’ or ‘warning’, use replace_model()
to perform model the replacement.
If status is ‘failing’, refer to the checks
dict for more details on why the new model cannot be used as a replacement.
import datarobot as dr
project = dr.Project.get('5cc899abc191a20104ff446a')
model = project.get_models()[0]
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
status, message, checks = deployment.validate_replacement_model(new_model_id=model.id)
status
>>> 'passing'
# `checks` can be inspected for detail, showing two examples here:
checks['target']
>>> {'status': 'passing', 'message': 'Target is compatible.'}
checks['permission']
>>> {'status': 'passing', 'message': 'User has permission to replace model.'}
Monitoring
Deployment monitoring can be categorized into several area of concerns:
Service Stats & Service Stats Over Time
Accuracy & Accuracy Over Time
With a Deployment
object, get functions are provided to allow querying of the monitoring data.
Alternatively, it is also possible to retrieve monitoring data directly using a deployment ID. For example:
from datarobot.models import Deployment, ServiceStats
deployment_id = '5c939e08962d741e34f609f0'
# call `get` functions on a `Deployment` object
deployment = Deployment.get(deployment_id)
service_stats = deployment.get_service_stats()
# directly fetch without a `Deployment` object
service_stats = ServiceStats.get(deployment_id)
When querying monitoring data, a start and end time can be optionally provided, will accept either a datetime object or a string.
Note that only top of the hour datetimes are accepted, for example: 2019-08-01T00:00:00Z
.
By default, the end time of the query will be the next top of the hour, the start time will be 7 days before the end time.
In the over time variants, an optional bucket_size
can be provided to specify the resolution of time buckets.
For example, if start time is 2019-08-01T00:00:00Z
, end time is 2019-08-02T00:00:00Z
and bucket_size
is T1H
,
then 24 time buckets will be generated, each providing data calculated over one hour.
Use construct_duration_string()
to help construct a bucket size string.
:::{note} The minimum bucket size is one hour. :::
Service Stats
Service stats are metrics tracking deployment utilization and how well deployments respond to prediction requests.
Use SERVICE_STAT_METRIC.ALL
to retrieve a list of supported metrics.
ServiceStats
retrieves values for all service stats metrics;
ServiceStatsOverTime
can be used to fetch how one single metric changes over time.
from datetime import datetime
from datarobot.enums import SERVICE_STAT_METRIC
from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
service_stats = deployment.get_service_stats(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15)
)
service_stats[SERVICE_STAT_METRIC.TOTAL_PREDICTIONS]
>>> 12597
total_predictions = deployment.get_service_stats_over_time(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
bucket_size=construct_duration_string(days=1),
metric=SERVICE_STAT_METRIC.TOTAL_PREDICTIONS
)
total_predictions.bucket_values
>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1610),
(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 2249),
(datetime.datetime(2019, 8, 3, 15, 0, tzinfo=tzutc()), 254),
(datetime.datetime(2019, 8, 4, 15, 0, tzinfo=tzutc()), 943),
(datetime.datetime(2019, 8, 5, 15, 0, tzinfo=tzutc()), 1967),
(datetime.datetime(2019, 8, 6, 15, 0, tzinfo=tzutc()), 2810),
(datetime.datetime(2019, 8, 7, 15, 0, tzinfo=tzutc()), 2775)])
Data Drift
Data drift describe how much the distribution of target or a feature has changed comparing to the training data.
Deployment’s target drift and feature drift can be retrieved separately using datarobot.models.deployment.TargetDrift
and datarobot.models.deployment.FeatureDrift
.
Use DATA_DRIFT_METRIC.ALL
to retrieve a list of supported metrics.
from datetime import datetime
from datarobot.enums import DATA_DRIFT_METRIC
from datarobot.models import Deployment, FeatureDrift
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
target_drift = deployment.get_target_drift(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15)
)
target_drift.drift_score
>>> 0.00408514
feature_drift_data = FeatureDrift.list(
deployment_id='5c939e08962d741e34f609f0',
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
metric=DATA_DRIFT_METRIC.HELLINGER
)
feature_drift = feature_drift_data[0]
feature_drift.name
>>> 'age'
feature_drift.drift_score
>>> 4.16981594
Predictions Over Time
Predictions over time gives insight on how deployment’s prediction response has changed over time. Different data can be retrieved in each bucket, depending on deployment’s target type:
row_count: number of rows in the bucket, available for all target types
mean_predicted_value: mean of predicted value for all rows in the bucket, available for regression target type
mean_probabilities: mean of predicted probability for each class, available for binary or multiclass classification target types
class_distribution: count and percent of predicted class labels, available for binary or multiclass classification target types
percentiles: 10th and 90th percentile of predicted value or positive class probability, available for regression and binary target type
from datetime import datetime
from datarobot.enums import BUCKET_SIZE
from datarobot.models import Deployment
# deployment with regression target type
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
predictions_over_time = deployment.get_predictions_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 30),
bucket_size=BUCKET_SIZE.P1D,
)
predicted = [bucket['mean_predicted_value'] for bucket in predictions_over_time.buckets]
predicted
>>> [0.3772, 0.6642, ...., 0.7937]
# deployment with binary target type
deployment = Deployment.get(deployment_id='62fff28a0f5fee488587ce92')
predictions_over_time = deployment.get_predictions_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 22),
bucket_size=BUCKET_SIZE.P7D,
)
predicted = [
{item['class_name']: item['value'] for item in bucket['mean_probabilities']}.get('True')
for bucket in predictions_over_time.buckets
]
predicted
>>> [0.3955, 0.4274, None]
Accuracy
A collection of metrics are provided to measure the accuracy of a deployment’s predictions.
For deployments with classification model, use ACCURACY_METRIC.ALL_CLASSIFICATION
for all supported metrics;
in the case of deployment with regression model, use ACCURACY_METRIC.ALL_REGRESSION
instead.
Similarly with Service Stats, Accuracy
and AccuracyOverTime
are provided to retrieve all default accuracy metrics and how one single metric change over time.
from datetime import datetime
from datarobot.enums import ACCURACY_METRIC
from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
accuracy = deployment.get_accuracy(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 1, 15, 0)
)
accuracy[ACCURACY_METRIC.RMSE]
>>> 943.225
rmse = deployment.get_accuracy_over_time(
start_time=datetime(2019, 8, 1),
end_time=datetime(2019, 8, 3),
bucket_size=construct_duration_string(days=1),
metric=ACCURACY_METRIC.RMSE
)
rmse.bucket_values
>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1777.190657),
(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 1613.140772)])
It is also possible to retrieve how multiple metrics changes over the same period of time, enabling easier side by side comparison across different metrics.
from datarobot.enums import ACCURACY_METRIC
from datarobot.models import Deployment
accuracy_over_time = AccuracyOverTime.get_as_dataframe(
ram_app.id, [ACCURACY_METRIC.RMSE, ACCURACY_METRIC.GAMMA_DEVIANCE, ACCURACY_METRIC.MAD])
Predictions vs Actuals Over Time
Predictions vs actuals over time can be used to analyze how deployment’s predictions compare against actuals. Different data can be retrieved in each bucket, depending on deployment’s target type:
row_count_total: The number of rows with or without actual in the bucket, available for all target types.
row_count_with_actual: The number of rows with actuals in the bucket, available for all target types.
mean_predicted_value: The mean of the predicted value for all rows match with an actual in the bucket, available for the regression target type.
mean_actual_value: The mean of the actual value for all rows in the bucket. Available for the regression target type.
predicted_class_distribution: The count and percent of predicted class labels. Available for binary and multiclass classification target types.
actual_class_distribution: The count and percent of actual class labels. Available for binary or multiclass classification target types.
from datetime import datetime
from datarobot.enums import BUCKET_SIZE
from datarobot.models import Deployment
# deployment with regression target type
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
predictions_over_time = deployment.get_predictions_vs_actuals_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 30),
bucket_size=BUCKET_SIZE.P1D,
)
predicted = [bucket['mean_actual_value'] for bucket in predictions_over_time.buckets]
predicted
>>> [0.2806, 0.9170, ...., 0.0314]
# deployment with binary target type
deployment = Deployment.get(deployment_id='62fff28a0f5fee488587ce92')
predictions_over_time = deployment.get_predictions_vs_actuals_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 22),
bucket_size=BUCKET_SIZE.P7D,
)
predicted = [
{item['class_name']: item['value'] for item in bucket['mean_predicted_value']}.get('True')
for bucket in predictions_over_time.buckets
]
predicted
>>> [0.5822, 0.6305, None]
Delete Data
Monitoring data accumulated on a deployment can be deleted using delete_monitoring_data()
.
A start and end timestamp could be provided to limit data deletion to certain time period.
:::{warning} Monitoring data is not recoverable once deleted. :::
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.delete_monitoring_data(model_id=deployment.model['id'])
List deployment prediction data exports
Prediction data exports for a deployment can be retrieved using list_prediction_data_exports()
.
from datarobot.enums import ExportStatus
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
prediction_data_exports = deployment.list_prediction_data_exports(limit=0)
prediction_data_exports
>>> [PredictionDataExport('65fbe59aaa3f847bd5acc75b'),
PredictionDataExport('65fbe59aaa3f847bd5acc75c'),
PredictionDataExport('65fbe59aaa3f847bd5acc75a')]
To list all prediction data exports, set the limit to 0.
Adjust additional parameters to filter the data as needed:
from datarobot.enums import ExportStatus
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
prediction_data_exports = deployment.list_prediction_data_exports(
model_id="6444482e5583f6ee2e572265",
batch=False,
status=ExportStatus.SUCCEEDED,
limit=100,
offset=50,
)
List deployment actuals data exports
Actuals data exports for a deployment can be retrieved using list_actuals_data_exports()
.
from datarobot.enums import ExportStatus
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
actuals_data_exports = deployment.list_actuals_data_exports(limit=0)
actuals_data_exports
>>> [ActualsDataExport('660456a332d0081029ee5031'),
ActualsDataExport('660456a332d0081029ee5032'),
ActualsDataExport('660456a332d0081029ee5033')]
To list all actuals data exports, set the limit to 0.
Adjust additional parameters to filter the data as needed:
from datarobot.enums import ExportStatus
from datarobot.models import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
actuals_data_exports = deployment.list_actuals_data_exports(
deployment_id='5c939e08962d741e34f609f0',
offset=500,
limit=50,
status=ExportStatus.SUCCEEDED
)
List deployment training data exports
To retrieve successful training data exports for a deployment, use list_training_data_exports()
.
from datarobot.models.deployment import TrainingDataExport
training_data_exports = TrainingDataExport.list(deployment_id='5c939e08962d741e34f609f0')
training_data_exports
>>> [TrainingDataExport('6565fbf2356124f1daa3acc522')]
List deployment data quality exports
To retrieve successful data quality exports for a deployment, use list_data_quality_exports()
.
from datarobot.models import Deployment
deployment = Deployment.get('66903c40f18e6ec90fd7c8c7')
data_quality_exports = deployment.list_data_quality_exports(start='2024-07-01', end='2024-08-01')
data_quality_exports
>>> [DataQualityExport(6447ca39c6a04df6b5b0ed19c6101e3c),
...
DataQualityExport(0ff46fd3636545a9ac3e15ee1dbd8638)]
There are many filtering and sorting options available.
Segment Analysis
Segment analysis is a deployment utility that filters service stats, data drift, and accuracy statistics into unique segment attributes and values.
Use get_segment_attributes()
to retrieve segment analysis data.
Use get_segment_values()
to retrieve segment value data.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
segment_attributes_service_health = deployment.get_segment_attributes(DEPLOYMENT_MONITORING_TYPE.SERVICE_HEALTH)
>>>['DataRobot-Consumer', 'DataRobot-Host-IP', 'DataRobot-Remote-IP']
segment_attributes_data_drift = deployment.get_segment_attributes(DEPLOYMENT_MONITORING_TYPE.DATA_DRIFT)
>>>['DataRobot-Consumer', 'attribute_1', 'attribute_2']
segment_values = deployment.get_segment_values(segmentAttribute=ReservedSegmentAttributes.CONSUMER)
>>>['DataRobot-Consumer', '[email protected]']
Challengers
Challenger models can be used to compare the currently deployed model (the “champion” model) to another model.
The following functions can be used to manage deployment’s challenger models:
List:
list_challengers()
orlist()
.Create:
create()
.Get:
get()
.Update:
update()
.Delete:
delete()
.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
challenger = deployment.list_challengers()[-1]
challenger.update(name='New Challenger Name')
challenger.name
>>> 'New Challenger Name'
Settings
Use get_challenger_models_settings()
and update_challenger_models_settings()
to retrieve and update challenger model settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_challenger_models_settings(challenger_models_enabled=True)
settings = deployment.get_challenger_models_settings()
settings
>>> {'enabled': True}
Use get_challenger_replay_settings()
and update_challenger_replay_settings()
to retrieve and update challenger replay settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_challenger_replay_settings(enabled=True)
settings = deployment.get_challenger_replay_settings()
settings['enabled']
>>> True
Settings
Drift Tracking Settings
Drift tracking is used to help analyze and monitor the performance of a model after it is deployed. When the model of a deployment is replaced drift tracking status will not be altered.
Use get_drift_tracking_settings()
to retrieve the current tracking status for target drift and feature drift.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_drift_tracking_settings()
settings
>>> {'target_drift': {'enabled': True}, 'feature_drift': {'enabled': True}}
Use update_drift_tracking_settings()
to update target drift and feature drift tracking status.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_drift_tracking_settings(target_drift_enabled=True, feature_drift_enabled=True)
Association ID Settings
Association ID is used to identify predictions, so that when actuals are acquired, accuracy can be calculated.
Use get_association_id_settings()
to retrieve current association ID settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_association_id_settings()
settings
>>> {'column_names': ['application_id'], 'required_in_prediction_requests': True}
Use update_association_id_settings()
to update association ID settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_association_id_settings(column_names=['application_id'], required_in_prediction_requests=True)
Predictions By Forecast Date
Forecast date setting for the deployment.
Use get_predictions_by_forecast_date_settings()
to retrieve current predictions by forecast date settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_predictions_by_forecast_date_settings()
settings
>>> {'enabled': False, 'column_name': 'date (actual)', 'datetime_format': '%Y-%m-%d'}
Use update_predictions_by_forecast_date_settings()
to update predictions by forecast date settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_predictions_by_forecast_date_settings(
enable_predictions_by_forecast_date=True,
forecast_date_column_name='date (actual)',
forecast_date_format='%Y-%m-%d')
Health Settings
Health settings APIs can be used to customize definitions for deployment health status.
Use get_health_settings()
to retrieve current health settings,
and get_default_health_settings()
to retrieve default health settings.
To perform updates, use update_health_settings()
.
import datarobot as dr
# get current data drift threshold
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_health_settings()
settings['data_drift']['drift_threshold']
>>> 0.15
# update accuracy health metric
settings['accuracy']['metric'] = 'AUC'
settings = deployment.update_health_settings(accuracy=settings['accuracy'])
settings['accuracy']['metric']
>>> 'AUC'
# set accuracy health metric to default
default_settings = deployment.get_default_health_settings()
settings = deployment.update_health_settings(accuracy=default_settings['accuracy'])
settings['accuracy']['metric']
>>> 'LogLoss'
Segment Analysis Settings
Segment analysis is a deployment utility that filters data drift and accuracy statistics into unique segment attributes and values.
Use get_segment_analysis_settings()
to retrieve current segment analysis settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_segment_analysis_settings()
settings
>>> {'enabled': False, 'attributes': []}
Use update_segment_analysis_settings()
to update segment analysis settings. Any categorical column can be a segment attribute.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_segment_analysis_settings(
segment_analysis_enabled=True,
segment_analysis_attributes=["country_code", "is_customer"])
Predictions Data Collection Settings
Predictions Data Collection configures whether prediction requests and results should be saved to Predictions Data Storage.
Use get_predictions_data_collection_settings()
to retrieve current
settings of predictions data collection.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_predictions_data_collection_settings()
settings
>>> {'enabled': True}
Use update_predictions_data_collection_settings()
to update predictions data
collection settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_predictions_data_collection_settings(enabled=True)
Prediction Warning Settings
Prediction Warning is used to enable Humble AI for a deployment which determines if a model is misbehaving when a prediction goes outside of the calculated boundaries.
Use get_prediction_warning_settings()
to retrieve the current prediction warning settings.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_prediction_warning_settings()
settings
>>> { {'enabled': True}, 'custom_boundaries': {'upper': 1337, 'lower': 0} }
Use update_prediction_warning_settings()
to update current prediction warning settings.
import datarobot as dr
# Set custom boundaries
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_prediction_warning_settings(
prediction_warning_enabled=True,
use_default_boundaries=False,
lower_boundary=1337,
upper_boundary=2000,
)
# Reset boundaries
deployment.update_prediction_warning_settings(
prediction_warning_enabled=True,
use_default_boundaries=True,
)
Secondary Dataset Config Settings
The secondary dataset config for a deployed Feature discovery model can be replaced and retrieved.
Secondary dataset config is used to specify which secondary datasets to use during prediction for a given deployment.
Use update_secondary_dataset_config()
to update the secondary dataset config.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
config = deployment.update_secondary_dataset_config(secondary_dataset_config_id='5f48cb94408673683eca0fab')
config
>>> '5f48cb94408673683eca0fab'
Use get_secondary_dataset_config()
to get the secondary dataset config.
import datarobot as dr
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
config = deployment.get_secondary_dataset_config()
config
>>> '5f48cb94408673683eca0fab'