To create a DataRobot project and begin modeling, you first need to upload your data and prepare a dataset.

Create a dataset

There are several ways to create a dataset. Dataset.upload takes either a path to a local file, a streamable file object via external URL, or a pandas DataFrame.

>>> import datarobot as dr
>>> # Upload a local file
>>> dataset_one = dr.Dataset.upload("./data/examples.csv")

>>> # Create a dataset with a URL
>>> dataset_two = dr.Dataset.upload("")

>>> # Create a dataset using a pandas DataFrame
>>> dataset_three = dr.Dataset.upload(my_df)

>>> # Create a dataset using a local file
>>> with open("./data/examples.csv", "rb") as file_pointer:
...     dataset_four = dr.Dataset.create_from_file(filelike=file_pointer)

Dataset.create_from_file can take either a path to a local file or any streamable file object.

>>> import datarobot as dr
>>> dataset = dr.Dataset.create_from_file(file_path='data_dir/my_data.csv')
>>> with open('data_dir/my_data.csv', 'rb') as f:
...     other_dataset = dr.Dataset.create_from_file(filelike=f)

Dataset.create_from_in_memory_data takes either a pandas.Dataframe or a list of dictionaries representing rows of data. Note that the dictionaries representing the rows of data must contain the same keys.

>>> import pandas as pd
>>> data_frame = pd.read_csv('data_dir/my_data.csv')

>>> pandas_dataset = dr.Dataset.create_from_in_memory_data(data_frame=data_frame)

>>> in_memory_data = [{'key1': 'value', 'key2': 'other_value', ...},
...                   {'key1': 'new_value', 'key2': 'other_new_value', ...}, ...]
>>> in_memory_dataset = dr.Dataset.create_from_in_memory_data(records=other_data)

Dataset.create_from_url takes .csv data from a URL. If you have set DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> url_dataset = dr.Dataset.create_from_url('',
...                                          do_snapshot=False)

Dataset.create_from_data_source takes data from a data source. If you have set DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> data_source_dataset = dr.Dataset.create_from_data_source(, do_snapshot=False)


>>> data_source_dataset = data_source.create_dataset(do_snapshot=False)

Use datasets

After creating a dataset, you can create Projects from it and begin training models. You can also combine project creation and a dataset upload in one method using Project.create. However, using this method means the data is only accessible to the project which created it.

>>> project = dataset.create_project(project_name='New Project')
>>> project.analyze_and_model('some target')
Project(New Project)

Get information from a dataset

The dataset object contains some basic information that you can query, as shown in the snippet below.

>>> dataset.categories
>>> dataset.created_at
datetime.datetime(2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())

The snippet below outlines several methods available to retrieve details from a dataset.

# Details
>>> details = dataset.get_details()
>>> details.last_modification_date
datetime.datetime(2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())
>>> details.feature_count_by_type
[FeatureTypeCount(count=1, feature_type=u'Text'),
 FeatureTypeCount(count=1, feature_type=u'Boolean'),
 FeatureTypeCount(count=16, feature_type=u'Numeric'),
 FeatureTypeCount(count=3, feature_type=u'Categorical')]
>>> details.to_dataset().id == details.dataset_id

# Projects
>>> dr.Project.create_from_dataset(, project_name='Project One')
Project(Project One)
>>> dr.Project.create_from_dataset(, project_name='Project Two')
Project(Project Two)
>>> dataset.get_projects()
[ProjectLocation(url=u'', id=u'5e3c94aff86f2d10692497b5'),
 ProjectLocation(url=u'', id=u'5e3c94eb9525d010a9918ec1')]
>>> first_id = dataset.get_projects()[0].id
>>> dr.Project.get(first_id).project_name
'Project One'

# Features
>>> all_features = dataset.get_all_features()
>>> feature = next(dataset.iterate_all_features(offset=2, limit=1))
>>> == all_features[2].name
>>> print(, feature.feature_type, feature.dataset_id)
(u'Partition', u'Numeric', u'5e31cdac39782d0f65842518')
>>> feature.get_histogram().plot
[{'count': 3522, 'target': None, 'label': u'0.0'},
 {'count': 3521, 'target': None, 'label': u'1.0'}, ... ]

# The raw data
>>> with open('myfile.csv', 'wb') as f:
...     dataset.get_file(filelike=f)

Retrieve datasets

You can retrieve specific datasets, a list of all datasets, or an iterator that retrieves all or some datasets.

>>> dataset_id = '5e387c501a438646ed7bf0f2'
>>> dataset = dr.Dataset.get(dataset_id)
>>> == dataset_id
# A blocking call that returns all datasets
>>> dr.Dataset.list()
[Dataset(name=u'Untitled Dataset', id=u'5e3c51e0f86f2d1087249728'),
 Dataset(name=u'my_data.csv', id=u'5e3c2028162e6a5fe9a0d678'), ...]

# Avoid listing datasets that fail to properly upload
>>> dr.Dataset.list(filter_failed=True)
[Dataset(name=u'my_data.csv', id=u'5e3c2028162e6a5fe9a0d678'),
 Dataset(name=u'my_other_data.csv', id=u'3efc2428g62eaa5f39a6dg7a'), ...]

# An iterator that lazily retrieves from the server page-by-page
>>> from itertools import islice
>>> iterator = dr.Dataset.iterate(offset=2)
>>> for element in islice(iterator, 3):
...    print(element)
Dataset(name='some_data.csv', id='5e8df2f21a438656e7a23d12')
Dataset(name='other_data.csv', id='5e8df2e31a438656e7a23d0b')
Dataset(name='Untitled Dataset', id='5e6127681a438666cc73c2b0')

Manage datasets

You can modify, delete and restore datasets. Note that you need the dataset’s ID in order to restore it from deletion. If you do not keep track of the ID, you will be unable to restore a dataset. If your deleted dataset was used to create a project, that project can still access it, but you will not be able to create new projects using that dataset.

>>> dataset.modify(name='A Better Name')
'A Better Name'

>>> new_project = dr.Project.create_from_dataset(
>>> stored_id =
>>> dr.Dataset.delete(

# new_project is still ok
>>> dr.Project.create_from_dataset(stored_id)
Traceback (most recent call last):
datarobot.errors.ClientError: 410 client error: {u'message': u'Requested Dataset 5e31cdac39782d0f65842518 was previously deleted.'}

>>> dr.Dataset.un_delete(stored_id)
>>> dr.Project.create_from_dataset(stored_id, project_name='Successful')

You can share a dataset as demonstrated in the following code snippet.

>>> from datarobot.enums import SHARING_ROLE
>>> from datarobot.models.dataset import Dataset
>>> from datarobot.models.sharing import SharingAccess
>>> new_access = SharingAccess(
>>>     "[email protected]",
>>>     can_share=True,
>>> )
>>> access_list = [
>>>     SharingAccess("[email protected]", SHARING_ROLE.OWNER, can_share=True),
>>>     new_access,
>>> ]
>>> Dataset.get('my-dataset-id').share(access_list)

Manage dataset feature lists

You can create, modify, and delete custom feature lists on a given dataset. Some feature lists are automatically created by DataRobot and cannot be modified or deleted. Note that you cannot restore a deleted feature list.

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
 DatasetFeaturelist(Informative Features)]

>>> dataset_features = [ for feature in dataset.get_all_features()]
>>> custom_featurelist = dataset.create_featurelist('Custom Features', dataset_features[:5])
>>> custom_featurelist
DatasetFeaturelist(Custom Features)

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
 DatasetFeaturelist(Informative Features),
 DatasetFeaturelist(Custom Features)]

>>> custom_featurelist.update('New Name')
'New Name'

>>> custom_featurelist.delete()
>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
 DatasetFeaturelist(Informative Features)]

Use credential data

For methods that accept credential data instead of username and password or a credential ID, see Credential Data.