Feature Discovery

Feature Discovery allows you to generate features automatically from secondary datasets connected to a primary dataset (training data). You can create this type of connection using DataRobot’s Relationships Configuration.

Register a primary dataset to start a project

To start a Feature Discovery Project, upload the primary (training) dataset: Projects

import datarobot as dr
primary_dataset = dr.Dataset.create_from_file(file_path='your-training_file.csv')
project = dr.Project.create_from_dataset(primary_dataset.id, project_name='Lending Club')

Next, register all the secondary datasets which you want to connect with primary dataset.

Register secondary datasets in the AI Catalog

You can register the dataset using Dataset.create_from_file, which can take either a path to a local file or any streamable file object.

profile_dataset = dr.Dataset.create_from_file(file_path='your_profile_file.csv')
transaction_dataset = dr.Dataset.create_from_file(file_path='your_transaction_file.csv')

Create dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction datasets created above using helper functions.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

profile_dataset_definition = dr.DatasetDefinition(
    identifier='profile',
    catalog_id=profile_catalog_id,
    catalog_version_id=profile_catalog_version_id
)

transaction_dataset_definition = dr.DatasetDefinition(
    identifier='transaction',
    catalog_id=transac_catalog_id,
    catalog_version_id=transac_catalog_version_id,
    primary_temporal_key='Date'
)

profile_transaction_relationship = dr.Relationship(
    dataset1_identifier='profile',
    dataset2_identifier='transaction',
    dataset1_keys=['CustomerID'],
    dataset2_keys=['CustomerID']
)

primary_profile_relationship = dr.Relationship(
    dataset2_identifier='profile',
    dataset1_keys=['CustomerID'],
    dataset2_keys=['CustomerID'],
    feature_derivation_window_start=-14,
    feature_derivation_window_end=-1,
    feature_derivation_window_time_unit='DAY',
    prediction_point_rounding=1,
    prediction_point_rounding_time_unit='DAY'
)

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Create a relationship configuration

Create a relationship configuration using the dataset definitions and relationships created above.

# Create the relationships configuration to define connection between the datasets
relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_definitions, relationships=relationships)

Create a Feature Discovery project

Once you have configured relationships for your datasets, you can start a Feature Discovery project.

# Set the datetime partitionining column (`date` in this example)
partitioning_spec = dr.DatetimePartitioningSpecification('date')

# As of v3.0, use ``Project.set_datetime_partitioning`` instead of passing the spec to ``Project.analyze_and_model`` via ``partitioning_method``.
project.set_datetime_partitioning(datetime_partition_spec=partitioning_spec)

# Set the target for the project and start Feature discovery (if ``Project.set_datetime_partitioning`` was used there is no need to pass ``partitioning_method``)
project.analyze_and_model(target='BadLoan', relationships_configuration_id=relationship_config.id, mode='manual', partitioning_method=partitioning_spec)
Project(train.csv)

To start training a model, reference the ref:modeling <model> documentation.

Create secondary dataset configuration for predictions

Create configurations for your secondary datasets with Secondary Dataset:

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
    project_id=project.id,
    name='My config',
    secondary_datasets=secondary_datasets
)

For more details, reference the Secondary Dataset configuration documentation.

Make predictions with a trained model

To make predictions with a trained model, reference the Predictions documentation.

dataset_from_path = project.upload_dataset(
    './data_to_predict.csv',
    secondary_datasets_config_id=new_secondary_dataset_config.id
)

predict_job_1 = model.request_predictions(dataset_from_path.id)

Common Errors

Dataset registration Failed

datasetdr.Dataset.create_from_file(file_path='file.csv')
datarobot.errors.AsyncProcessUnsuccessfulError: The job did not complete successfully.

Solution

  • Check the internet connectivity sometimes network flakiness cause upload error

  • Is the dataset file too big then you might want to upload using URL rather than file

Relationship configuration errors

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'1': {u'identifier': u'value cannot contain characters: $ - " . { } / \\'},
u'0': {u'identifier': u'value cannot contain characters: $ - " . { } / \\'}}}}

Solution:

  • Check the identifier name passed in datasets_definitions and relationships.

  • Tip: Do not use the name of the dataset if you did not specify it when registering the dataset to the AI Catalog.

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'1': {u'primaryTemporalKey': u'date column doesnt exist'},
}}}

Solution:

  • Check if the name of the column passed as primaryTemporalKey is correct, as it is case-sensitive.

Configure relationships

A relationship’s configuration specifies additional datasets to be included to a project, how these datasets are related to each other, and the primary dataset. When a relationships configuration is specified for a project, Feature Discovery will create features automatically from these datasets.

You can create a relationship configuration from uploaded AI Catalog items. After uploading all the secondary datasets in the AI Catalog:

  • Create the dataset’s definition to specify which datasets to be used as secondary datasets along with its details

  • Configure relationships among the above datasets.

relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_definitions, relationships=relationships)
>>> relationship_config.id
u'5506fcd38bd88f5953219da0'

Dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction dataset using helper functions.

profile_catalog_id = '5ec4aec1f072bc028e3471ae'
profile_catalog_version_id = '5ec4aec2f072bc028e3471b1'

transac_catalog_id = '5ec4aec268f0f30289a03901'
transac_catalog_version_id = '5ec4aec268f0f30289a03900'

profile_dataset_definition = dr.DatasetDefinition(
    identifier='profile',
    catalog_id=profile_catalog_id,
    catalog_version_id=profile_catalog_version_id
)

transaction_dataset_definition = dr.DatasetDefinition(
    identifier='transaction',
    catalog_id=transac_catalog_id,
    catalog_version_id=transac_catalog_version_id,
    primary_temporal_key='Date'
)

profile_transaction_relationship = dr.Relationship(
    dataset1_identifier='profile',
    dataset2_identifier='transaction',
    dataset1_keys=['CustomerID'],
    dataset2_keys=['CustomerID']
)

primary_profile_relationship = dr.Relationship(
    dataset2_identifier='profile',
    dataset1_keys=['CustomerID'],
    dataset2_keys=['CustomerID'],
    feature_derivation_window_start=-14,
    feature_derivation_window_end=-1,
    feature_derivation_window_time_unit='DAY',
    prediction_point_rounding=1,
    prediction_point_rounding_time_unit='DAY'
)

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Dataset definition and relationship using a dictionary

Create the dataset definitions and relationships for the profile and transaction dataset using dict directly.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

dataset_definitions = [
    {
        'identifier': 'transaction',
        'catalogVersionId': transac_catalog_version_id,
        'catalogId': transac_catalog_id,
        'primaryTemporalKey': 'Date',
        'snapshotPolicy': 'latest',
    },
    {
        'identifier': 'profile',
        'catalogId': profile_catalog_id,
        'catalogVersionId': profile_catalog_version_id,
        'snapshotPolicy': 'latest',
    },
]

relationships = [
    {
        'dataset2Identifier': 'profile',
        'dataset1Keys': ['CustomerID'],
        'dataset2Keys': ['CustomerID'],
        'featureDerivationWindowStart': -14,
        'featureDerivationWindowEnd': -1,
        'featureDerivationWindowTimeUnit': 'DAY',
        'predictionPointRounding': 1,
        'predictionPointRoundingTimeUnit': 'DAY',
    },
    {
        'dataset1Identifier': 'profile',
        'dataset2Identifier': 'transaction',
        'dataset1Keys': ['CustomerID'],
        'dataset2Keys': ['CustomerID'],
    },
]

Retrieving relationship configuration

You can retrieve a specific relationship’s configuration using the ID of the relationship configuration.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id).get()
>>> relationship_config.id == relationship_config_id
True
# Get all the datasets used in this relationship's configuration
>> len(relationship_config.dataset_definitions) == 2
True
>> relationship_config.dataset_definitions[0]
{
    'feature_list_id': '5ec4af93603f596525d382d3',
    'snapshot_policy': 'latest',
    'catalog_id': '5ec4aec268f0f30289a03900',
    'catalog_version_id': '5ec4aec268f0f30289a03901',
    'primary_temporal_key': 'Date',
    'is_deleted': False,
    'identifier': 'transaction',
    'feature_lists':
        [
            {
                'name': 'Raw Features',
                'description': 'System created featurelist',
                'created_by': 'User1',
                'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 150000, tzinfo=tzutc()),
                'user_created': False,
                'dataset_id': '5ec4aec268f0f30289a03900',
                'id': '5ec4af93603f596525d382d1',
                'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u'Description']
            },
            {
                'name': 'universe',
                'description': 'System created featurelist',
                'created_by': 'User1',
                'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 172000, tzinfo=tzutc()),
                'user_created': False,
                'dataset_id': '5ec4aec268f0f30289a03900',
                'id': '5ec4af93603f596525d382d2',
                'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u'Description']
            },
            {
                'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u'Description'],
                'description': 'System created featurelist',
                'created_by': u'Garvit Bansal',
                'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 179000, tzinfo=tzutc()),
                'dataset_version_id': '5ec4aec268f0f30289a03901',
                'user_created': False,
                'dataset_id': '5ec4aec268f0f30289a03900',
                'id': u'5ec4af93603f596525d382d3',
                'name': 'Informative Features'
            }
        ]
}
# Get information regarding how the datasets are connected among themselves as well as  theprimary dataset
>> relationship_config.relationships
[
    {
        'dataset2Identifier': 'profile',
        'dataset1Keys': ['CustomerID'],
        'dataset2Keys': ['CustomerID'],
        'featureDerivationWindowStart': -14,
        'featureDerivationWindowEnd': -1,
        'featureDerivationWindowTimeUnit': 'DAY',
        'predictionPointRounding': 1,
        'predictionPointRoundingTimeUnit': 'DAY',
    },
    {
        'dataset1Identifier': 'profile',
        'dataset2Identifier': 'transaction',
        'dataset1Keys': ['CustomerID'],
        'dataset2Keys': ['CustomerID'],
    },
]

Update details of a relationship configuration

Use the snippet below as an example of how to update the details of the existing relationship configuration.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
# Remove obsolete dataset definitions and its relationships
new_datasets_definiton =
[
    {
        'identifier': 'user',
        'catalogVersionId': '5c88a37770fc42a2fcc62759',
        'catalogId': '5c88a37770fc42a2fcc62759',
        'snapshotPolicy': 'latest',
    },
]

# Get information regarding how the datasets are connected among themselves as well as the primary dataset
new_relationships =
[
    {
        'dataset2Identifier': 'user',
        'dataset1Keys': ['user_id', 'dept_id'],
        'dataset2Keys': ['user_id', 'dept_id'],
    },
]
new_config = relationship_config.replace(new_datasets_definiton, new_relationships)
>>> new_config.id == relationship_config_id
True
>>> new_config.datasets_definition
[
    {
        'identifier': 'user',
        'catalogVersionId': '5c88a37770fc42a2fcc62759',
        'catalogId': '5c88a37770fc42a2fcc62759',
        'snapshotPolicy': 'latest',
    },
]
>>> new_config.relationships
[
    {
        'dataset2Identifier': 'user',
        'dataset1Keys': ['user_id', 'dept_id'],
        'dataset2Keys': ['user_id', 'dept_id'],
    },
]

Delete relationships configuration

You can delete a relationship configuration that is not used by any project.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
result = relationship_config.get()
>>> result.id == relationship_config_id
True
# Delete the relationships configuration
>>> relationship_config.delete()
>>> relationship_config.get()
ClientError: Relationships Configuration 5506fcd38bd88f5953219da0 not found

(secondary-dataset-configuration)=

Secondary dataset configuration

Secondary dataset configuration allows you to use the different secondary datasets for a Feature Discovery project when making predictions.

Secondary datasets using helper functions

Create the Secondary Dataset using helper functions.

>>> profile_catalog_id = '5ec4aec1f072bc028e3471ae'
>>> profile_catalog_version_id = '5ec4aec2f072bc028e3471b1'

>>> transac_catalog_id = '5ec4aec268f0f30289a03901'
>>> transac_catalog_version_id = '5ec4aec268f0f30289a03900'

profile_secondary_dataset = dr.SecondaryDataset(
    identifier='profile',
    catalog_id=profile_catalog_id,
    catalog_version_id=profile_catalog_version_id,
    snapshot_policy='latest'
)

transaction_secondary_dataset = dr.SecondaryDataset(
    identifier='transaction',
    catalog_id=transac_catalog_id,
    catalog_version_id=transac_catalog_version_id,
    snapshot_policy='latest'
)

secondary_datasets = [profile_secondary_dataset, transaction_secondary_dataset]

Create secondary datasets with dict

You can create secondary datasets using raw dict structure.

secondary_datasets = [
    {
        'snapshot_policy': u'latest',
        'identifier': u'profile',
        'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
        'catalog_id': u'5fd06b4af24c641b68e4d88e'
    },
    {
        'snapshot_policy': u'dynamic',
        'identifier': u'transaction',
        'catalog_version_id': u'5fd1e86c589238a4e635e98e',
        'catalog_id': u'5fd1e86c589238a4e635e98d'
    }
]

Create a secondary dataset configuration

Create a secondary dataset configuration for a Feature Discovery Project which uses two secondary datasets: profile and transaction.

import datarobot as dr
project = dr.Project.get(project_id='54e639a18bd88f08078ca831')

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
    project_id=project.id,
    name='My config',
    secondary_datasets=secondary_datasets
)


>>> new_secondary_dataset_config.id
'5fd1e86c589238a4e635e93d'

Retrieve a secondary dataset configuration

You can retrieve specific secondary dataset configurations using the configuration ID.

>>> config_id = '5fd1e86c589238a4e635e93d'

secondary_dataset_config = dr.SecondaryDatasetConfigurations(id=config_id).get()
>>> secondary_dataset_config.id == config_id
True
>>> secondary_dataset_config
    {
         'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
         'creator_full_name': u'[email protected]',
         'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
         'credential_ids': None,
         'featurelist_id': None,
         'id': u'5fd1e86c589238a4e635e93d',
         'is_default': True,
         'name': u'My config',
         'project_id': u'5fd06afce2456ec1e9d20457',
         'project_version': None,
         'secondary_datasets': [
                {
                    'snapshot_policy': u'latest',
                    'identifier': u'profile',
                    'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
                    'catalog_id': u'5fd06b4af24c641b68e4d88e'
                },
                {
                    'snapshot_policy': u'dynamic',
                    'identifier': u'transaction',
                    'catalog_version_id': u'5fd1e86c589238a4e635e98e',
                    'catalog_id': u'5fd1e86c589238a4e635e98d'
                }
         ]
    }

List all secondary dataset configurations

You can list all secondary dataset configurations created in the project.

>>> secondary_dataset_configs = dr.SecondaryDatasetConfigurations.list(project.id)
>>> secondary_dataset_configs[0]
    {
         'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
         'creator_full_name': u'[email protected]',
         'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
         'credential_ids': None,
         'featurelist_id': None,
         'id': u'5fd1e86c589238a4e635e93d',
         'is_default': True,
         'name': u'My config',
         'project_id': u'5fd06afce2456ec1e9d20457',
         'project_version': None,
         'secondary_datasets': [
                {
                    'snapshot_policy': u'latest',
                    'identifier': u'profile',
                    'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
                    'catalog_id': u'5fd06b4af24c641b68e4d88e'
                },
                {
                    'snapshot_policy': u'dynamic',
                    'identifier': u'transaction',
                    'catalog_version_id': u'5fd1e86c589238a4e635e98e',
                    'catalog_id': u'5fd1e86c589238a4e635e98d'
                }
         ]
    }