Prediction environment
- class datarobot.models.PredictionEnvironment
Bases:
APIObject
A prediction environment entity.
Added in version v3.3.0.
- Variables:
id (
str
) – The ID of the prediction environment.name (
str
) – The name of the prediction environment.description (
Optional[str]
) – The description of the prediction environment.platform (
Optional[str]
) – Indicates which platform is in use (AWS, GCP, DataRobot, etc.).permissions (
Optional[List]
) – A set of permissions for the prediction environment.is_deleted (
boolean
, optional) – The flag that shows if this prediction environment deleted.supported_model_formats (
list[PredictionEnvironmentModelFormats]
, optional) – The list of supported model formats.is_managed_by_management_agent (
boolean
, optional) – Determines if the prediction environment should be managed by the management agent. False by default.datastore_id (
Optional[str]
) – The ID of the data store connection configuration. Only applicable for external prediction environments managed by DataRobot.credential_id (
Optional[str]
) – The ID of the credential associated with the data connection. Only applicable for external prediction environments managed by DataRobot.
- classmethod list()
Returns list of available external prediction environments.
- Returns:
prediction_environments – contains a list of available prediction environments.
- Return type:
list
ofPredictionEnvironment instances
Examples
>>> import datarobot as dr >>> prediction_environments = dr.PredictionEnvironment.list() >>> prediction_environments [ PredictionEnvironment('5e429d6ecf8a5f36c5693e03', 'demo_pe', 'aws', 'env for demo testing'), PredictionEnvironment('5e42cc4dcf8a5f3256865840', 'azure_pe', 'azure', 'env for azure demo testing'), ]
- classmethod get(pe_id)
Gets the PredictionEnvironment by id.
- Parameters:
pe_id (
str
) – the identifier of the PredictionEnvironment.- Returns:
prediction_environment – the requested prediction environment object.
- Return type:
Examples
>>> import datarobot as dr >>> pe = dr.PredictionEnvironment.get('5a8ac9ab07a57a1231be501f') >>> pe PredictionEnvironment('5a8ac9ab07a57a1231be501f', 'my_predict_env', 'aws', 'demo env'),
- delete()
Deletes the prediction environment. :rtype:
None
Examples
>>> import datarobot as dr >>> pe = dr.PredictionEnvironment.get('5a8ac9ab07a57a1231be501f') >>> pe.delete()
- classmethod create(name, platform, description=None, plugin=None, supported_model_formats=None, is_managed_by_management_agent=False, datastore=None, credential=None)
Create a prediction environment.
- Parameters:
name (
str
) – The name of the prediction environment.description (
Optional[str]
) – The description of the prediction environment.platform (
str
) – Indicates which platform is in use (AWS, GCP, DataRobot, etc.).plugin (
str
) – Optional. The plugin name to use.supported_model_formats (
list[PredictionEnvironmentModelFormats]
, optional) – The list of supported model formats. When not provided, the default value is inferred based on platform, (DataRobot platform: DataRobot, Custom Models; All other platforms: DataRobot, Custom Models, External Models).is_managed_by_management_agent (
boolean
, optional) – Determines if this prediction environment should be managed by the management agent. default: Falsedatastore (
DataStore|Optional[str]]
) – The datastore object or ID of the data store connection configuration. Only applicable for external Prediction Environments managed by DataRobot.credential (
Credential|Optional[str]]
) – The credential object or ID of the credential associated with the data connection. Only applicable for external Prediction Environments managed by DataRobot.
- Returns:
prediction_environment – the prediction environment was created
- Return type:
- Raises:
datarobot.errors.ClientError – If the server responded with 4xx status.
datarobot.errors.ServerError – If the server responded with 5xx status.
Examples
>>> import datarobot as dr >>> pe = dr.PredictionEnvironment.create( ... name='my_predict_env', ... platform=PredictionEnvironmentPlatform.AWS, ... description='demo prediction env', ... ) >>> pe PredictionEnvironment('5e429d6ecf8a5f36c5693e99', 'my_predict_env', 'aws', 'demo prediction env'),