DataRobot Python APl Documentation
Release 3.2.2

DataRobot, Inc.

Dec 19, 2023

1 Getting started

2 Table of contents
2.1 Getting started

2.3 API Reference
Python Module Index
Index

22 UserGuide
24 Exampleso oo
25 Changelog,

CONTENTS

DataRobot Python API Documentation, Release 3.2.2

The DataRobot Python package is a client library for working with the DataRobot platform API. To access other clients
and additional information about DataRobot’s APISs, visit the API documentation home.

CONTENTS 1

https://docs.datarobot.com/en/docs/api/index.html

DataRobot Python API Documentation, Release 3.2.2

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

To get started with the Python client, reference DataRobot’s API Quickstart guide.

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html

DataRobot Python API Documentation, Release 3.2.2

4 Chapter 1. Getting started

CHAPTER
TWO

TABLE OF CONTENTS

2.1 Getting started

To get started with the Python client, reference DataRobot’s API Quickstart guide. This guide outlines how to configure
your environment to use the API.

Additionally, try a sample problem that contains Python code examples.

2.2 User Guide

2.2.1 Data

Data integrity and quality are cornerstones for creating highly accurate predictive models. These sections describe the
tools and visualizations DataRobot provides to ensure that your project doesn’t suffer the “garbage in, garbage out”
outcome.

Datasets
To create a DataRobot project and begin modeling, you first need to upload your data and prepare a dataset.
Create a dataset

There are several ways to create a dataset. Dataset.upload takes either a path to a local file, a streamable file object
via external URL, or a pandas DataFrame.

>>> import datarobot as dr
>>> # Upload a local file
>>> dataset_one = dr.Dataset.upload("./data/examples.csv")

>>> # (Create a dataset with a URL
>>> dataset_two = dr.Dataset.upload("https://raw.githubusercontent.com/curran/data/gh-
—pages/dbpedia/cities/data.csv")

>>> # (Create a dataset using a pandas DataFrame
>>> dataset_three = dr.Dataset.upload(my_df)

>>> # Create a dataset using a local file

(continues on next page)

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html
https://docs.datarobot.com/en/docs/api/api-quickstart/tryit.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> with open("./data/examples.csv"”, "rb") as file_pointer:
dataset_four = dr.Dataset.create_from_file(filelike=file_pointer)

Dataset.create_from_file can take either a path to a local file or any streamable file object.

>>> import datarobot as dr
>>> dataset = dr.Dataset.create_from_file(file_path="data_dir/my_data.csv')
>>> with open('data_dir/my_data.csv', 'rb') as f:

other_dataset = dr.Dataset.create_from_file(filelike=1)

Dataset.create_from_in_memory_data takes either a pandas.Dataframe or a list of dictionaries representing
rows of data. Note that the dictionaries representing the rows of data must contain the same keys.

>>> import pandas as pd
>>> data_frame = pd.read_csv('data_dir/my_data.csv')

>>> pandas_dataset = dr.Dataset.create_from_in_memory_data(data_frame=data_frame)

>>> in_memory_data [{'keyl': 'value', 'key2': 'other_value', ...},
{'keyl': 'new_value', 'key2': 'other_new_value', ...}, ...]

>>> in_memory_dataset = dr.Dataset.create_from_in_memory_data(records=other_data)

Dataset.create_from_url takes .CSV data from a URL. If you have set
DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> url_dataset = dr.Dataset.create_from_url('https://s3.amazonaws.com/my_data/my_
—dataset.csv',
do_snapshot=False)

Dataset.create_from_data_source takes data from a data source. If you have set
DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> data_source_dataset = dr.Dataset.create_from_data_source(data_source.id, do_
—.snapshot=False)

or

>>> data_source_dataset = data_source.create_dataset(do_snapshot=False)

Use datasets

After creating a dataset, you can create Projects from it and begin training models. You can also combine project
creation and a dataset upload in one method using Project.create. However, using this method means the data is
only accessible to the project which created it.

>>> project = dataset.create_project(project_name='New Project')
>>> project.analyze_and_model ('some target')
Project(New Project)

6 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get information from a dataset

The dataset object contains some basic information that you can query, as shown in the snippet below.

>>> dataset.id
u'5e31cdac39782d0£65842518"'
>>> dataset.name
u'my_data.csv'
>>> dataset.categories
["TRAINING", "PREDICTION"]
>>> dataset.created_at
datetime.datetime(2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())

The snippet below outlines several methods available to retrieve details from a dataset.

Details

>>> details = dataset.get_details()

>>> details.last_modification_date
datetime.datetime (2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())
>>> details.feature_count_by_type

[FeatureTypeCount (count=1, feature_type=u'Text'),
FeatureTypeCount (count=1, feature_type=u'Boolean'),
FeatureTypeCount (count=16, feature_type=u'Numeric'),
FeatureTypeCount (count=3, feature_type=u'Categorical')]
>>> details.to_dataset().id == details.dataset_id

True

Projects

>>> dr.Project.create_from_dataset(dataset.id, project_name='Project One')

Project(Project One)

>>> dr.Project.create_from_dataset(dataset.id, project_name='Project Two')

Project(Project Two)

>>> dataset.get_projects()
[ProjectLocation(url=u'https://app.datarobot.com/api/v2/projects/
—5e3c94aff86£2d10692497b5/"', id=u'5e3c94aff86f2d10692497b5"'),
ProjectLocation(url=u'https://app.datarobot.com/api/v2/projects/
—5e3c94eb9525d010a9918ecl/"', id=u'5e3c94eb9525d010a9918ecl’')]

>>> first_id = dataset.get_projects()[0].id

>>> dr.Project.get(first_id) .project_name

'Project One'

Features
>>> all_features = dataset.get_all_features()
>>> feature = next(dataset.iterate_all_features(offset=2, limit=1))
>>> feature.name == all_features[2].name
True
>>> print(feature.name, feature.feature_type, feature.dataset_id)
(u'Partition', u'Numeric', u'5e31cdac39782d0f65842518")
>>> feature.get_histogram().plot
[{'count': 3522, 'target': None, 'label': u'0.0'},
o'}, ... 1]

{'count': 3521, 'target': None, 'label': u'l

The raw data

(continues on next page)

2.2. User Guide 7

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> with open('myfile.csv', 'wb') as f:
dataset.get_file(filelike=f)

Retrieve datasets

You can retrieve specific datasets, a list of all datasets, or an iterator that retrieves all or some datasets.

>>> dataset_id = '5e387c501a438646ed7bf0f2"’

>>> dataset = dr.Dataset.get(dataset_id)

>>> dataset.id == dataset_id

True

A blocking call that returns all datasets

>>> dr.Dataset.list()

[Dataset(name=u'Untitled Dataset', id=u'5e3c51e0£f86f2d1087249728"'),
Dataset(name=u'my_data.csv', id=u'5e3c2028162e6a5fe%9a0d678'), ...]

Avoid listing datasets that fail to properly upload

>>> dr.Dataset.list(filter_failed=True)

[Dataset (name=u'my_data.csv', id=u'5e3c2028162e6a5fe9%9a0d678"'),

Dataset (name=u'my_other_data.csv', id=u'3efc2428g62eaa5f39a6dg7a'), ...]

An iterator that lazily retrieves from the server page-by-page
>>> from itertools import islice
>>> jterator = dr.Dataset.iterate(offset=2)
>>> for element in islice(iterator, 3):

print(element)
Dataset(name="'some_data.csv', id='5e8df2f21a438656e7a23d12")
Dataset(name="'other_data.csv', id='5e8df2e31a438656e7a23d0b')
Dataset(name='Untitled Dataset', id='5e6127681a438666cc73c2b0"')

Manage datasets

You can modify, delete and restore datasets. Note that you need the dataset’s ID in order to restore it from deletion.
If you do not keep track of the ID, you will be unable to restore a dataset. If your deleted dataset was used to create a
project, that project can still access it, but you will not be able to create new projects using that dataset.

>>> dataset.modify(name='A Better Name')
>>> dataset.name
'A Better Name'

>>> new_project = dr.Project.create_from_dataset(dataset.id)
>>> stored_id = dataset.id
>>> dr.Dataset.delete(dataset.id)

new_project is still ok
>>> dr.Project.create_from_dataset(stored_id)
Traceback (most recent call last):

datarobot.errors.ClientError: 410 client error: {u'message': u'Requested Dataset.
—5e31cdac39782d0f65842518 was previously deleted.'}

(continues on next page)

8 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> dr.Dataset.un_delete(stored_id)
>>> dr.Project.create_from_dataset(stored_id, project_name='Successful')
Project(Successful)

You can share a dataset as demonstrated in the following code snippet.

>>> from datarobot.enums import SHARING_ROLE
>>> from datarobot.models.dataset import Dataset
>>> from datarobot.models.sharing import SharingAccess

>>>

>>> new_access = SharingAccess(
>>> "new_user@datarobot.com",
>>> SHARING_ROLE.OWNER,

>>> can_share=True,

>>>)

>>> access_list = [

>>> SharingAccess("old_user@datarobot.com", SHARING_ROLE.OWNER, can_share=True),
>>> new_access,

>>>]

>>>

>>> Dataset.get('my-dataset-id').share(access_list)

Manage dataset feature lists

You can create, modify, and delete custom feature lists on a given dataset. Some feature lists are automatically created
by DataRobot and cannot be modified or deleted. Note that you cannot restore a deleted feature list.

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features)]

>>> dataset_features = [feature.name for feature in dataset.get_all_features()]

>>> custom_featurelist = dataset.create_featurelist('Custom Features', dataset_features[:
=51

>>> custom_featurelist

DatasetFeaturelist(Custom Features)

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features),
DatasetFeaturelist(Custom Features)]

>>> custom_featurelist.update('New Name')
>>> custom_featurelist.name
'New Name'

>>> custom_featurelist.delete()
>>> dataset.get_featurelists()

(continues on next page)

2.2. User Guide 9

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features)]

Use credential data

For methods that accept credential data instead of username and password or a credential ID, see Credential Data.

Database Connectivity

Databases are a widely used tool for carrying valuable business data. To enable integration with a variety of enterprise
databases, DataRobot provides a “self-service” JDBC product for database connectivity setup. Once configured, you
can read data from production databases for model building and predictions. This allows you to quickly train and
retrain models on that data, and avoids the unnecessary step of exporting data from your enterprise database to a CSV
for ingest to DataRobot. It allows access to more diverse data, which results in more accurate models.

The steps describing how to set up your database connections use the following terminology:

DataStore: A configured connection to a database. It has a name, a specified driver, and a JDBC URL. You
can register data stores with DataRobot for ease of re-use. A data store has one connector but can have many
data sources.

DataSource: A configured connection to the backing data store (the location of data within a given endpoint).
A data source specifies, via SQL query or selected table and schema data, which data to extract from the data
store to use for modeling or predictions. A data source has one data store and one connector but can have many
datasets.

DataDriver: The software that allows the DataRobot application to interact with a database; each data store is
associated with either a driver or a connector (created by the admin). The driver configuration saves the storage
location in DataRobot of the JAR file and any additional dependency files associated with the driver.

Connector: Similarly to data drivers, a connector allows the DataRobot application to interact with a database;
each data store is associated with either a driver or a connector (created by the admin). The connector configura-
tion saves the storage location in DataRobot of the JAR file and any additional dependency files associated with
the connector.

Dataset: Data, a file or the content of a data source, at a particular point in time. A data source can produce
multiple datasets; a dataset has exactly one data source.

The expected workflow when setting up projects or prediction datasets is:

1.

2.
3.
4.

The administrator sets up a datarobot.DataDriver for accessing a particular database. For any particular
driver, this setup is done once for the entire system and then the resulting driver is used by all users.

Users create a datarobot.DataStore which represents an interface to a particular database, using that driver.
Users create a datarobot.DataSource representing a particular set of data to be extracted from the DataStore.

Users create projects and prediction datasets from a DataSource.

Besides the described workflow for creating projects and prediction datasets, users can manage their DataStores and
DataSources and admins can manage Drivers by listing, retrieving, updating and deleting existing instances.

Cloud users: This feature is turned off by default. To enable the feature, contact your CFDS or DataRobot Support.

10

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Creating Drivers

The admin should specify class_name, the name of the Java class in the Java archive which implements the java.
sql.Driver interface; canonical_name, a user-friendly name for resulting driver to display in the API and the GUI;
and files, a list of local files which contain the driver.

>>> import datarobot as dr

>>> driver = dr.DataDriver.create(

class_name='org.postgresql.Driver"',

canonical_name='PostgreSQL"',

. files=["'/tmp/postgresql-42.2.2.jar"]
.)

>>> driver

DataDriver('PostgreSQL")

To retrieve information about existing drivers, such as the driver ID for data store creation, you can use dr.
DataDriver.list().

Creating DataStores

After the admin has created drivers, any user can use them for DataStore creation. A DataStore represents a JDBC
database. When creating them, users should specify type, which currently must be jdbc; canonical_name, a user-
friendly name to display in the API and GUI for the DataStore; driver_id, the id of the driver to use to connect to the
database; and jdbc_url, the full URL specifying the database connection settings like database type, server address,
port, and database name.

Note that you can only create data stores with drivers when using the Python client. Drivers and connectors are not
interchangeable for this method. To create a data store with a connector, instead use the REST APL

>>> import datarobot as dr

>>> data_store = dr.DataStore.create(
data_store_type="jdbc',
canonical_name='Demo DB',
driver_id='5a6af02eb15372000117c040",
jdbc_url="jdbc:postgresql://my.db.address.org:5432/perftest’

.)

>>> data_store

DataStore('Demo DB')

>>> data_store.test(username="username', password='password"')

{'message': 'Connection successful'}

Creating DataSources

Once users have a DataStore, they can can query datasets via the DataSource entity, which represents a query. When
creating a DataSource, users first create a datarobot.DataSourceParameters object from a DataStore’s id and a
query, and then create the DataSource with a type, currently always jdbc; a canonical_name, the user-friendly name
to display in the API and GUI, and params, the DataSourceParameters object.

>>> import datarobot as dr
>>> params = dr.DataSourceParameters(
data_store_id="'5a8ac90b07a57a0001be501e",

(continues on next page)

2.2. User Guide 11

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

. query="'SELECT * FROM airlinesl®mb WHERE "Year" >= 1995;'
-)
>>> data_source = dr.DataSource.create(
data_source_type="'jdbc',
canonical_name='airlines stats after 1995',
.. params=params
-)
>>> data_source
DataSource('airlines stats after 1995')

Creating Projects

Given a DataSource, users can create new projects from it.

>>> import datarobot as dr

>>> project = dr.Project.create_from_data_source(
data_source_id="'"5ae6eee9962d740dd7b86886",
username="username ',

password="password'

As of v3.0, you can alternatively pass in the credential_id of an existing Dataset.Credential object.

>>> import datarobot as dr

>>> project = dr.Project.create_from_data_source(
data_source_id="'5ae6eee9962d740dd7bh86886",
credential_id="9963d544d5ce3se783r12190"

or, pass in credential_data which conforms to CredentialDataSchema.

>>> import datarobot as dr

>>> s3_credential_data = {"credentialType": "s3", "awsAccessKeyId": "key123",
—"awsSecretAccessKey": "secretl123"}

>>> project = dr.Project.create_from_data_source(
data_source_id="'"5ae6eee9962d740dd7bh86886",
credential_data=s3_credential_data

Creating Predictions

Given a DataSource, new prediction datasets can be created for any project.

>>> import datarobot as dr

>>> project = dr.Project.get('5ae6£296962d740dd7b86887")

>>> prediction_dataset = project.upload_dataset_from_data_source(
data_source_id="'5ae6eee9962d740dd7b86886",
username="username ',

password="password'

12 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Feature Discovery

Feature Discovery allows you to generate features automatically from secondary datasets connected to a primary dataset
(training data). You can create this type of connection using DataRobot’s Relationships Configuration.

Register a primary dataset to start a project

To start a Feature Discovery Project, upload the primary (training) dataset: Projects

import datarobot as dr
primary_dataset = dr.Dataset.create_from_file(file_path="your-training_file.csv')
project = dr.Project.create_from_dataset(primary_dataset.id, project_name='Lending Club')

Next, register all the secondary datasets which you want to connect with primary dataset.

Register secondary datasets in the Al Catalog

You can register the dataset using Dataset.create_from_£file, which can take either a path to a local file or any
streamable file object.

profile_dataset = dr.Dataset.create_from file(file_path="your_profile_file.csv')
transaction_dataset = dr.Dataset.create_from_file(file_path="'your_transaction_file.csv')

Create dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction datasets created above using helper func-
tions.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

profile_dataset_definition = dr.DatasetDefinition(
identifier="profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id

transaction_dataset_definition = dr.DatasetDefinition(
identifier="transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
primary_temporal_key='Date'’

profile_transaction_relationship = dr.Relationship(
datasetl_identifier="profile',
dataset2_identifier="transaction',

(continues on next page)

2.2. User Guide 13

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

datasetl_keys=['CustomerID'],
dataset2_keys=['CustomerID']

primary_profile_relationship = dr.Relationship(
dataset2_identifier="profile',
datasetl_keys=["'CustomerID'],
dataset2_keys=["'CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit="'DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Create a relationship configuration

Create a relationship configuration using the dataset definitions and relationships created above.

Create the relationships configuration to define connection between the datasets
relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_
—.definitions, relationships=relationships)

Create a Feature Discovery project

Once you have configured relationships for your datasets, you can start a Feature Discovery project.

Set the datetime partitionining column (‘date’ in this example)
partitioning_spec = dr.DatetimePartitioningSpecification('date")

As of v3.0, use Project.set_datetime_partitioning " instead of passing the spec to.
< "Project.analyze_and_model"" via “‘partitioning_method .
project.set_datetime_partitioning(datetime_partition_spec=partitioning_spec)

Set the target for the project and start Feature discovery (if Project.set_datetime_
—partitioning” was used there is no need to pass partitioning_method ")
project.analyze_and_model (target='BadLoan', relationships_configuration_id=relationship_
—config.id, mode="manual', partitioning _method=partitioning_spec)

Project(train.csv)

To start training a model, reference the ref:modeling <model> documentation.

14 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Create secondary dataset configuration for predictions

Create configurations for your secondary datasets with Secondary Dataset:

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
project_id=project.id,
name="'My config',
secondary_datasets=secondary_datasets

For more details, reference the Secondary Dataset configuration documentation.

Make predictions with a trained model

To make predictions with a trained model, reference the Predictions documentation.

dataset_from_path = project.upload_dataset(
'./data_to_predict.csv',
secondary_datasets_config_id=new_secondary_dataset_config.id

predict_job_1 = model.request_predictions(dataset_from_path.id)

Common Errors

Dataset registration Failed

datasetdr.Dataset.create_from_file(file_path="file.csv')
datarobot.errors.AsyncProcessUnsuccessfulError: The job did not complete successfully.

Solution
¢ Check the internet connectivity sometimes network flakiness cause upload error

* Is the dataset file too big then you might want to upload using URL rather than file

Relationship configuration errors

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'l': {u'identifier': u'value cannot contain.,

—characters: $ - " . {} /\\'},
u'0': {u'identifier': u'value cannot contain characters: $ - " . { } / \\'}}}}
Solution:

* Check the identifier name passed in datasets_definitions and relationships.

* Tip: Do not use the name of the dataset if you did not specify it when registering the dataset to the Al Catalog.

2.2. User Guide 15

https://docs.datarobot.com/en/docs/predictions/index.html

DataRobot Python API Documentation, Release 3.2.2

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'l': {u'primaryTemporalKey': u'date column doesnt.
—exist'},

11}

Solution:

* Check if the name of the column passed as primaryTemporalKey is correct, as it is case-sensitive.

Configure relationships

A relationship’s configuration specifies additional datasets to be included to a project, how these datasets are related
to each other, and the primary dataset. When a relationships configuration is specified for a project, Feature Discovery
will create features automatically from these datasets.

You can create a relationship configuration from uploaded Al Catalog items. After uploading all the secondary datasets
in the Al Catalog:

* Create the dataset’s definition to specify which datasets to be used as secondary datasets along with its details

* Configure relationships among the above datasets.

relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_
—definitions, relationships=relationships)

>>> relationship_config.id

u'5506£fcd38bd88£5953219da0d’

Dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction dataset using helper functions.

profile_catalog_id = '5ec4aeclf072bc028e3471ae’
profile_catalog_version_id = '5ec4aec2f072bc028e3471bl’

transac_catalog_id = '5ec4aec268f0f30289a03901"'
transac_catalog_version_id = '5ec4aec268f0£30289a03900'

profile_dataset_definition = dr.DatasetDefinition(
identifier="profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id

)

transaction_dataset_definition = dr.DatasetDefinition(
identifier="transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
primary_temporal_key='Date’

)

profile_transaction_relationship = dr.Relationship(
datasetl_identifier="profile',

(continues on next page)

16 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dataset2_identifier="transaction',
datasetl_keys=['CustomerID'],
dataset2_keys=['CustomerID']

primary_profile_relationship = dr.Relationship(
dataset2_identifier="profile',
datasetl_keys=["'CustomerID'],
dataset2_keys=["'CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit='DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Dataset definition and relationship using a dictionary

Create the dataset definitions and relationships for the profile and transaction dataset using dict directly.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

dataset_definitions = [
{
'identifier': 'transaction',
'catalogVersionId': transac_catalog_version_id,
'catalogId': transac_catalog_id,
'primaryTemporalKey': 'Date’,
'snapshotPolicy': 'latest',

'identifier': 'profile',
'catalogld': profile_catalog_id,
'catalogVersionId': profile_catalog_version_id,
'snapshotPolicy': 'latest',

3

relationships = [
{
'dataset2Identifier': 'profile',
'datasetlKeys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],
'featureDerivationWindowStart': -14,

(continues on next page)

2.2. User Guide

17

DataRobot Python APl Documentation, Release 3.2.2

(continued from previous page)

'featureDerivationWindowEnd': -1,
'featureDerivationWindowTimeUnit': 'DAY',
'predictionPointRounding': 1,
'predictionPointRoundingTimeUnit': 'DAY',

'datasetlIdentifier': 'profile',
'dataset2Identifier': 'transaction',
'datasetlKeys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],

1

Retrieving relationship configuration

You can retrieve a specific relationship’s configuration using the ID of the relationship configuration.

relationship_config_id = '5506fcd38bd88£5953219da0d"’
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id).get()

>>> relationship_config.id == relationship_config_id

True

Get all the datasets used in this relationship's configuration
>> len(relationship_config.dataset_definitions) == 2

True

>> relationship_config.dataset_definitions[0]

{

'feature_list_id': '5ec4af93603£596525d382d3",
'snapshot_policy': 'latest',

'catalog_id': 'Sec4aec268f0f30289a03900',
'catalog_version_id': '5ec4aec268f0f30289a03901",
'primary_temporal_key': 'Date',

'is_deleted': False,

'identifier': 'transaction',

'feature_lists':

[

'name': 'Raw Features',
'description': 'System created featurelist',
'created_by': 'Userl',
'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 150000,.
—~tzinfo=tzutc()),
'user_created': False,
'dataset_id': '5ec4aec268f0£30289a03900',
'id': '5ec4af93603£596525d382d1",
'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u
- 'Description']
1,
{
'name': 'universe',
'description': 'System created featurelist',
'created_by': 'Userl',

(continues on next page)

18 Chapter 2. Table of contents

DataRobot Python APl Documentation, Release 3.2.2

(continued from previous page)

'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 172000,

~tzinfo=tzutcQ)),

< 'Description']
1,
{

— 'Description']

'user_created': False,

'dataset_id': '5ec4aec268f0£30289a03900',

'id': '5ec4af93603£596525d382d2",

'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u

'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u
'description': 'System created featurelist',

'created_by': u'Garvit Bansal',

'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 179000,.

—tzinfo=tzutc()),

]
}

'dataset_version_id': '5ec4aec268f0f30289a03901"',
'user_created': False,

'dataset_id': 'S5ec4aec268f0f30289a03900',

'id': u'5ec4af93603£596525d382d3",

'name': 'Informative Features'

Get information regarding how the datasets are connected among themselves as well as .
—theprimary dataset
>> relationship_config.relationships

L
{

'dataset2Identifier': 'profile',
'datasetlKeys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],
'featureDerivationWindowStart': -14,
'featureDerivationWindowEnd': -1,
'featureDerivationWindowTimeUnit': 'DAY',
'predictionPointRounding': 1,
'predictionPointRoundingTimeUnit': 'DAY',

'datasetlIdentifier': 'profile',
'dataset2Identifier': 'transaction',
'datasetlKeys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],

3,

2.2. User Guide

19

DataRobot Python APl Documentation, Release 3.2.2

Update details of a relationship configuration

Use the snippet below as an example of how to update the details of the existing relationship configuration.

relationship_config_id = '5506fcd38bd88£5953219da0d"’

relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
Remove obsolete dataset definitions and its relationships
new_datasets_definiton =

[
{
'identifier': 'user',
'catalogVersionId': '5c88a37770fc42a2fcc62759',
'catalogId': '5c88a37770fc42a2fcc62759',
'snapshotPolicy': 'latest',
1
]

Get information regarding how the datasets are connected among themselves as well as.
—the primary dataset
new_relationships =

[
{
'dataset2Identifier': 'user',
'datasetlKeys': ['user_id', 'dept_id'],
'dataset2Keys': ['user_id', 'dept_id'],
s
]
new_config = relationship_config.replace(new_datasets_definiton, new_relationships)
>>> new_config.id == relationship_config_id
True
>>> new_config.datasets_definition
[
{
'identifier': 'user',
'catalogVersionId': '5c88a37770fc42a2fcc62759"',
'catalogId': '5c88a37770fc42a2fcc62759',
'snapshotPolicy': 'latest',
}’
]
>>> new_config.relationships
[
{
'dataset2Identifier': 'user',
'datasetlKeys': ['user_id', 'dept_id'],
'dataset2Keys': ['user_id', 'dept_id'],
s
1

20 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Delete relationships configuration

You can delete a relationship configuration that is not used by any project.

relationship_config_id = '5506fcd38bd88£5953219da0d"’

relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
result = relationship_config.get()

>>> result.id == relationship_config_id

True

Delete the relationships configuration

>>> relationship_config.delete()

>>> relationship_config.get()

ClientError: Relationships Configuration 5506fcd38bd88£5953219da® not found

Secondary dataset configuration

Secondary dataset configuration allows you to use the different secondary datasets for a Feature Discovery project when
making predictions.

Secondary datasets using helper functions

Create the Secondary Dataset using helper functions.

>>> profile_catalog_id = 'Sec4aeclf072bc028e3471ae’
>>> profile_catalog_version_id = '5ec4aec2f072bc028e3471bl’

>>> transac_catalog_id = '5ec4aec268f0£f30289a03901"'
>>> transac_catalog_version_id = '5ec4aec268f0f30289a03900'

profile_secondary_dataset = dr.SecondaryDataset(
identifier="profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id,
snapshot_policy="'latest'

)

transaction_secondary_dataset = dr.SecondaryDataset(
identifier="transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
snapshot_policy="'latest'

)

secondary_datasets = [profile_secondary_dataset, transaction_secondary_dataset]

2.2. User Guide 21

DataRobot Python API Documentation, Release 3.2.2

Create secondary datasets with dict

You can create secondary datasets using raw dict structure.

secondary_datasets = [

{
'snapshot_policy': u'latest’',
'identifier': u'profile',
'catalog_version_id': u'5fd06b4af24c641b68e4d88f",
'catalog_id': u'5fd06b4af24c641b68e4d88e’

3

{
'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e’,
'catalog_id': u'5fd1e86c589238a4e635e98d"

}

Create a secondary dataset configuration

Create a secondary dataset configuration for a Feature Discovery Project which uses two secondary datasets: profile
and transaction.

import datarobot as dr
project = dr.Project.get(project_id="'54e639a18bd88f08078ca831")

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
project_id=project.id,
name="'My config',
secondary_datasets=secondary_datasets

>>> new_secondary_dataset_config.id
'5fd1e86c589238a4e635e93d’

Retrieve a secondary dataset configuration

You can retrieve specific secondary dataset configurations using the configuration ID.

>>> config_id = '5fd1e86c589238a4e635e93d’

secondary_dataset_config = dr.SecondaryDatasetConfigurations(id=config_id).get()
>>> secondary_dataset_config.id == config_id
True
>>> secondary_dataset_config
{
'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',

(continues on next page)

22 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'creator_user_id': u'asdf4aflgf4bdsd2fbalde®a’,
'credential_ids': None,

'featurelist_id': None,

'id': u'5fd1e86c589238a4e635e93d",
'is_default': True,

'name': u'My config',

'project_id': u'5fd06afce2456ecle9d20457",
'project_version': None,

'secondary_datasets': [

{
'snapshot_policy': u'latest',
'identifier': u'profile',
'catalog_version_id': u'5fd0®6b4af24c641b68e4d88f",
'catalog_id': u'5fd06b4af24c641b68e4d88e’

1,

{
'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e",
'catalog_id': u'5fd1e86c589238a4e635e98d’

}

List all secondary dataset configurations

You can list all secondary dataset configurations created in the project.

>>> secondary_dataset_configs = dr.SecondaryDatasetConfigurations.list(project.id)
>>> secondary_dataset_configs[0]
{
'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',
'creator_user_id': u'asdf4aflgf4bdsd2fbaldefa’,
'credential_ids': None,
'featurelist_id': None,
'id': u'5fd1e86c589238a4e635e93d",
'is_default': True,
'name': u'My config',
'project_id': u'5fd06afce2456ecle9d20457',
'project_version': None,
'secondary_datasets': [

{
'snapshot_policy': u'latest',
'identifier': u'profile’,
'catalog_version_id': u'5fd0®6b4af24c641b68e4d88f",
'catalog_id': u'5fd0®6b4af24c641b68e4d88e’
1,
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',

(continues on next page)

2.2. User Guide 23

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'catalog_version_id': u'5fd1e86c589238a4e635e98e",
'catalog_id': u'5fdle86c589238a4e635e98d"'

2.2.2 Modeling

The Modeling section provides information to help you easily navigate the process of building, understanding, and
analyzing models.

Projects

All of the modeling within DataRobot happens within a project. Each project has one dataset that is used as the source
from which to train models.

Create a Project

You can create a project from previously created Datasets or directly from a data source.

import datarobot as dr
dataset = Dataset.create_from_file(file_path='/home/user/data/last_week_data.csv')
project = dr.Project.create_from_dataset(dataset.id, project_name='New Project')

The following command creates a new project directly from a data source. You must specify a path to data file, file
object URL (starting with http://, https://, file://, or s3://), raw file contents, or a pandas.DataFrame
object when creating a new project. Path to file can be either a path to a local file or a publicly accessible URL.

import datarobot as dr
project = dr.Project.create('/home/user/data/last_week data.csv',
project_name='New Project')

You can use the following commands to view the project ID and name:

project.id

>>> u'5506fcd38bd88£5953219da0’
project.project_name

>>> u'New Project'

Select Modeling Parameters

The final information needed to begin modeling includes the target feature, the queue mode, the metric for comparing
models, and the optional parameters such as weights, offset, exposure and downsampling.

24 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Target

The target must be the name of one of the columns of data uploaded to the project.

Metric

The optimization metric used to compare models is an important factor in building accurate models. If a metric is not
specified, the default metric recommended by DataRobot will be used. You can use the following code to view a list of
valid metrics for a specified target:

target_name = 'ItemsPurchased’
project.get_metrics(target_name)
>>> {'available_metrics': [

'Gini Norm',

'Weighted Gini Norm',

'Weighted R Squared',

'Weighted RMSLE',

'Weighted MAPE',

'Weighted Gamma Deviance',

'Gamma Deviance',

'RMSE",

'Weighted MAD',

'Tweedie Deviance',

"MAD',

'RMSLE",

'Weighted Tweedie Deviance',

'Weighted RMSE',

'MAPE',

'Weighted Poisson Deviance',

'R Squared',

'Poisson Deviance'],

'feature_name': 'SalePrice'}

Partitioning Method

DataRobot projects always have a holdout set used for final model validation. We use two different approaches for
testing prior to the holdout set:

* split the remaining data into training and validation sets

* cross-validation, in which the remaining data is split into a number of folds (partitions); each fold serves as a
validation set, with models trained on the other folds and evaluated on that fold.

There are several other options you can control. To specify a partition method, create an instance of one of the Par-
tition Classes, and pass it as the partitioning_method argument in your call to project.analyze_and_model
or project.start. As of v3.0 you can alternately use project.set_partitioning_method. See here for more
information on using datetime partitioning.

Several partitioning methods include parameters for validation_pct and holdout_pct, specifying desired percent-
ages for the validation and holdout sets. Note that there may be constraints that prevent the actual percentages used
from exactly (or some cases, even closely) matching the requested percentages.

2.2. User Guide 25

DataRobot Python API Documentation, Release 3.2.2

Queue Mode

You can use the API to set the DataRobot modeling process to run in either automatic or manual mode.

Autopilot mode means that the modeling process will proceed completely automatically, including running recom-
mended models, running at different sample sizes, and blending.

Manual mode means that DataRobot will populate a list of recommended models, but will not insert any of them into
the queue. Manual mode lets you select which models to execute before starting the modeling process.

Quick mode means that a smaller set of Blueprints is used, so autopilot finishes faster.

Weights

DataRobot also supports using a weight parameter. A full discussion of the use of weights in data science is not within
the scope of this document, but weights are often used to help compensate for rare events in data. You can specify a
column name in the project dataset to be used as a weight column.

Offsets

Starting with version v2.6 DataRobot also supports using an offset parameter. Offsets are commonly used in insurance
modeling to include effects that are outside of the training data due to regulatory compliance or constraints. You can
specify the names of several columns in the project dataset to be used as the offset columns.

Exposure

Starting with version v2.6 DataRobot also supports using an exposure parameter. Exposure is often used to model
insurance premiums where strict proportionality of premiums to duration is required. You can specify the name of the
column in the project dataset to be used as an exposure column.

Start Modeling

Once you have selected modeling parameters, you can use the following code structure to specify parameters and start
the modeling process.

import datarobot as dr

project.analyze_and_model (target="ItemsPurchased",
metric="'Tweedie Deviance',
mode=dr . AUTOPILOT_MODE.FULL_AUTO)

You can also pass additional optional parameters to project.analyze_and_model to change parameters of the mod-
eling process. Some of those parameters include:

* worker_count — int, sets number of workers used for modeling.
e partitioning_method — PartitioningMethod object.

* positive_class - str, float, or int; Specifies a level of the target column that should be treated as the positive
class for binary classification. May only be specified for binary classification targets.

* advanced_options — AdvancedOptions object, used to set advanced options of modeling process. Can alter-
natively call set_options on a project instance which will be used automatically if nothing is passed here.

26 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

e target_type — str, override the automatically selected target_type. An example usage would be setting the tar-
get_type=TARGET_TYPE.MULTICLASS when you want to perform a multiclass classification task on a numeric
column that has a low cardinality.

For a full reference of available parameters, see Project.analyze_and_model.

You can run with different autopilot modes with the mode parameter. AUTOPILOT_MODE.FULL_AUTO is the default,
which will trigger modeling with no further actions necessary. Other accepted modes include AUTOPILOT_MODE.
MANUAL for manual mode (choose your own models to run rather than use the DataRobot autopilot) and
AUTOPILOT_MODE. QUICK (run on a more limited set of models to get insights more quickly).

Clone a Project

Once a project has been successfully created, you may clone it using the following code structure:

new_project = project.clone_project(new_project_name='This is my new project')
new_project.project_name

>> 'This is my new project'

new_project.id != project.id

>> True

The new_project_name attribute is optional. If it is omitted, the default new project name will be ‘Copy of
<project.name>’.

Interact with a Project

The following commands can be used to manage DataRobot projects.

List Projects

Returns a list of projects associated with current API user.

import datarobot as dr
dr.Project.list()
>>> [Project(Project One), Project(Two)]

dr.Project.list(search_params={'project_name': 'One'})
>>> [Project(One)]

You can pass following parameters to change result:

* search_params —dict, used to filter returned projects. Currently you can query projects only by project_name

2.2. User Guide 27

DataRobot Python API Documentation, Release 3.2.2

Get an existing project

Rather than querying the full list of projects every time you need to interact with a project, you can retrieve its id value
and use that to reference the project.

import datarobot as dr

project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")
project.id

>>> '5506£fcd38bd88£5953219da0"’

project.project_name

>>> 'Churn Projection'

Get feature association statistics for an existing project

Get either feature association or correlation statistics and metadata on informative features for a given project

import datarobot as dr

project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")

association_data = project.get_associations(assoc_type='association', metric='mutualInfo
=)

association_data.keys()

>>> ['strengths', 'features']

Get whether your featurelists have association statistics

Get whether an association matrix job has been run on each of your featurelists

import datarobot as dr

project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")

featurelists = project.get_association_featurelists()

featurelists['featurelists'][0]

>>> {"featurelistId": "54e510ef8bd88f5aeb02a3ed", "hasFam": True, "title": "Informative.
—Features"}

Get a Project’s featurelist by name

Get a featurelist by name

import datarobot as dr

project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")
featurelist = project.get_featurelist_by_name('Raw Features')
featurelist

>>> Featurelist(Raw Features)

Trying to get featurelist that does not exist

featurelist = project.get_featurelist_by_name("Flying Circus')
featurelist is None

>>> True

28 Chapter 2. Table of contents

DataRobot Python APl Documentation, Release 3.2.2

Create Project featurelists

Using the project’s create_featurelist() method, you can create feature lists in multiple ways:

import datarobot as dr
project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")

featurelist_one = project.create_featurelist(
name="Testing featurelist creation",
features=["age", "weight", "number_diagnoses"],

)

featurelist_one

>>> Featurelist(Testing featurelist creation)

featurelist_one. features

>>> ['age', 'weight', 'number_diagnoses']

Create a feature list using another feature list as a starting point (‘starting_
— featurelist’)
To Note: this example passes the “featurelist® object but you can also pass the
id ('starting_featurelist_id’) or the name ('starting_featurelist_name")
featurelist_two = project.create_featurelist(

starting_featurelist=featurelist_one,

features_to_exclude=["number_diagnoses"], # Please see docs for use of "features_to_
—include’
)
featurelist_two # Note below we have an auto-generated name because we did not pass.
< name"
>>> Featurelist(Testing featurelist creation - 2022-07-12)
>>> # Note below we have a new feature list which has ""number_diagnoses' excluded
featurelist_two. features
>>> ['age', 'weight']

Get values for a pair of features in an existing project

Get a sample of the exact values used in the feature association matrix plotting

import datarobot as dr

project = dr.Project.get(project_id="5506fcd38bd88£5953219da0d")

feature_values = project.get_association_matrix_details(featurel="foo', feature2='bar')
feature_values.keys()

>>> ['features', 'types', 'values']

2.2. User Guide 29

DataRobot Python API Documentation, Release 3.2.2

Update a project

You can update various attributes of a project.

To update the name of the project:

project.rename (new_name)

To update the number of workers used by your project (this will fail if you request more workers than you have available;
the special value -7 will request your maximum number):

project.set_worker_count (num_workers)

To unlock the holdout set, allowing holdout scores to be shown and models to be trained on more data:

project.unlock_holdout()

To add or change the project description:

project.set_project_description(project_description)

To add or change the project’s advanced_options:

Using kwargs
project.set_options(blend_best_models=False)

Using an “AdvancedOptions™ instance
project.set_options(AdvancedOptions(blend_best_models=False))

Delete a project

Use the following command to delete a project:

project.delete()

Wait for Autopilot to Finish

Once the modeling autopilot is started, in some cases you will want to wait for autopilot to finish:

project.wait_for_autopilot()

Play/Pause the autopilot

If your project is running in autopilot mode, it will continually use available workers, subject to the number of workers
allocated to the project and the total number of simultaneous workers allowed according to the user permissions.

To pause a project running in autopilot mode:

project.pause_autopilot()

To resume running a paused project:

30 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

project.unpause_autopilot()

Start autopilot on another Featurelist

You can start autopilot on an existing featurelist.

import datarobot as dr

featurelist = project.create_featurelist('test', ['feature 1', 'feature 2'])
project.start_autopilot(featurelist.id)
>>> True

Starting autopilot that is already running on the provided featurelist
project.start_autopilot(featurelist.id)
>>> dr.errors.AppPlatformError

Note: This method should be used on a project where the target has already been set. An error will be raised if
autopilot is currently running on or has already finished running on the provided featurelist.

Start preparing a specific model for deployment

You can start preparing a specific model for deployment. The model will then go through the various recommendation
stages including retraining on a reduced feature list and retraining the model on a higher sample size (recent data for
datetime partitioned).

prepare a specific model for deployment and wait for the process to complete
project.start_prepare_model_for_deployment (model_id=model.id)
project.wait_for_autopilot(check_interval=5, timeout=600)
get the prepared model
prepared_for_deployment_model = dr.models.ModelRecommendation.get(

project.id, recommendation_type=RECOMMENDED_MODEL_TYPE.PREPARED_FOR_DEPLOYMENT
)

prepared_for_deployment_model_id = prepared_for_deployment_model.model_id

Note: This method should be used on a project where the target has already been set. An error will be raised if
autopilot is currently running on the project or another model in the project is being prepared for deployment.

Further reading

The Blueprints and Models sections of this document will describe how to create new models based on the Blueprints
recommended by DataRobot.

2.2. User Guide 31

DataRobot Python API Documentation, Release 3.2.2

Using Credential Data

For methods that accept credential data instead of user/password or credential ID, please see Credential Data.

Models

When a blueprint has been trained on a specific dataset at a specified sample size, the result is a model. Models can be
inspected to analyze their accuracy.

Start Training a Model

To start training a model, use the Project. train method with a blueprint object:

import datarobot as dr

project = dr.Project.get('5506£fcd38bd88£5953219da0d")
blueprints = project.get_blueprints()

model_job_id = project.train(blueprints[0].id)

For a Datetime Partitioned Project (see Specialized Workflows section), use Project. train_datetime:

import datarobot as dr

project = dr.Project.get('5506fcd38bd88£5953219dad")
blueprints = project.get_blueprints()

model_job_id = project.train_datetime(blueprints[0].id)

List Finished Models

You can use the Project.get_models method to return a list of the project models that have finished training:

import datarobot as dr
project = dr.Project.get('5506fcd38bd88£5953219dad")
models = project.get_models()
print(models[:5])
>>> [Model(Decision Tree Classifier (Gini)),
Model (Auto-tuned K-Nearest Neighbors Classifier (Minkowski Distance)),
Model (Gradient Boosted Trees Classifier (R)),
Model (Gradient Boosted Trees Classifier),
Model (Logistic Regression)]
model = models[0]

project.id

>>> u'5506fcd38bd88£5953219da0d’
model .id

>>> u'5506£fcd98bd88f1641a720a3"

You can pass following parameters to change result:
* search_params — dict, used to filter returned projects. Currently you can query models by
— name

— sample_pct

32 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

— is_starred

» order_by — str or list, if passed returned models are ordered by this attribute(s). Allowed attributes to sort by
are:

— metric
— sample_pct

If the sort attribute is preceded by a hyphen, models will be sorted in descending order, otherwise in
ascending order. Multiple sort attributes can be included as a comma-delimited string or in a list e.g.

order_by="sample_pct,-metric' or order_by=["'sample_pct', '-metric']. Using metric to sort by
will result in models being sorted according to their validation score by how well they did according to the project
metric.

e with_metric — str, If not None, the returned models will only have scores for this metric. Otherwise all the
metrics are returned.

List Models Example:

import datarobot as dr
dr.Project('5506fcd38bd88£5953219da0"') .get_models(order_by=["'sample_pct', '-metric'])

Getting models that contain "Ridge" in name
and with sample_pct more than 64
dr.Project('5506fcd38bd88£5953219da0®"') .get_models(
search_params={
'sample_pct__gt': 64,
'name': "Ridge"

i)

Getting models marked as starred
dr.Project('5506£fcd38hd88£5953219da0®"') .get_models(
search_params={
'is_starred': True

i)

Retrieve a Known Model

If you know the model_id and project_id values of a model, you can retrieve it directly:

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0d’

model_id = '5506fcd98bd88f1641a720a3"’

model = dr.Model.get(project=project_id,
model_id=model_id)

You can also use an instance of Project as the parameter for Model.get

model = dr.Model.get(project=project,
model_id=model_id)

2.2. User Guide 33

DataRobot Python API Documentation, Release 3.2.2

Retrieve the highest scoring model for a given metric

You can retrieve the highest scoring model for a project based on a metric of your choice.

If you decide not to pass a metric to this method or if you pass the default project metric (the value of the metric
attribute of your project instance), the result of Project.recommended_model is returned.

import datarobot as dr
project = dr.Project.get('5506fcd38bd88£5953219dad")
top_model_r_squared = project.get_top_model (metric="R Squared™)

Train a Model on a Different Sample Size

One of the key insights into a model and the data behind it is how its performance varies with more training data. In
Autopilot mode, DataRobot will run at several sample sizes by default, but you can also create a job that will run at a
specific sample size. You can also specify a featurelist that should be used for training the new model. The Model.
train method of a Model instance will put a new modeling job into the queue and return the id of the created ModelJob.
You can pass the ModelJob id to the wait_for_async_model_creation function, which polls the async model creation
status and returns the newly created model when it’s finished.

import datarobot as dr
model_job_id = model.train(sample_pct=33)

Retrain a model on a custom featurelist using cross validation.
Note that you can specify a custom value for “sample_pct'.
model_job_id = model.train(

sample_pct=55,

featurelist_id=custom_featurelist.id,

scoring_type=dr.SCORING_TYPE.cross_validation,

Cross-Validating a Model

By default, models are evaluated on the first validation partition. To start cross-validation, use the Model.
cross_validate method:

import datarobot as dr

model_job_id = model.cross_validate()

For a :doc:Datetime Partitioned Project , backtesting is the only cross-validation method supported. To run backtesting
for a datetime model, use the DatetimeModel.score_backtests method:

import datarobot as dr

‘model’ here must be an instance of ‘dr.DatetimeModel’.
model_job_id = model.score_backtests()

34 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Find the Features Used

Because each project can have many associated featurelists, it is important to know which features a model requires in
order to run. This helps ensure that the necessary features are provided when generating predictions.

feature_names = model.get_features_used()
print (feature_names)
>>> ['MonthlyIncome',

'VisitsLast8Weeks',

"Age']

Feature Impact

Feature Impact measures how much worse a model’s error score would be if DataRobot made predictions after randomly
shuflling a particular column (a technique sometimes called Permutation Importance).

The following example code snippet shows how a featurelist with just the features with the highest feature impact could
be created.

import datarobot as dr

max_num_features = 10
time_to_wait_for_impact = 4 * 60 # seconds

feature_impacts = model.get_or_request_feature_impact(time_to_wait_for_impact)

feature_impacts.sort(key=lambda x: x['impactNormalized'], reverse=True)
final_names = [f['featureName'] for f in feature_impacts[:max_num_features]]

project.create_featurelist('highest_impact', final_names)

For datetime aware models Feature Impact can be calculated for any backtest and holdout.

import datarobot as dr

datetime_model = dr.Model.get(project=project_id, model_id=model_id)
feature_impacts = datetime_model.get_or_request_feature_impact(backtest=1, with_
—metadata=True)

Feature Effects

Feature Effects helps to understand how changing a single feature affects the target while holding all other features
constant. Feature Effects provides partial dependence plot and prediction vs accuracy plot data.

import datarobot as dr

feature_effects = model.get_or_request_feature_effect(source="'validation")

For multiclass models use request_feature_effect_multiclass and get_feature_effects_multiclass or
get_or_request_feature_effect_multiclass methods.

2.2. User Guide 35

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

feature_effects = model.get_feature_effect(source="'validation')

Predict new data

After creating models, you can use them to generate predictions on new data. See the Predictions documentation for
further information on how to request predictions from a model.

Model IDs vs. Blueprint IDs

Each model has both a model_id and a blueprint_id.

A model is the result of training a blueprint on a dataset at a specified sample percentage. The blueprint_id is used
to keep track of which blueprint was used to train the model, while the model_id is used to locate the trained model
in the system.

Model parameters

Some models can have parameters that provide data needed to reproduce their predictions.

For additional usage information see DataRobot documentation, section “Coefficients tab and pre-processing details”

import datarobot as dr

model = dr.Model.get(project=project, model_id=model_id)
mp = model.get_parameters()
print (mp.derived_features)

>>> [{
'coefficient': -0.015,
'originalFeature': u'AlCresult',
'derivedFeature': u'AlCresult->7"',
"type': u'CAT',
"transformations': [{'name': u'One-hot', 'value': u"'>7'"}]
1

Create a Blender

You can blend multiple models; in many cases, the resulting blender model is more accurate than the parent models.
To do so you need to select parent models and a blender method from datarobot .enums.BLENDER_METHOD. If this
is a time series project, only methods in datarobot.enums.TS_BLENDER_METHOD are allowed.

Be aware that the tradeoff for better prediction accuracy is bigger resource consumption and slower predictions.

import datarobot as dr

pr = dr.Project.get(pid)

models = pr.get_models()

parent_models = [model.id for model in models[:2]]
pr.blend(parent_models, dr.enums.BLENDER_METHOD.AVERAGE)

36 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Lift chart retrieval

You can use the Model methods get_lift_chart and get_all_1lift_charts toretrieve lift chart data. The first will
get it from specific source (validation data, cross validation or unlocked holdout) and the second will list all available
data.

For multiclass models, you can get a list of per-class lift charts using the Model method
get_multiclass_lift_chart.

ROC curve retrieval

Same as with the lift chart, you can use Model methods get_roc_curve and get_all_roc_curves to retrieve ROC
curve data. More information about working with ROC curves can be found in DataRobot web application documen-
tation section “ROC Curve tab details”.

Residuals chart retrieval

Just as with the lift and ROC charts, you can use Model methods get_residuals_chart and
get_all_residuals_charts to retrieve residuals chart data. The first will get it from a specific source (vali-
dation data, cross-validation data, or unlocked holdout). The second will retrieve all available data.

Word Cloud

If your dataset contains text columns, DataRobot can create text processing models that will contain word cloud insight
data. An example of such a model is any “Auto-Tuned Word N-Gram Text Modeler” model. You can use the Model.
get_word_cloud method to retrieve those insights - it will provide up to the 200 most important ngrams in the model
and coefficients corresponding to their influence.

Scoring Code

Subset of models in DataRobot supports code generation. For each of those models you can download a JAR file with
scoring code to make predictions locally using the method Model.download_scoring_code. For details on how to
do that see “Code Generation” section in DataRobot web application documentation. Optionally you can download
source code in Java to see what calculations those models do internally.

Be aware that the source code JAR isn’t compiled so it cannot be used for making predictions.

Get a model blueprint chart

For any model, you can retrieve its blueprint chart. You can also get its representation in graphviz DOT format to
render it into the format you need.

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0"’

model_id = '5506fcd98bd88f1641a720a3"

model = dr.Model.get(project=project_id,
model_id=model_id)

bp_chart = model.get_model_blueprint_chart()

print (bp_chart.to_graphviz())

2.2. User Guide 37

DataRobot Python API Documentation, Release 3.2.2

Get a model missing values report

For the majority of models, you can retrieve their missing values reports on training data per each numeric and categor-
ical feature. Model needs to have at least one of the supported tasks in the blueprint in order to have a missing values
report (blenders are not supported). Report is gathered for Numerical Imputation tasks and Categorical converters like
Ordinal Encoding, One-Hot Encoding, etc. Missing values report is available to users with access to full blueprint
docs.

A reportis collected for those features which are considered eligible by a given blueprint task. For instance, a categorical
feature with a lot of unique values may not be considered as eligible in the One-Hot encoding task.

Please refer to Missing report attributes description for report interpretation.

import datarobot as dr
project_id = '5506fcd38bd88£5953219da0’
model_id = '5506fcd98bd88f1641a720a3"’
model = dr.Model.get(project=project_id, model_id=model_id)
missing_reports_per_feature = model.get_missing_report_info()
for report_per_feature in missing_reports_per_feature:

print (report_per_feature)

Consider the following example. Given Decision Tree Classifier (Gini) blueprint chart representation:

print(blueprint_chart.to_graphviz())
>>> digraph "Blueprint Chart" {
graph [rankdir=LR]
0 [label="Data"]
-2 [label="Numeric Variables'"]
2 [label="Missing Values Imputed"]
3 [label="Decision Tree Classifier (Gini)"]
4 [label="Prediction"]
-1 [label="Categorical Variables"]
1 [label="0Ordinal encoding of categorical variables"]
0 > -2
-2 -> 2
2 -> 3
3 >4
0 > -1
-1 > 1
1 >3

and missing report:

print (report_per_featurel)
>>> {'feature': 'Veh Year',
"type': 'Numeric',
'missing_count': 150,
'missing_percentage': 50.00,
"tasks': [
{'id': u'2",
'name': u'Missing Values Imputed',
'descriptions': [u'Imputed value: 2006']
}

(continues on next page)

38 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

]
}
print(report_per_feature2)
>>> {'feature': 'Model',

'type': 'Categorical',
'missing_count': 100,
'missing_percentage': 33.33,

"tasks': [
{'id': u'1"',
'name': u'Ordinal encoding of categorical variables',
'descriptions': [u'Imputed value: -2']
}
]
}

results can be interpreted in the following way:

Numeric feature “Veh Year” has 150 missing values and respectively 50% in training data. It was transformed by
“Missing Values Imputed” task with imputed value 2006. Task has id 2, and its output goes into Decision Tree Classifier
(Gini) - it can be inferred from the chart.

Categorical feature “Model” was transformed by “Ordinal encoding of categorical variables” task with imputed value
2.

Get a blueprint’s documentation

You can retrieve documentation on tasks used to build a model. It will contain information about the task,
its parameters and (when available) links and references to additional sources. All documents are instances of
BlueprintTaskDocument class

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0d’

model_id = '5506fcd98bd88f1641a720a3"

model = dr.Model.get(project=project_id,
model_id=model_id)

docs = model.get_model_blueprint_documents()

print(docs[0].task)

>>> Average Blend

print(docs[0].1links[0]['url'])

>>> https://en.wikipedia.org/wiki/Ensemble_learning

Request training predictions

You can request a model’s predictions for a particular subset of its training data. See datarobot.models.MNodel.
request_training_predictions () reference for all the valid subsets.

See training predictions reference for more details.

import datarobot as dr
project_id = '5506fcd38bd88£5953219da0"’
model_id = '5506fcd98bd88f1641a720a3"’

(continues on next page)

2.2. User Guide 39

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

model = dr.Model.get(project=project_id,
model_id=model_id)
training predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.
—HOLDOUT)
training predictions = training_predictions_job.get_result_when_complete()
for row in training_predictions.iterate_rows():
print(row.row_id, row.prediction)

Advanced Tuning

You can perform advanced tuning on a model — generate a new model by taking an existing model and rerunning it
with modified tuning parameters.

The AdvancedTuningSession class exists to track the creation of an Advanced Tuning model on the client. It enables
browsing and setting advanced-tuning parameters one at a time, and using human-readable parameter names rather
than requiring opaque parameter IDs in all cases. No information is sent to the server until the run() method is called
on the AdvancedTuningSession.

See datarobot.models.Model.get_advanced_tuning_parameters () reference for a description of the types of
parameters that can be passed in.

As of v2.17, all models other than blenders, open source, and user-created models support Advanced Tuning. The use
of Advanced Tuning via API for non-Eureqa models is in beta, but is enabled by default for all users.

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0"’

model_id = '5506fcd98bd88f1641a720a3"’

model = dr.Model.get(project=project_id,
model_id=model_id)

tune = model.start_advanced_tuning_session()

Get available task names,

and available parameter names for a task name that exists on this model
tune.get_task_names()

tune.get_parameter_names('Eureqa Generalized Additive Model Classifier (3000 Generations)

="

tune.set_parameter(
task_name='Eureqa Generalized Additive Model Classifier (3000 Generations)',
parameter_name='EUREQA_building_block__sine',
value=1)

job = tune.run()

40 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

SHAP Impact

You can retrieve SHAP impact scores for features in a model. SHAP impact is computed by calculating the shap values
on a sample of training data and then taking the mean absolute value for each column. The larger value of impact
indicates a more important feature.

See datarobot.models.ShapImpact.create() reference for a description of the types of parameters that can be
passed in.

import datarobot as dr

project_id = '5ec3d6884cfadl7cd8cled62’

model_id = 'Sec3d6f44cfadl7cd8c0ed78"'

shap_impact_job = dr.ShapImpact.create(project_id=project_id, model_id=model_id)
shap_impact = shap_impact_job.get_result_when_complete()

print (shap_impact)

>>> [ShapImpact(count=36)]

print(shap_impact.shap_impacts[:1])

>>> [{'feature_name': 'number_inpatient', 'impact_normalized': 1.0, 'impact_unnormalized
—': 0.07670175497683789}]

shap_impact = dr.ShapImpact.get(project_id=project_id, model_id-=model_id)
print(shap_impact.shap_impacts[:1])

>>> [{'feature_name': 'number_inpatient', 'impact_normalized': 1.0, 'impact_unnormalized
"' 0.07670175497683789}]

Number of Iterations Trained

Early-stopping models will train a subset of max estimators/iterations that are defined in advanced tuning. This method
allows the user to retrieve the actual number of estimators that were trained by an early-stopping tree-based model (cur-
rently the only model type supported). The method returns the projectld, modelld, and a list of dictionaries containing
the number of iterations trained for each model stage. In the case of single-stage models, this dictionary will contain
only one entry.

import datarobot as dr
project_id = '5506fcd38bd88£5953219da0"’
model_id = '5506fcd98bd88f1641a720a3"
model = dr.Model.get(project=project_id,
model_id=model_id)
num_iterations = model.get_num_iterations_trained()
print(num_iterations)
>>> {"projectId": "5506fcd38bd88£5953219dad", "modelId": "5506fcd98bd88f1641a720a3",
—"data" [{"stage": "FREQ", "numIterations":250}, {"stage":"SEV", "numIterations":50}]}

2.2. User Guide 41

DataRobot Python API Documentation, Release 3.2.2

Blueprints

The set of computation paths that a dataset passes through before producing predictions from data is called a blueprint.
A blueprint can be trained on a dataset to generate a model.

To modify blueprints using python, please refer to the documentation for the Blueprint Workshop.

Quick Reference

The following code block summarizes the interactions available for blueprints.

Get the set of blueprints recommended by datarobot
import datarobot as dr

my_projects = dr.Project.list()

project = my_projects[0]

menu = project.get_blueprints()

first_blueprint = menu[0]
project.train(first_blueprint)

List Blueprints

When a file is uploaded to a project and the target is set, DataRobot recommends a set of blueprints that are appropriate
for the task at hand. You can use the get_blueprints method to get the list of blueprints recommended for a project:

project = dr.Project.get('5506£fcd38bd88£5953219da0d")
menu = project.get_blueprints()
blueprint = menu[0]

Get a blueprint

If you already have a blueprint_id from a model you can retrieve the blueprint directly.

project_id = '5506fcd38bd88£5953219dal"’

project = dr.Project.get(project_id)

models = project.get_models()

model = models[0]

blueprint = Blueprint.get(project_id, model.blueprint_id)

Get a blueprint chart

For all blueprints - either from blueprint menu or already used in model - you can retrieve its chart. You can also get
its representation in graphviz DOT format to render it into the format you need.

project_id = '5506£fcd38bd88£5953219da0’

blueprint_id = '4321fcd38bd88£595321554223"

bp_chart = BlueprintChart.get(project_id, blueprint_id)
print (bp_chart.to_graphviz())

42 Chapter 2. Table of contents

https://blueprint-workshop.datarobot.com/

DataRobot Python API Documentation, Release 3.2.2

Get a blueprint’s documentation

You can retrieve documentation on tasks used in the blueprint. It will contain information about task, its parameters and
(when available) links and references to additional sources. All documents are instances of BlueprintTaskDocument
class.

project_id = '5506fcd38bd88£5953219da0d"’
blueprint_id = '4321£fcd38bd88£595321554223"

bp = Blueprint.get(project_id, blueprint_id)

docs = bp.get_documents()

print(docs[0].task)

>>> Average Blend

print(docs[0].1links[®]['url'])

>>> https://en.wikipedia.org/wiki/Ensemble_learning

Blueprint Attributes

The Blueprint class holds the data required to use the blueprint for modeling. This includes the blueprint_id and
project_id. There are also two attributes that help distinguish blueprints: model_type and processes.

print(blueprint.id)

>>> u'8956elaeecffa®fa6db2b84640fb3848"'

print (blueprint.project_id)

>>> u5506£fcd38bd88£5953219da0d’

print(blueprint.model_type)

>>> Logistic Regression

print (blueprint.processes)

>>> [u'One-Hot Encoding',
u'Missing Values Imputed',
u'Standardize',
u'Logistic Regression']

Create a Model from a Blueprint

You can use a blueprint instance to train a model. The default dataset for the project is used. Note that Project. train
is used for non-datetime-partitioned projects. Project.train_datetime should be used for datetime partitioned
projects.

model_job_id = project.train(blueprint)

For datetime partitioned projects
model_job = project.train_datetime(blueprint.id)

Both Project. train and Project. train_datetime will put a new modeling job into the queue. However, note
that Project. train returns the id of the created ModelJob, while Project.train_datetime returns the ModelJob
object itself. You can pass a Modellob id to wait_for_async_model_creation function, which polls the async model
creation status and returns the newly created model when it’s finished.

2.2. User Guide 43

DataRobot Python API Documentation, Release 3.2.2

Specialized workflows

The following sections describe alternative workflows for a variety of specialized data types.

Datetime Partitioned Projects

If your dataset is modeling events taking place over time, datetime partitioning may be appropriate. Datetime parti-
tioning ensures that when partitioning the dataset for training and validation, rows are ordered according to the value
of the date partition feature.

Setting Up a Datetime Partitioned Project

After creating a project and before setting the target, create a Datetime PartitioningSpecification to define how the project
should be partitioned. By passing the specification into DatetimePartitioning.generate, the full partitioning can
be previewed before finalizing the partitioning. After verifying that the partitioning is correct for the project dataset,
pass the specification into Project.analyze_and_model via the partitioning_method argument. Alternatively,
as of v3.0, by using Project.set_datetime_partitioning(), the partitioning (and individual options of the par-
titioning specification) can be updated (with repeated method calls) up until calling Project.analyze_and_model.
Once modeling begins, the project can be used as normal.

The following code block shows the basic workflow for creating datetime partitioned projects.

import datarobot as dr

project = dr.Project.create('some_data.csv')
spec = dr.DatetimePartitioningSpecification('my_date_column')
can customize the spec as needed

partitioning_preview = dr.DatetimePartitioning.generate(project.id, spec)
the preview generated is based on the project's data

print(partitioning_preview.to_dataframe())

hmm ... I want more backtests

spec.number_of_backtests = 5

partitioning_preview = dr.DatetimePartitioning.generate(project.id, spec)
print(partitioning_preview.to_dataframe())

looks good

project.analyze_and_model('target_column")

As of v3.0, “Project.set_datetime_partitioning()"" and “‘Project.list_datetime_
—partition_spec()"
are available as an alternative:

view settings

project.list_datetime_partition_spec()

maybe I want to also disable holdout before starting modeling
project.set_datetime_partitioning(disable_holdout=True)

view settings

project.list_datetime_partition_spec()

all of the settings look good

don't need to pass the spec into “analyze_and_model™" because it's already been set
project.analyze_and_model ('target_column')

(continues on next page)

44 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

I can retrieve the partitioning settings after the target has been set too
partitioning = dr.DatetimePartitioning.get(project.id)

Configuring Backtests

Backtests are configurable using one of two methods:
Method 1:
¢ index (int): The index from zero of this backtest.

e gap_duration (str): A duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. This represents the gap between training and validation
scoring data for this backtest.

* validation_start_date (datetime.datetime): Represents the start date of the validation scoring data for this backtest.

e validation_duration (str): A duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. This represents the desired duration of the validation scoring
data for this backtest.

import datarobot as dr
from datetime import datetime

partitioning_spec = dr.DatetimePartitioningSpecification(
backtests=[
modify the first backtest using option 1
dr.BacktestSpecification(
index=0,
gap_duration=dr.partitioning_methods.construct_duration_string(),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_duration=dr.partitioning_methods.construct_duration_
—string(years=1),
)
1,

other partitioning settings...

Method 2 (New in version v2.20):
* validation_start_date (datetime.datetime): Represents the start date of the validation scoring data for this backtest.
* validation_end_date (datetime.datetime): Represents the end date of the validation scoring data for this backtest.

 primary_training_start_date (datetime.datetime): Represents the desired start date of the training partition for
this backtest.

» primary_training_end_date (datetime.datetime): Represents the desired end date of the training partition for this
backtest.

import datarobot as dr
from datetime import datetime

partitioning_spec = dr.DatetimePartitioningSpecification(

(continues on next page)

2.2. User Guide 45

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

backtests=[

modify the first backtest using option 2

dr.BacktestSpecification(
index=0,
primary_training_start_date=datetime(year=2005, month=1, day=1),
primary_training_end_date=datetime(year=2010, month=1, day=1),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_end_date=datetime(year=2011, month=1, day=1),

1,

other partitioning settings...

Note that Method 2 allows you to directly configure the start and end dates of each partition, including
the training partition. The gap partition is calculated as the time between primary_training_end_date
and validation_start_date. Using the same date for both primary_training_end_date and
validation_start_date will result in no gap being created.

After configuring backtests, you can set use_project_settings to True in calls to Model. train_datetime. This
will create models that are trained and validated using your custom backtest training partition start and end dates.

Modeling with a Datetime Partitioned Project

While Model objects can still be used to interact with the project, DatetimeModel objects, which are only retrievable
from datetime partitioned projects, provide more information including which date ranges and how many rows are used
in training and scoring the model as well as scores and statuses for individual backtests.

The autopilot workflow is the same as for other projects, but to manually train a model, Project.train_datetime
and Model.train_datetime should be used in the place of Project.train and Model.train. To cre-
ate frozen models, Model.request_frozen_datetime_model should be used in place of DatetimeModel.
request_frozen_datetime_model. Unlike other projects, to trigger computation of scores for all backtests use
DatetimeModel.score_backtests instead of using the scoring_type argument in the train methods.

Accuracy Over Time Plots

For datetime partitioned model you can retrieve the Accuracy over Time plot. To do so use
DatetimeModel.get_accuracy_over_time_plot. You can also retrieve the detailed metadata using
DatetimelModel.get_accuracy_over_time_plots_metadata, and the preview plot using DatetimeModel.
get_accuracy_over_time_plot_preview.

Dates, Datetimes, and Durations

When specifying a date or datetime for datetime partitioning, the client expects to receive and will return a datetime.
Timezones may be specified, and will be assumed to be UTC if left unspecified. All dates returned from DataRobot
are in UTC with a timezone specified.

Datetimes may include a time, or specify only a date; however, they may have a non-zero time component only if
the partition column included a time component in its date format. If the partition column included only dates like
“24/03/2015”, then the time component of any datetimes, if present, must be zero.

46 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

When date ranges are specified with a start and an end date, the end date is exclusive, so only dates earlier than the end
date are included, but the start date is inclusive, so dates equal to or later than the start date are included. If the start
and end date are the same, then no dates are included in the range.

Durations are specified using a subset of ISO8601. Durations will be of the form PnYnMnDTnHnMnS where each “n”
may be replaced with an integer value. Within the duration string,

* nY represents the number of years

the nM following the “P” represents the number of months
¢ nD represents the number of days

* nH represents the number of hours

the nM following the “T” represents the number of minutes
* nS represents the number of seconds

and “P” is used to indicate that the string represents a period and “T” indicates the beginning of the time component of
the string. Any section with a value of 0 may be excluded. As with datetimes, if the partition column did not include
a time component in its date format, the time component of any duration must be either unspecified or consist only of
ZeTOoS.

Example Durations:
e “P3Y6M” (three years, six months)
* “P1YOMODTOHOMOS” (one year)
* “PIYSDTI0H” (one year, 5 days, 10 hours)

datarobot.helpers.partitioning_methods.construct_duration_string is a helper method that can be used to construct
appropriate duration strings.

Time Series Projects

Time series projects, like OTV projects, use datetime partitioning, and all the workflow changes that apply to other
datetime partitioned projects also apply to them. Unlike other projects, time series projects produce different types of
models which forecast multiple future predictions instead of an individual prediction for each row.

DataRobot uses a general time series framework to configure how time series features are created and what future values
the models will output. This framework consists of a Forecast Point (defining a time a prediction is being made), a
Feature Derivation Window (a rolling window used to create features), and a Forecast Window (a rolling window of
future values to predict). These components are described in more detail below.

Time series projects will automatically transform the dataset provided in order to apply this framework. During the
transformation, DataRobot uses the Feature Derivation Window to derive time series features (such as lags and rolling
statistics), and uses the Forecast Window to provide examples of forecasting different distances in the future (such as
time shifts). After project creation, a new dataset and a new feature list are generated and used to train the models.
This process is reapplied automatically at prediction time as well in order to generate future predictions based on the
original data features.

The time_unit and time_step used to define the Feature Derivation and Forecast Windows are taken from the
datetime partition column, and can be retrieved for a given column in the input data by looking at the corresponding at-
tributes on the datarobot.models.Feature object. If windows_basis_unit is set to ROW, then Feature Derivation
and Forecast Windows will be defined using number of the rows.

2.2. User Guide 47

DataRobot Python API Documentation, Release 3.2.2

Setting Up A Time Series Project

To set up a time series project, follow the standard datetime partitioning workflow and use the six new time series
specific parameters on the datarobot.DatetimePartitioningSpecification object:

use_time_series bool, set this to True to enable time series for the project.

default_to_known_in_advance bool, set this to True to default to treating all features as known in advance, or a priori,
features. Otherwise, they will not be handled as known in advance features. Individual features can be set to
a value different than the default by using the featureSettings parameter. See the prediction documentation for
more information.

default_to_do_not_derive bool, set this to True to default to excluding all features from feature derivation. Otherwise,
they will not be excluded and will be included in the feature derivation process. Individual features can be set to
a value different than the default by using the featureSettings parameter.

feature_derivation_window_start int, specifies how many units of the windows_basis_unit from the forecast point
into the past is the start of the feature derivation window

feature_derivation_window_end int, specifies how many units of the windows_basis_unit from the forecast point
into the past is the end of the feature derivation window

forecast_window_start int, specifies how many units of the windows_basis_unit from the forecast point into the
future is the start of the forecast window

forecast_window_end int, specifies how many units of the windows_basis_unit from the forecast point into the
future is the end of the forecast window

windows_basis_unit string, set this to ROW to define feature derivation and forecast windows in terms of the rows,
rather than time units. If omitted, will default to the detected time unit (one of the datarobot.enums.
TIME_UNITS).

feature_settings list of FeatureSettings specifying per feature settings, can be left unspecified

Feature Derivation Window

The Feature Derivation window represents the rolling window that is used to derive time series features and
lags, relative to the Forecast Point. It is defined in terms of feature_derivation_window_start and
feature_derivation_window_end which are integer values representing datetime offsets in terms of the time_unit
(e.g. hours or days).

The Feature Derivation Window start and end must be less than or equal to zero, indicating they are positioned before
the forecast point. Additionally, the window must be specified as an integer multiple of the time_step which defines
the expected difference in time units between rows in the data.

The window is closed, meaning the edges are considered to be inside the window.

Forecast Window

The Forecast Window represents the rolling window of future values to predict, relative to the Forecast Point. It is
defined in terms of the forecast_window_start and forecast_window_end, which are positive integer values
indicating datetime offsets in terms of the time_unit (e.g. hours or days).

The Forecast Window start and end must be positive integers, indicating they are positioned after the forecast point. Ad-
ditionally, the window must be specified as an integer multiple of the time_step which defines the expected difference
in time units between rows in the data.

The window is closed, meaning the edges are considered to be inside the window.

48 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Multiseries Projects

Certain time series problems represent multiple separate series of data, e.g. “I have five different stores that all have
different customer bases. I want to predict how many units of a particular item will sell, and account for the different
behavior of each store”. When setting up the project, a column specifying series ids must be identified, so that each
row from the same series has the same value in the multiseries id column.

Using a multiseries id column changes which partition columns are eligible for time series, as each series is required
to be unique and regular, instead of the entire partition column being required to have those properties. In order to
use a multiseries id column for partitioning, a detection job must first be run to analyze the relationship between the
partition and multiseries id columns. If needed, it will be automatically triggered by calling datarobot.models.
Feature.get_multiseries_properties() on the desired partition column. The previously computed multiseries
properties for a particular partition column can then be accessed via that method. The computation will also be
automatically triggered when calling datarobot.DatetimePartitioning.generate() or datarobot.models.
Project.analyze_and_model () with a multiseries id column specified.

Note that currently only one multiseries id column is supported, but all interfaces accept lists of id columns to ensure
multiple id columns will be able to be supported in the future.

In order to create a multiseries project:
1. Set up a datetime partitioning specification with the desired partition column and multiseries id columns.

2. (Optionally) Use datarobot.models.Feature.get_multiseries_properties() to confirm the inferred
time step and time unit of the partition column when used with the specified multiseries id column.

3. (Optionally) Specify the multiseries id column in order to preview the full datetime partitioning settings using
datarobot.DatetimePartitioning.generate().

4. Specify the multiseries id column when sending the target and partitioning settings via datarobot.models.
Project.analyze_and_model().

project = dr.Project.create('path/to/multiseries.csv', project_name='my multiseries.,
—project')
partitioning_spec = dr.DatetimePartitioningSpecification(

"timestamp', use_time_series=True, multiseries_id_columns=['multiseries_id']

manually confirm time step and time unit are as expected

datetime_feature = dr.Feature.get(project.id, 'timestamp')

multiseries_props = datetime_feature.get_multiseries_properties(['multiseries_id'])
print(multiseries_props)

manually check out the partitioning settings like feature derivation window and.
—backtests

to make sure they make sense before moving on

full_part = dr.DatetimePartitioning.generate(project.id, partitioning_spec)

print (full_part.feature_derivation_window_start, full_part.feature_derivation_window_end)
print (full_part.to_dataframe())

As of v3.0, can use Project.set_datetime_partitioning = instead of passing the spec.
—1into “Project.analyze_and_model™ via “partitioning_method .

The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column="date
—"', multiseries_id_columns=["'series_id'])

Or the whole spec object can be passed:

(continues on next page)

2.2. User Guide 49

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

project.set_datetime_partitioning(datetime_spec=datetime_spec)

finalize the project and start the autopilot
project.analyze_and_model('target', partitioning_method=partitioning_spec)

You can also access optimized partitioning in the API where the target over time is inspected to ensure that the
default backtests cover regions of interest and adjust backtests avoid common problems with missing target val-
ues or partitions with single values (e.g. zero-inflated datasets). In this case you need to pass the target column
when generating the partitioning specification (either by calling DatetimePartitioning.generate or Project.
set_datetime_partitioning) and then pass the full partitioning specification when starting autopilot (if Project.
set_datetime_partitioning is not used).

project = dr.Project.create('path/to/multiseries.csv', project_name='my multiseries,
—project')
partitioning_spec = dr.DatetimePartitioningSpecification(

'"timestamp', use_time_series=True, multiseries_id_columns=['multiseries_id']

Pass the target column to generate optimized partitions
full_part = dr.DatetimePartitioning.generate(project.id, partitioning_spec, 'target')

Or, as of v3.0, call “‘Project.set_datetime_partitioning after specifying the project.,
— target

to generate optimized partitions.

project.target = 'target'
project.set_datetime_partitioning(datetime_partition_spec=partitioning_spec)

finalize the project and start the autopilot, passing in the full partitioning spec
(if “Project.set_datetime_partitioning™® was used there is no need to pass.

< ‘partitioning_method)

project.analyze_and_model ('target', partitioning method=full_part.to_specification())

Feature Settings

datarobot.FeatureSettings constructor receives feature_name and settings. For now settings known_in_advance
and do_not_derive are supported.

I have 10 features, 8 of them are known in advance and two are not
Also, I do not want to derive new features from previous_day_sales
not_known_in_advance_features = ['previous_day_sales', 'amount_in_stock']
do_not_derive_features = ['previous_day_sales']
feature_settings = [dr.FeatureSettings(feat_name, known_in_advance=False) for feat_name.
—.in not_known_in_advance_features]
feature_settings += [dr.FeatureSettings(feat_name, do_not_derive=True) for feat_name in.,
—.do_not_derive_features]
spec = dr.DatetimePartitioningSpecification(

...

default_to_known_in_advance=True,

feature_settings=feature_settings

50 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Modeling Data and Time Series Features

In time series projects, a new set of modeling features is created after setting the partitioning options. If a featurelist
is specified with the partitioning options, it will be used to select which features should be used to derived modeling
features; if a featurelist is not specified, the default featurelist will be used.

These features are automatically derived from those in the project’s dataset and are the features used for modeling - note
that the Project methods get_featurelists and get_modeling_featurelists will return different data in time
series projects. Modeling featurelists are the ones that can be used for modeling and will be accepted by the backend,
while regular featurelists will continue to exist but cannot be used. Modeling features are only accessible once the
target and partitioning options have been set. In projects that don’t use time series modeling, once the target has been
set, modeling and regular features and featurelists will behave the same.

Restoring Discarded Features

datarobot.models.restore_discarded_features.DiscardedFeaturesInfo can be used to get and restore
features that have been removed by the time series feature generation and reduction functionality.

project = Project(project_id)

discarded_feature_info = project.get_discarded_features()

restored_features_info = project.restore_discarded_features(discarded_features_info.
—.features)

Making Predictions

Prediction datasets are uploaded as normal. However, when uploading a prediction dataset, a new parameter
forecast_point can be specified. The forecast point of a prediction dataset identifies the point in time relative
which predictions should be generated, and if one is not specified when uploading a dataset, the server will choose the
most recent possible forecast point. The forecast window specified when setting the partitioning options for the project
determines how far into the future from the forecast point predictions should be calculated.

To simplify the predictions process, starting in version v2.20 a forecast point or prediction start and end dates can
be specified when requesting predictions, instead of being specified at dataset upload. Upon uploading a dataset,
DataRobot will calculate the range of dates available for use as a forecast point or for batch predictions. To that end,
Predictions objects now also contain the following new fields:

» forecast_point: The default point relative to which predictions will be generated
* predictions_start_date: The start date for bulk historical predictions.
e predictions_end_date: The end date for bulk historical predictions.

Similar settings are provided as part of the batch prediction API and the real-time prediction API to make predictions
using deployed time series models.

datarobot.models.BatchPredictionJob.score

When setting up a time series project, input features could be identified as known-in-advance features. These features
are not used to generate lags, and are expected to be known for the rows in the forecast window at predict time (e.g.
“how much money will have been spent on marketing”, “is this a holiday™).

Enough rows of historical data must be provided to cover the span of the effective Feature Deriva-
tion Window (which may be longer than the project’s Feature Derivation Window depending on the dif-
ferencing settings chosen). The effective Feature Derivation Window of any model can be checked via
the effective_feature_derivation_window_start and effective_feature_derivation_window_end at-
tributes of a Datetimelodel.

2.2. User Guide 51

https://docs.datarobot.com/en/docs/predictions/api/dr-predapi.html#making-predictions-with-time-series

DataRobot Python API Documentation, Release 3.2.2

When uploading datasets to a time series project, the dataset might look something like the following, where “Time”
is the datetime partition column, “Target” is the target column, and “Temp.” is an input feature. If the dataset was
uploaded with a forecast point of “2017-01-08” and the effective feature derivation window start and end for the model
are -5 and -3 and the forecast window start and end were set to 1 and 3, then rows 1 through 3 are historical data, row 6
is the forecast point, and rows 7 though 9 are forecast rows that will have predictions when predictions are computed.

Row, Time, Target, Temp.
2017-01-03, 16443, 72
2017-01-04, 3013, 72
2017-01-05, 1643, 68
2017-01-06, ,
2017-01-07, ,
2017-01-08, ,
2017-01-09, ,
2017-01-10, ,
2017-01-11, ,

O 00 NO VT WN =

On the other hand, if the project instead used “Holiday” as an a priori input feature, the uploaded dataset might look
like the following:

Row, Time, Target, Holiday

1, 2017-01-03, 16443, TRUE
2, 2017-01-04, 3013, FALSE
3, 2017-01-05, 1643, FALSE
4, 2017-01-06, , FALSE

5, 2017-01-07, , FALSE

6, 2017-01-08, , FALSE

7, 2017-01-09, , TRUE

8, 2017-01-10, , FALSE

9, 2017-01-11, , FALSE
Calendars

You can upload a calendar file containing a list of events relevant to your dataset. When provided, DataRobot
automatically derives and creates time series features based on the calendar events (e.g., time until the next event,
labeling the most recent event).

The calendar file:
¢ Should span the entire training data date range, as well as all future dates in which model will be forecasting.
* Must be in csv or xIsx format with a header row.

* Must have one date column which has values in the date-only format YYY-MM-DD (i.e., no hour, month, or
second).

* Can optionally include a second column that provides the event name or type.

 Can optionally include a series ID column which specifies which series an event is applicable to. This column
name must match the name of the column set as the series ID.

— Multiseries ID columns are used to add an ability to specify different sets of events for different series, e.g.
holidays for different regions.

— Values of the series ID may be absent for specific events. This means that the event is valid for all series in
project dataset (e.g. New Year’s Day is a holiday in all series in the example below).

52 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

— If a multiseries ID column is not provided, all listed events will be applicable to all series in the project
dataset.

» Cannot be updated in an active project. You must specify all future calendar events at project start. To update
the calendar file, you will have to train a new project.

An example of a valid calendar file:

Date, Name
2019-01-01, New Year's Day
2019-02-14, Valentine's Day
2019-04-01, April Fools
2019-05-05, Cinco de Mayo
2019-07-04, July 4th

An example of a valid multiseries calendar file:

Date, Name, Country
2019-01-01, New Year's Day,

2019-05-27, Memorial Day, USA
2019-07-04, July 4th, USA
2019-11-28, Thanksgiving, USA
2019-02-04, Constitution Day, Mexico

2019-03-18, Benito Juarez's birth, Mexico
2019-12-25, Christmas Day,

Once created, a calendar can be used with a time series project by specifying the calendar_id field in the datarobot.
DatetimePartitioningSpecification object for the project:

import datarobot as dr

create the project

project = dr.Project.create('input_data.csv')

create the calendar

calendar = dr.CalendarFile.create('calendar_file.csv')

specify the calendar_id in the partitioning specification
datetime_spec = dr.DatetimePartitioningSpecification(
use_time_series=True,
datetime_partition_column="date'
calendar_id=calendar.id

)

As of v3.0, can use “'Project.set_datetime_partitioning' instead of passing the spec.
—1into “Project.analyze_and_model™ via “partitioning_method .

The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
— calendar_id=calendar.id)

Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

start the project, specifying the partitioning method (if “‘Project.set_datetime_
—partitioning’ was used there is no need to pass ‘partitioning_method ")
project.analyze_and_model (

target="project target',

(continues on next page)

2.2. User Guide 53

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

partitioning_method=datetime_spec

As of version v2.23 it is possible to ask DataRobot to generate a calendar file for you using CalendarFile.
create_calendar_from_country_code. This method allows you to provide a country code specifying which coun-
try’s holidays to use in generating the calendar, along with a start and end date indicating the bounds of the calendar.
Allowed country codes can be retrieved using CalendarFile.get_allowed_country_codes. See the following
code block for example usage:

import datarobot as dr
from datetime import datetime

create the project
project = dr.Project.create('input_data.csv')
retrieve the allowed country codes and use the first one
country_code = dr.CalendarFile.get_allowed_country_codes()[0]['code']
calendar = dr.CalendarFile.create_calendar_from_country_code(
country_code, datetime(2018, 1, 1), datetime(2018, 7, 4)
)
specify the calendar_id in the partitioning specification
datetime_spec = dr.DatetimePartitioningSpecification(
use_time_series=True,
datetime_partition_column="'date'
calendar_id=calendar.id

As of v3.0, can use “Project.set_datetime_partitioning instead of passing the spec.
—1into “Project.analyze_and_model™ via “partitioning_method .

The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
— calendar_id=calendar.id)

Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

start the project, specifying the partitioning method (if “‘Project.set_datetime_
—partitioning’” was used there is no need to pass partitioning _method ")
project.analyze_and_model (

target="project target',

partitioning_method=datetime_spec

Datetime Trend Plots

As a version v2.25, it is possible to retrieve Datetime Trend Plots for time series models to estimate the accuracy of the
model. This includes Accuracy over Time and Forecast vs Actual for supervised projects, and Anomaly over Time for
unsupervised projects. You can retrieve respective plots using following methods:

e DatetimeModel.get_accuracy_over_time_plot
e DatetimeModel.get_forecast_vs_actual_plot

e DatetimeModel.get_anomaly_over_time_plot

54 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

By default, the plots would be automatically computed when accessed via retrieval methods. You can compute Datetime
Trend Plots separately using a common method Datetimelodel. compute_datetime_trend_plots.

In addition, you can retrieve the respective detailed metadata for each plot type:
e DatetimeModel.get_accuracy_over_time_plots_metadata
e DatetimeModel.get_forecast_vs_actual_plots_metadata
e DatetimeModel.get_anomaly_over_time_plots_metadata
And the preview plots:
e DatetimeModel.get_accuracy_over_time_plot_preview
e DatetimeModel.get_forecast_vs_actual_plot_preview

e DatetimeModel.get_anomaly_over_time_plot_preview

Prediction Intervals

For each model, prediction intervals estimate the range of values DataRobot expects actual values of the target to fall
within. They are similar to a confidence interval of a prediction, but are based on the residual errors measured during
the backtesting for the selected model.

Note that because calculation depends on the backtesting values, prediction intervals are not available for predictions on
models that have not had all backtests completed. To that end, note that creating a prediction with prediction intervals
through the API will automatically complete all backtests if they were not already completed. For start-end retrained
models, the parent model will be used for backtesting. Additionally, prediction intervals are not available when the
number of points per forecast distance is less than 10, due to insufficient data.

In a prediction request, users can specify a prediction interval’s size, which specifies the desired probability of actual
values falling within the interval range. Larger values are less precise, but more conservative. For example, speci-
fying a size of 80 will result in a lower bound of 10% and an upper bound of 90%. More generally, for a specific
prediction_intervals_size, the upper and lower bounds will be calculated as follows:

e prediction_interval_upper_bound = 50% + (prediction_intervals_size / 2)
e prediction_interval_lower_bound = 50% - (prediction_intervals_size | 2)

Prediction intervals can be calculated for a DatetimelModel wusing the DatetimeModel.
calculate_prediction_intervals method. Users can also retrieve which intervals have already been calculated
for the model using the DatetimelModel.get_calculated_prediction_intervals method.

To view prediction intervals data for a prediction, the prediction needs to have been created using the DatetimeModel .
request_predictions method and specifying include_prediction_intervals = True. The size for the pre-
diction interval can be specified with the prediction_intervals_size parameter for the same function, and will
default to 80 if left unspecified. Specifying either of these fields will result in prediction interval bounds being in-
cluded in the retrieved prediction data for that request (see the Predictions class for retrieval methods). Note that if
the specified interval size has not already been calculated, this request will automatically calculate the specified size.

Prediction intervals are also supported for time series model deployments, and should be specified in deployment set-
tings if desired. Use Deployment.get_prediction_intervals_settings to retrieve current prediction intervals
settings for a deployment, and Deployment.update_prediction_intervals_settings to update prediction in-
tervals settings for a deployment.

Prediction intervals are also supported for time series model export. See the optional prediction_intervals_size
parameter in Model . request_transferable_export for usage.

2.2. User Guide 55

DataRobot Python API Documentation, Release 3.2.2

Partial History Predictions

As of version v2.24 it is possible to ask DataRobot to allow to make predictions with incomplete historical data mul-
tiseries regression projects. To make predictions in regular project user has to provide enough data for the feature
derivation. By setting the datetime partitioning attribute allow_partial_history_time_series_predictions
to true (datarobot.DatetimePartitioningSpecification object), the project would be created that allow to
make such predictions. The number of models are significantly smaller compared to regular multiseries model, but
they are designed to make predictions on unseen series with reasonable accuracy.

External Baseline Predictions

As of version v2.26 it is possible to ask DataRobot to scale accuracy metric by external predictions. Users can upload
data into a Dataset (see Dataset documentation) and compare the external time series predictions with DataRobot
models’ accuracy performance. To use the external predictions dataset in the autopilot, the dataset must be validated first
(see Project.validate_external_time_series_baseline). Once the dataset is validated, it can be used with a
time series project by specifying external_time_series_baseline_dataset_id field in AdvancedOptions and
passes the advanced options to the project. See the following code block for example usage:

import datarobot as dr
from datarobot.helpers import AdvancedOptions
from datarobot.models import Dataset

create the project
project = dr.Project.create('input_data.csv')

prepare datetime partitioning for external baseline validation
datetime_spec = dr.DatetimePartitioningSpecification(
use_time_series=True,
datetime_partition_column='date"',
multiseries_id_columns=["'series_id'],
)
datetime_partitioning = dr.DatetimePartitioning.generate(
project_id=project.id,
spec=datetime_spec,
target="target',

create external baseline prediction dataset from local file
external_baseline_dataset = Dataset.create_from_file(file_path="external_predictions.csv

-

validate the external baseline prediction dataset
validation_info = project.validate_external_time_series_baseline(
catalog_version_id=external_baseline_dataset.version_id,

target="target',
datetime_partitioning=datetime_partitioning,

)

print(
'External baseline predictions passes validation check:',
validation_info.is_external_baseline_dataset_valid

)

(continues on next page)

56 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

As of v3.0, can use “Project.set_datetime_partitioning instead of passing the spec.
—1into “Project.analyze_and_model™ via “partitioning_method .

The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
< multiseries_id_columns=['series_id'])

Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

As of v3.0, add the validated dataset version id into advanced options
project.set_options(
external _time_series_baseline_dataset_id=external_baseline_dataset.version_id

start the project, specifying the partitioning method (if “‘Project.set_datetime_
wpartitioning’® and “Project.set_options were not used)
project.analyze_and_model(

target="target',

partitioning_method=datetime_spec

advanced_options=AdvancedOptions(external_time_series_baseline_dataset_id)

Time Series Data Prep

As of version v2.27 it is possible to prepare a dataset for time series modeling in the Al catalog using the API client.
Users can upload unprepped modeling data into a Dataset (see Dataset documentation) and the prep the data set for
time series modeling by aggregating data to a regular time step and filling gaps via a generated Spark SQL query
in the AI catalog. Once the dataset is uploaded, the time series data prep query generator can be created using
DataEngineQueryGenerator.create. As of version v3.1 convenience methods have been added to streamline the
process of applying time series data prep for predictions. See the following code block for example usage:

import datarobot as dr

from datarobot.models.data_engine_query_generator import (
QueryGeneratorDataset,
QueryGeneratorSettings,

)

from datetime import datetime

upload the dataset to the AI Catalog
dataset = dr.Dataset.create_from_file('input_data.csv')

create a time series data prep query generator

query_generator_dataset = QueryGeneratorDataset(
alias="input_data_csv',
dataset_id=dataset.id,
dataset_version_id=dataset.version_id,

)

query_generator_settings = QueryGeneratorSettings(
datetime_partition_column="date",
time_unit="DAY",
time_step=1,
default_numeric_aggregation_method="sum",

(continues on next page)

2.2. User Guide 57

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

default_categorical_aggregation_method="mostFrequent",
target="y",
multiseries_id_columns=["id"],
default_text_aggregation_method="concat",
start_from_series_min_datetime=True,
end_to_series_max_datetime=True,
)
query_generator = dr.DataEngineQueryGenerator.create(
generator_type='TimeSeries',
datasets = [query_generator_dataset],
generator_settings=query_generator_settings,

prep the training dataset
training _dataset = query_generator.create_dataset()

create a project
project = dr.Project.create_from_dataset(training_dataset.id, project_name='prepped_
—dataset')

set up datetime partitioning, target, and train model(s)

partitioning_spec = dr.DatetimePartitioningSpecification(
datetime_partition_column='date', use_time_series=True

)

project.analyze_and_model(target='y', mode='manual', partitioning method=partitioning_

—.spec)

blueprints = project.get_blueprints()

model_job = project.train_datetime(blueprints[0].id)

model = model_job.get_result_when_complete()

query generator can be retrieved from the project if necessary
query_generator = dr.DataEngineQueryGenerator.get(project.query_generator_id)

prep and upload a prediction dataset to the project
prediction_dataset = query_generator.prepare_prediction_dataset(
'prediction_data.csv', project.id

make predictions within the project
Either forecast point or predictions start/end dates must be specified
model .request_predictions(prediction_dataset.id, forecast_point=datetime(2023, 1, 1))

query generator can be retrieved from a deployed model via project if necessary
deployment = dr.Deployment.get(deployment_id)

project = dr.Project.get(deployment.model['project_id'])

query_generator = dr.DataEngineQueryGenerator.get(project.query_generator_id)

Deploy the model
prediction_servers = dr.PredictionServer.list()
deployment = dr.Deployment.create_from_learning_model(
model.id, 'prepped_deployment', default_prediction_server_id=prediction_servers[0].id

(continues on next page)

58 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Make batch predictions from batch prediction job, supports localFile or dataset for.
—intake
and all types for output

timeseries_settings = {'type': 'forecast', 'forecast_point': datetime(2023, 1, 1)}
intake_settings = {'type': 'localFile', 'file': 'prediction_data.csv'}
output_settings = {'type': 'localFile', 'path': 'predictions_out.csv'}

batch_predictions_job = dr.BatchPrediction]ob.apply_time_series_data_prep_and_score(
deployment, intake_settings, timeseries_settings, output_settings=output_settings

)

Visual Al Projects

With Visual Al, DataRobot allows you to use image data for modeling. You can create projects with one or multiple
image features and also mix them with other DataRobot-supported feature types. You can find more information about
Visual Al in the Platform documentation.

Create a Visual Al Project

DataRobot offers you different ways to prepare your dataset and to start a Visual Al project. The various ways to do
this are covered in detail in the documentation, Preparing the dataset.

For the examples given here the images are partitioned into named directories. In the following, images are partitioned
into named directories, which serve as labels for the project. For example, to predict on images of cat and dog breeds,
labels could be abyssinian, american_bulldog, etc.

/home/user/data/imagedataset
abyssinian
abyssinian®1. jpg
abyssinian®2. jpg

american_bulldog
american_bulldog01. jpg
american_bulldog02. jpg

You then compress the directory containing the named directories into a ZIP file, creating the dataset used for the
project.

from datarobot.models import Project, Dataset
dataset = Dataset.create_from_file(file_path="'/home/user/data/imagedataset.zip')
project = Project.create_from_dataset(dataset.id, project_name='My Image Project')

2.2. User Guide 59

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/index.html
https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-model.html#prepare-the-dataset

DataRobot Python API Documentation, Release 3.2.2

Target

Since this example uses named directories the target name must be class, which will contain the name of each directory
in the ZIP file.

Other Parameters

Setting modeling parameters, such as partitioning method, queue mode, etc, functions in the same way as starting a
non-image project.

Start Modeling

Once you have set modeling parameters, use the following code snippet to specify parameters and start the modeling
process.

from datarobot import AUTOPILOT_MODE
project.analyze_and_model (target='class', mode=AUTOPILOT_MODE.QUICK)

You can also pass optional parameters to project.analyze_and_model to change aspects of the modeling process.
Some of those parameters include:

» worker_count — int, sets the number of workers used for modeling.
e partitioning_method — PartitioningMethod object.
For a full reference of available parameters, see Project.analyze_and_model.

You can use the mode parameter to set the Autopilot mode. AUTOPILOT_MODE.FULL_AUTO, is the default, triggers
modeling with no further actions necessary. Other accepted modes include AUTOPILOT_MODE.MANUAL for manual
mode (choose your own models to run rather than running the full Autopilot) and AUTOPILOT_MODE.QUICK to run on
a more limited set of models and get insights more quickly (“quick run”).

Interact with a Visual Al Project

The following code snippets may be used to access Visual Al images and insights.

List Sample Images

Sample images allow you to see a subset of images, chosen by DataRobot, in the dataset. The returned SampleImage
objects have an associated target_value that will allow you to categorize the images (abyssinian, american_bulldog,
etc). Until you set the target and EDA2 has finished, the target_value will be None.

import io
import PIL.Image

from datarobot.models.visualai import SampleImage

column_name = "image"
number_of_images_to_show = 5

for sample in SampleImage.list(project.id, column_name) [:number_of_images_to_show]:

(continues on next page)

60 Chapter 2. Table of contents

DataRobot Python APl Documentation, Release 3.2.2

(continued from previous page)

Display the image in the GUI

bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)

img.show()

The results would be images such as:

List Duplicate Images

Duplicate images, images with different names but are determined by DataRobot to be the same, may exist in a dataset.
If this happens, the code returns one of the images and the number of times it occurs in the dataset.

from datarobot.models.visualai import Duplicatelmage
column_name = "image"

for duplicate in DuplicateImage.list(project.id, column_name):

(continues on next page)

2.2. User Guide 61

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

To show an image see the previous sample image example
print(f"Image id = {duplicate.image.id} has {duplicate.count} duplicates")

Activation Maps

Activation maps are overlaid on the images to show which image areas are driving model prediction decisions.

Detailed explanations are available in DataRobot Platform documentation, Model insights.

Compute Activation Maps

To begin, you must first compute activation maps. The following snippet is an example of starting the computation for
a Keras model in a Visual Al project. The compute method returns a URL that can be used to determine when the
computation completes.

from datarobot.models.visualai import ImageActivationMap
keras_model = project.get_models(search_params={'name': 'Keras'})[0]

status_url = ImageActivationMap.compute(project.id, keras_model.id)
print(status_url)

List Activation Maps

After activation maps are computed, you can download them from the DataRobot server. The following snippet is an
example of how to get the activation maps and how to plot them.

import PIL.Image
from datarobot.models.visualai import ImageActivationMap

column_name = "image"
max_activation_maps = 5
keras_model = project.get_models(search_params={'name': 'Keras'})[0]

for activation_map in ImageActivationMap.list(project.id, keras_model.id, column_name)[:
—.max_activation_maps]:

bio = io.BytesIO(activation_map.overlay_image.image_bytes)

img = PIL.Image.open(bio)

img.show()

62 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-insights.html

DataRobot Python APl Documentation, Release 3.2.2

Image Embeddings

Image embeddings allow you to get an impression on how similar two images look to a featurizer network. The em-
beddings project images from their high-dimensional feature space onto a 2D plane. The closer the images appear in
this plane, the more similar they look to the featurizer.

Detailed explanations are available in the DataRobot Platform documentation, Model insights.

Compute Image Embeddings

You must compute image embeddings before retrieving. The following snippet is an example of starting the compu-
tation for a Keras model in our Visual Al project. The compute method returns a URL that can be used to determine
when the computation is complete.

from datarobot.models.visualai import ImageEmbedding

keras_model = project.get_models(search_params={'name': 'Keras'})[0]

(continues on next page)

2.2. User Guide 63

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-insights.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

status_url = ImageEmbedding.compute(project.id, keras_model.id)
print(status_url)

List Image Embeddings

After image embeddings are computed, you can download them from the DataRobot server. The following snippet is
an example of how to get the embeddings for a model and plot them.

from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.pyplot as plt

import numpy as np

import PIL.Image

from datarobot.models.visualai import ImageEmbedding
column_name "image"

keras_model = project.get_models(search_params={'name': 'Keras'})[0]
zoom = 0.15

fig, ax = plt.subplots(figsize=(15,10))
for image_embedding in ImageEmbedding.list(project.id, keras_model.id, column_name):
image_bytes = image_embedding.image.image_bytes
X_position = image_embedding.position_x
y_position = image_embedding.position_y
image = PIL.Image.open(io.BytesIO(image_bytes))
offset_image = OffsetImage(np.array(image), zoom=zoom)
annotation_box = AnnotationBbox(offset_image, (x_position, y_position), xycoords=
—'data', frameon=False)
ax.add_artist(annotation_box)
ax.update_datalim([(x_position, y_position)])
ax.autoscale()
ax.grid(True)
fig.show()

64 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

045 \

0.40 gl

0.35 1

0.30 1

0.25 4

0.20 4

0.15 4

0.10 0.15 0.20

Image Augmentation

Image Augmentation is a processing step in the DataRobot blueprint that creates new images for training by randomly
transforming existing images, thereby increasing the size of (i.e., “augmenting”) the training data.

Detailed explanations are available in the DataRobot Platform documentation, Creating augmented models.

Create Image Augmentation List

To create image augmentation samples, you need to provide an image augmentation list. This list holds all information
required to compute image augmentation samples. The following snippet shows how to create an image augmentation
list. It is then used to compute image augmentation samples.

from datarobot.models.visualai import ImageAugmentationList

blur_param = {"name": "maximum_filter_size", "currentValue": 10}
blur = {"name": "blur", "params": [blur_param]}
flip = {"name": "horizontal_f£flip", "params": []}

image_augmentation_list = ImageAugmentationList.create(
name="my blur and flip augmentation list",
project_id=project.id,
feature_name="image",
transformation_probability=0.5,
number_of_new_images=5,

(continues on next page)

2.2. User Guide 65

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/tti-augment/ttia-introduction.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

transformations=[blur, flip],

print(image_augmentation_list)

List Image Augmentation Lists

You can retrieve all available augmentation lists for a project by project_id.

from datarobot.models.visualai import ImageAugmentationList

image_augmentation_lists = ImageAugmentationList.list(
project_id=project.id
)

print(image_augmentation_lists)

Compute and Retrieve Image Augmentation Samples

You must compute image augmentation samples before retrieving. To compute image augmentation sample, you will
need an image augmentation list. This list holds all parameters and transformation information needed to compute
samples. You can either create a new one or retrieve an existing one.

The following snippet is an example of computing and retrieving image augmentation samples. It uses the previous
snippet that creates an image augmentation list, but instead uses it to compute and retrieve image augmentation samples
using the compute_samples method.

from datarobot.models.visualai import ImageAugmentationList, ImageAugmentationSample
image_augmentation_list = ImageAugmentationList.get('<image_augmentation_list_id>")

for sample in image_augmentation_list.compute_samples():
Display the image in popup widows
bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)
img.show()

List Image Augmentation Samples

If image augmentation samples were already computed instead of recomputing them we can retrieve the last sample
that was computed for image augmentation list from DataRobot server. The following snippet is an example of how to
get the image augmentation samples.

import io
import PIL.Image
from datarobot.models.visualai import ImageAugmentationList

image_augmentation_list = ImageAugmentationList.get('<image_augmentation_list_id>")

for sample in image_augmentation_list.retrieve_samples():

(continues on next page)

66 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Display the image in popup widows

bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)

img.show()

Configure Augmentations to Use During Training

In order to automatically augment a dataset during training the DataRobot server will look for an augmentation list
associated with the project that has the key initial_list set to True. An augmentation list like this can be created with
the following code snippet. If it is created for the project before autopilot is started. it will be used to automatically
augment the images in the training dataset.

from datarobot.models.visualai import ImageAugmentationList

blur_param = {"name": "maximum_filter_size", "currentValue": 10}
blur = {"name": "blur", "params": [blur_param]}
flip = {"name": "horizontal_f£flip", "params": []}
transforms_to_apply = ImageAugmentationList.create(name="blur and scale", project_
—id=project.id,
feature_name='image', transformation_probability=0.5, number_of_new_images=5,
transformations=[blur, flip], initial_list=True)

Determine Available Transformations for Augmentations

The Augmentation List in the example above supports horizontal flip and blur transformations, but DataRobot supports
several other transformations. To retrieve the list of supported transformations use the ImageAugmentationOptions
object as the example below shows.

from datarobot.models.visualai import ImageAugmentationOptions
options = ImageAugmentationOptions.get(project.id)

Converting images to base64-encoded strings for predictions

If your training dataset contained images, images in the prediction dataset need to be converted to a base64-encoded
strings so it can be fully contained in the prediction request (for example, in a CSV file or JSON). For more detail, see:
working with binary data

License

For the examples here we used the The Oxford-IIIT Pet Dataset licensed under Creative Commons Attribution-
ShareAlike 4.0 International License

2.2. User Guide 67

https://www.robots.ox.ac.uk/~vgg/data/pets/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

DataRobot Python API Documentation, Release 3.2.2

Unsupervised Projects (Anomaly Detection)

When the data is not labelled and the problem can be interpreted either as anomaly detection or time series anomaly
detection, projects in unsupervised mode become useful.

Creating Unsupervised Projects

In order to create an unsupervised project set unsupervised_mode to True when setting the target.

>>> import datarobot as dr
>>> project = Project.create('dataset.csv', project_name='unsupervised')
>>> project.analyze_and_model (unsupervised_mode=True)

Creating Time Series Unsupervised Projects

To create a time series unsupervised project pass unsupervised_mode=True to datetime partitioning creation and to
project aim. The forecast window will be automatically set to nowcasting, i.e. forecast distance zero (FW = 0, 0).

>>> import datarobot as dr
>>> project = Project.create('dataset.csv', project_name='unsupervised')
>>> spec = DatetimePartitioningSpecification('date’,
use_time_series=True, unsupervised_mode=True,
feature_derivation_window_start=-4, feature_derivation_window_end=0)

this step is optional - preview the default partitioning which will be applied
>>> partitioning _preview = DatetimePartitioning.generate(project.id, spec)
>>> full_spec = partitioning_preview.to_specification()

As of v3.0, can use " "Project.set_datetime_partitioning = and " Project.list_datetime_
—.partitioning_spec” " instead

>>> project.set_datetime_partitioning(datetime_partition_spec=spec)

>>> project.list_datetime_partitioning_spec()

If ~"Project.set_datetime_partitioning ~ was used there is no need to pass.
— “partitioning_method " in " "Project.analyze_and_model "
>>> project.analyze_and_model (unsupervised_mode=True, partitioning_method=full_spec)

Unsupervised Project Metrics

In unsupervised projects, metrics are not used for the model optimization. Instead, they are used for the purpose of
model ranking. There are two available unsupervised metrics — Synthetic AUC and synthetic LogLoss — both of which
are calculated on artificially-labelled validation samples.

68 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Estimating Accuracy of Unsupervised Anomaly Detection Datetime Partitioned Models

For datetime partitioned unsupervised model you can retrieve the Anomaly over Time plot. To do so
use DatetimeModel.get_anomaly_over_time_plot. You can also retrieve the detailed metadata using
DatetimelModel.get_anomaly_over_time_plots_metadata, and the preview plot using DatetimeModel.
get_anomaly_over_time_plot_preview

Explaining Unsupervised Time Series Anomaly Detection Models Predictions

Within a timeseries unsupervised project for models supporting calculation of Shapley values, Anomaly Assessment
insight can be computed to explain anomalies.

Example 1: computation, retrieval and deletion of the anomaly assessment insight.

>>> import datarobot as dr

Initialize Anomaly Assessment for the backtest 0, training subset and series "seriesl"
>>> model = dr.DatetimelModel.get(project_id, model_id)

>>> anomaly_assessment_record = model.initialize_anomaly_assessment(®, "training",
—"seriesl™)

Get available Anomaly Assessment for the project and model

>>> all_records = model.get_anomaly_assessment_records()

Get most recent anomaly assessment explanations

>>> all_records[0].get_latest_explanations()

Get anomaly assessment explanations in the range

>>> all_records[0].get_explanations(start_date="2020-01-01", points_count=500)

Get anomaly assessment predictions preview

>>> all_records[0].get_predictions_preview()

Delete record

>>> all_records[0].delete()

Example 2: Find explanations for the anomalous regions (regions with maximum anomaly score >=0.6) for the multi-
series project. Leave only explanations for the rows with anomaly score >= 0.5.

>>> def collect_explanations(model, backtest, source, series_ids):
for series in series_ids:
try:
model.initialize_anomaly_assessment(backtest, source, series)
except ClientError:
when insight was already computed
pass
. records_for_series = model.get_anomaly_assessment_records(source=source,.,
—backtest=backtest, with_data_only=True, limit=0)
. result = {}
for record in records_for_series:
preview = record.get_predictions_preview()
anomalous_regions = preview.find_anomalous_regions(max_prediction_threshold=0.6)
if anomalous_regions:
e result[record.series_id] = record.get_explanations_data_in_regions(anomalous_
—regions, prediction_threshold=0.5)
. return result
>>> import datarobot as dr
>>> model = dr.DatetimelModel.get(project_id, model_id)
>>> collect_explanations(model, 0, "validation", series_ids)

2.2. User Guide 69

DataRobot Python API Documentation, Release 3.2.2

Assessing Unsupervised Anomaly Detection Models on External Test Set

In unsupervised projects, if there is some labelled data, it may be used to assess anomaly detection models by checking
computed classification metrics such as AUC and LoglLoss, etc. and insights such as ROC and Lift. Such data is
uploaded as a prediction dataset with a specified actual value column name, and, if it is a time series project, a prediction
date range. The actual value column can contain only zeros and ones or True/False, and it should not have been seen
during training time.

Requesting External Scores and Insights (Time Series)

There are two ways to specify an actual value column and compute scores and insights:

1. Upload a prediction dataset, specifying predictions_start_date, predictions_end_date, and
actual_value_column, and request predictions on that dataset using a specific model.

>>> import datarobot as dr

Upload dataset

>>> project = dr.Project(project_id)

>>> dataset = project.upload_dataset(
'./data_to_predict.csv',
predictions_start_date=datetime (2000, 1, 1),
predictions_end_date=datetime(2015, 1, 1),
actual_value_column="actuals'
)

run prediction job which also will calculate requested scores and insights.

>>> predict_job = model.request_predictions(dataset.id)

prediction output will have column with actuals

>>> result = pred_job.get_result_when_complete()

2. Upload a prediction dataset without specifying any options, and request predictions for a specific model with
predictions_start_date, predictions_end_date, and actual_value_column specified. Note, these settings
cannot be changed for the dataset after making predictions.

>>> import datarobot as dr

Upload dataset

>>> project = dr.Project(project_id)

>>> dataset = project.upload_dataset('./data_to_predict.csv')
Check which columns are candidates for actual value columns
>>> dataset.detected_actual_value_columns

[{'missing_count': 25, 'name': 'label_column'}]

run prediction job which also will calculate requested scores and insights.
>>> predict_job = model.request_predictions(
dataset.id,
predictions_start_date=datetime (2000, 1, 1),
predictions_end_date=datetime(2015, 1, 1),
actual_value_column="label_column'
)

>>> result = pred_job.get_result_when_complete()

70 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Requesting External Scores and Insights for AutoML models

To compute scores and insights on an external dataset for unsupervised AutoML models (Non Time series)

Upload a prediction dataset that contains label column(s), request compute external test on one of
PredictionDataset.detected_actual_value_columns

import datarobot as dr

Upload dataset

project = dr.Project(project_id)

dataset = project.upload_dataset('./test_set.csv')
dataset.detected_actual_value_columns

>>>["'label_column_1', 'label_column_2']

request external test to compute metric scores and insights on dataset
external_test_job = model.request_external_test(dataset.id, actual_value_column="'1label_
—column_1")

once job is complete, scores and insights are ready for retrieving
external_test_job.wait_for_completion()

Retrieving External Scores and Insights

Upon completion of prediction, external scores and insights can be retrieved to assess model performance. For unsu-
pervised projects Lift Chart and ROC Curve are computed. If the dataset is too small insights will not be computed. If
the actual value column contained only one class, the ROC Curve will not be computed. Information about the dataset
can be retrieved using PredictionDataset.get.

>>> import datarobot as dr

Check which columns are candidates for actual value columns

>>> scores_list = ExternalScores.list(project_id)

>>> scores = ExternalScores.get(project_id, dataset_id=dataset_id, model_id=model_id)
>>> 1ift_list = ExternalliftChart.list(project_id, model_id)

>>> roc = ExternalRocCurve.get(project_id, model, dataset_id)

check dataset warnings, need to be called after predictions are computed.
>>> dataset = PredictionDataset.get(project_id, dataset_id)

>>> dataset.data_quality_warnings

{'single_class_actual_value_column': True,
"insufficient_rows_for_evaluating_models': False,
'has_kia_missing_values_in_forecast_window': False}

Unsupervised Projects (Clustering)

Use clustering when data is not labelled and the problem can be interpreted as grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar to each other than to those in other groups (clusters).
It is a common task in data exploration when finding groups and similarities is needed.

2.2. User Guide 71

DataRobot Python API Documentation, Release 3.2.2

Creating Unsupervised Projects

To create an unsupervised project, set unsupervised_mode to True when setting the target. To specify cluster-
ing, set unsupervised_type to CLUSTERING. When setting the modeling mode is required, clustering supports
either” AUTOPILOT_MODE.COMPREHENSIVE" for DataRobot-run Autopilot or AUTOPILOT_MODE.MANUAL for
user control of which models/parameters to use.

Example:

from datarobot import Project
from datarobot.enums import UnsupervisedTypeEnum
from datarobot.enums import AUTOPILOT_MODE

project = Project.create('dataset.csv'", project_name="unsupervised clustering")
project.analyze_and_model(
unsupervised_mode=True,
mode=AUTOPILOT_MODE . COMPREHENSIVE,
unsupervised_type=UnsupervisedTypeEnum. CLUSTERING,

You can optionally specify list of explicit cluster numbers. To do this, pass a list of integer values to optional
autopilot_cluster_list parameter using the analyze_and_model () method.

project.analyze_and_model (
unsupervised_mode=True,
mode=AUTOPILOT_MODE . COMPREHENSIVE,
unsupervised_type=UnsupervisedTypeEnum. CLUSTERING,
autopilot_cluster_list=[7, 9, 11, 15, 19],

You can also do both in one step using the Project.start() method. This method by default will use
AUTOPILOT_MODE.COMPREHENSIVE mode.

from datarobot import Project
from datarobot.enums import UnsupervisedTypeEnum

project = Project.start(
"dataset.csv",
unsupervised_mode=True,
project_name="unsupervised clustering project",
unsupervised_type=UnsupervisedTypeEnum. CLUSTERING,

Unsupervised Clustering Project Metric

Unsupervised clustering projects use the Silhouette Score metric for model ranking (instead of using it for model
optimization). It measures the average similarity of objects within a cluster and their distance to the other objects in
the other clusters.

72 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieving information about Clusters

In a trained model, you can retrieve information about clusters in along with standard model information. To do this,
when training completes, retrieve a model and view basic clustering information:

* n_clusters : number of clusters for model
* is_n_clusters_dynamically_determined : how clustering model picks number of clusters

Here is a code snippet to retrieve information about the number of clusters for model:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
print(" clusters found".format(model.n_clusters))

You can retrieve more details about clusters and their data using cluster insights.

Working with Clusters Insights

You can compute insights to gain deep insights into clusters and their characteristics. This process will perform calcula-
tions and return detailed information about each feature and its importance, as well as a detailed per-cluster breakdown.

To compute and retrieve cluster insights, use the ClusteringModel and its compute_insights method. The method
starts the cluster insights compute job, waits for its completion for the number of seconds specified in the optional
parameter max_wait (default: 600), and returns results when insights are ready.

If clusters are already computed, access them using the insights property of the ClusteringModel method.

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
insights = model.compute_insights()

This call, with the specified wait_time, will run and wait for specified time:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
insights = model.compute_insights(max_wait=60)

If computation fails to finish before max_wait expires, the method will raise an AsyncTimeoutError. You can retrieve
cluster insights after jobs computation finishes.

To retrieve cluster insights already computed:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
for insight in model.insights:

print(insight)

2.2. User Guide 73

DataRobot Python API Documentation, Release 3.2.2

Working with Clusters

By default, DataRobot names clusters “Cluster 17, “Cluster 27, ... , “Cluster N” . You can retrieve these names and
alter them according to preference. When retrieving clusters before computing insights, clusters will contain only
names. After insight computation completes, each cluster will also hold information about the percentage of data that
is represented by the Cluster.

For example:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)

helper function
def print_summary(name, percent):
if not percent:
percent = "?7"
print("'{}' holds f data".format(name, percent))

for cluster in model.clusters:
print_summary(cluster.name, cluster.percent)

model . compute_insights()

for cluster in model.clusters:
print_summary(cluster.name, cluster.percent)

For a model with three clusters, the code snippet will output:

'Cluster 1' holds ? % of data

'Cluster 2' holds ? % of data

'Cluster 3' holds ? % of data

-- Cluster insights computation finished --
'Cluster 1' holds 27.1704180064 % of data
'Cluster 2' holds 36.9131832797 % of data
'Cluster 3' holds 35.9163987138 % of data

Use the following methods of ClusteringModel class to alter cluster names:
* update_cluster_names - changes multiple cluster names using mapping in dictionary
* update_cluster_name - changes one cluster name

After update, each method will return a list of clusters with changed names.

For example:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)

update multiple

cluster_name_mappings = [
("Cluster 1", "AAA"),
("Cluster 2", "BBB"),
("Cluster 3", "CCC")

1

clusters = model.update_cluster_names(cluster_name_mappings)

(continues on next page)

74 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

update single
clusters = model.update_cluster_name("CCC", "DDD")

Clustering Classes Reference

ClusteringModel

class datarobot.models.model.ClusteringModel (id=None, processes=None, featurelist_name=None,

featurelist_id=None, project_id=None,
sample_pct=None, training_row_count=None,
training_duration=None, training_start_date=None,
training_end_date=None, model_type=None,
model_category=None, is_frozen=None,
is_n_clusters_dynamically_determined=None,
blueprint_id=None, metrics=None, project=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
n_clusters=None, has_empty_clusters=None,

supports_monotonic_constraints=None, is_starred=None,

prediction_threshold=None,
prediction_threshold_read_only=None,
model_number=None, parent_model_id=None,
use_project_settings=None,
supports_composable_ml=None)

ClusteringModel extends Model class. It provides provides properties and methods specific to clustering projects.

compute_insights (max_wait=600)

Compute and retrieve cluster insights for model. This method awaits completion of job computing clus-
ter insights and returns results after it is finished. If computation takes longer than specified max_wait

exception will be raised.
Parameters
project_id: str Project to start creation in.
model_id: str Project’s model to start creation in.
max_wait: int Maximum number of seconds to wait before giving up
Returns
List of ClusterInsight
Raises

ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the cluster insights computation has failed or was can-
celled.

AsyncTimeoutError If the cluster insights computation did not resolve in time

Return type List[ClusterInsight]

2.2,

User Guide

75

DataRobot Python API Documentation, Release 3.2.2

property insights: List[datarobot.models.cluster_insight.ClusterInsight]
Return actual list of cluster insights if already computed.

Returns

List of ClusterInsight
Return type List[ClusterInsight]
property clusters: List[datarobot.models.cluster.Cluster]
Return actual list of Clusters.

Returns

List of Cluster
Return type List[Cluster]
update_cluster_names (cluster_name_mappings)
Change many cluster names at once based on list of name mappings.

Parameters

cluster_name_mappings: List of tuples Cluster names mapping consisting of current clus-
ter name and old cluster name. Example:

cluster_name_mappings = [

("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]
Returns
List of Cluster
Raises

datarobot.errors.ClientError Server rejected update of cluster names. Possible reasons
include: incorrect format of mapping, mapping introduces duplicates.

Return type List[Cluster]
update_cluster_name (current_name, new_name)
Change cluster name from current_name to new_name.
Parameters
current_name: str Current cluster name.
new_name: str New cluster name.
Returns
List of Cluster
Raises

datarobot.errors.ClientError Server rejected update of cluster names.

Return type List[Cluster]

76 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Cluster

class datarobot.models.model.Cluster (**kwargs)
Representation of a single cluster.

Attributes
name: str Current cluster name

percent: float Percent of data contained in the cluster. This value is reported after cluster in-
sights are computed for the model.

classmethod list(project_id, model_id)
Retrieve a list of clusters in the model.

Parameters
project_id: str ID of the project that the model is part of.
model_id: str ID of the model.

Returns
List of clusters

Return type List[Cluster]

classmethod update_multiple_names (project_id, model_id, cluster_name_mappings)
Update many clusters at once based on list of name mappings.

Parameters
project_id: str ID of the project that the model is part of.
model_id: str ID of the model.

cluster_name_mappings: List of tuples Cluster name mappings, consisting of current and
previous names for each cluster. Example:

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns
List of clusters

Raises
datarobot.errors.ClientError Server rejected update of cluster names.
ValueError Invalid cluster name mapping provided.

Return type List[Cluster]

classmethod update_name (project_id, model_id, current_name, new_name)
Change cluster name from current_name to new_name
Parameters

project_id: str ID of the project that the model is part of.
model_id: str ID of the model.

2.2. User Guide 77

DataRobot Python API Documentation, Release 3.2.2

current_name: str Current cluster name
new_name: str New cluster name
Returns

List of Cluster

Return type List[Cluster]

Clusterinsight

class datarobot.models.model.ClusterInsight (**kwargs)
Holds data on all insights related to feature as well as breakdown per cluster.

Parameters
feature_name: str Name of a feature from the dataset.
feature_type: str Type of feature.

insights [List of classes (ClusterInsight)] List provides information regarding the importance
of a specific feature in relation to each cluster. Results help understand how the model is
grouping data and what each cluster represents.

feature_impact: float Impact of a feature ranging from O to 1.

classmethod compute (project_id, model_id, max_wait=600)
Starts creation of cluster insights for the model and if successful, returns computed ClusterInsights. This
method allows calculation to continue for a specified time and if not complete, cancels the request.

Parameters
project_id: str ID of the project to begin creation of cluster insights for.
model_id: str ID of the project model to begin creation of cluster insights for.
max_wait: int Maximum number of seconds to wait canceling the request.
Returns
List[ClusterInsight]
Raises

ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError Indicates whether any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError Indicates whether the cluster insights computation failed
or was cancelled.

AsyncTimeoutError Indicates whether the cluster insights computation did not resolve
within the specified time limit (max_wait).

Return type List[ClusterInsight]

78 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Segmented Modeling Projects

Many time series multiseries projects introduce complex forecasting use cases that require using different models for
subsets of series (i.e., sales of groceries and clothing can be very different). Within the segmented modeling framework,
DataRobot runs multiple time series projects (one per segment / group of series), selects the best models for each
segment, and then combines those models to make predictions.

Segment

A segment is a group of series in a multiseries project. For example, given store and country columns in dataset,
you can use the former as the series identifier and the latter as the segment identifier. For the best results, group series
with similar patterns into segments (instead of random selection).

Segmentation Task

A segmentation task is an entity that defines how input dataset is partitioned. Currently only user-defined segmentation
is supported. That is, the dataset must have a separate column that is used to identify segment (and the user must select
it). All records within a series must have the same segment identifier.

Combined Model

A combined model in a segmented modeling project can be thought of as a meta-model made of references to the best
model within each segment. While being quite different from a standard DataRobot model in its creation, its use is
very much the same after the model is complete (for example, deploying or making predictions).

The following examples illustrate how to set up, run, and manage a segmented modeling project using the Python public
API client. For details please refer to Segmented Modeling API Reference.

Starting a Segmentation Project with a User Defined Segment ID

Time series modeling must be enabled for your account to run segmented modeling projects.

Use the standard method to create a DataRobot project:

from datarobot import DatetimePartitioningSpecification
from datarobot import enums

from datarobot import Project

from datarobot import SegmentationTask

project_name = "Segmentation Demo with Segmentation ID"
project_dataset = "multiseries_segmentation.csv"
project = Project.create(project_dataset, project_name=project_name)

datetime_partition_column = "timestamp"
multiseries_id_column = "series_id"
user_defined_segment_id_column = "segment_id"
target = "target"

Create a simple datetime specification for a time series project:

2.2. User Guide 79

DataRobot Python API Documentation, Release 3.2.2

spec = DatetimePartitioningSpecification(
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],

Create a segmentation task for the project:

segmentation_task_results = SegmentationTask.create(
project_id=project.id,
target=target,
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],
user_defined_segment_id_columns=[user_defined_segment_id_column],
)

segmentation_task = segmentation_task_results["completed]obs"][0]

Start a segmented project by passing the segmentation_task_id argument:

project.analyze_and_model (
target=target,
partitioning_method=spec,
mode=enums . AUTOPILOT_MODE.QUICK,
worker_count=-1,
segmentation_task_id=segmentation_task.id,

Working with Combined Models

Retrieve Combined Models:

from datarobot import Project, CombinedModel
project_id = "60ff165dde5f3ceacda®f2d6"

Get an existing segmentation project
project = Project.get(segmented_project_id)

Retrieve list of all combined models in the project
combined_models = project.get_combined_models()

Or just an active (current) combined model
current_combined_model = project.get_active_combined_model()

Get information about segments in the Combined Model:

segments_info = current_combined_model.get_segments_info()

Alternatively this information can be retrieved as a Pandas DataFrame
segments_df = current_combined_model.get_segments_as_dataframe()

(continues on next page)

80 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Or even in CSV format
current_combined_model.get_segments_as_csv(''combined_model_segments.csv")

Ensure Autopilot has completed for all segments:

segments_info = current_combined_model.get_segments_info()
assert all(segment.autopilot_done for segment in segments_info)

Optionally, view a list of all models associated with individual segments:

segments_and_child_models = project.get_segments_models(current_combined_model.id)

Set a new champion for a segment in the Combined Model, specifying the project_id of the segmented project and the
model_id from that project:

segment_project_id = "60ffl165dde5f3ceacdaabcde”
new_champion_id = "60ff165dde5f3ceacdaal2f7"

CombinedModel . set_segment_champion(project_id=segment_project_id, model_id=new_champion_
—id)

If active Combined Model has already been deployed - changing champions is not allowed. In this case, create a copy
of Combined Model, make it active, and set champion for it (deployed model remains unchanged):

new_combined_model = CombinedModel.set_segment_champion(project_id=segment_project_id,..
—.model_id=new_champion_id, clone=True)

Run predictions on the Combined Model:

prediction_dataset = "multiseries_predictions.csv"

Upload dataset
dataset = project.upload_dataset(
source=prediction_dataset,

)

Request predictions

predictions_job = current_combined_model.request_predictions(
dataset_id=dataset.id,

)

predictions_job.wait_for_completion()

predictions = predictions.get_result()

Composable ML

Composable ML consists of two major components: the DataRobot Blueprint Workshop and custom tasks, detailed
below.

Custom tasks provide users the ability to train models with arbitrary code in an environment defined by the user.

For details on using environments, see: Manage Execution Environments.

2.2. User Guide 81

https://blueprint-workshop.datarobot.com/

DataRobot Python API Documentation, Release 3.2.2

Manage Custom Tasks

Before you can upload code for a custom task, you need to create the entity that holds all the metadata.

import datarobot as dr
from datarobot.enums import CUSTOM_TASK_TARGET_TYPE

transform = dr.CustomTask.create(
name="a convenient display name", # required
target_type=CUSTOM_TASK_TARGET_TYPE.TRANSFORM, # required
language="python",
description="a longer description of the task"

)

binary = dr.CustomTask.create(
name="this or that",
target_type=CUSTOM_TASK_TARGET_TYPE.BINARY,

A task, by itself is an empty metadata container. Before using your tasks, you need create a CustomTaskVersion asso-
ciated with it. A task that is ready for use will have a latest_version field populated with this task.

binary.latest_version
>>> None

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",
)
custom_task_folder = "datarobot-user-tasks/task_templates/python3_pytorch"
task_version = dr.CustomTaskVersion.create_clean(
custom_task_id=binary.id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

binary.refresh() # In order to see the change, you need to GET it from DataRobot
binary.latest_version
>>> CustomTaskVersion('v1.0")

If you create a new version, that will be returned as the latest_version. You can download the latest version as a zip file.

binary.latest_version
>>> CustomTaskVersion('v1.0")

custom_task_folder = "/home/my-user-name/tasks/my-updated-task/"

task_version = dr.CustomTaskVersion.create_clean(
custom_task_id=binary.id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

binary.refresh()

(continues on next page)

82 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

binary.latest_version
>>> CustomTaskVersion('v2.0"')

binary.download_latest_version("/home/my-user-name/downloads/my-task-files.zip")

You can get, list, copy, exactly as you would expect. copy makes a complete copy of the task: new copies of the
metadata, new copies of the versions, new copies of uploaded files for the new versions.

all_tasks = CustomTask.list()
assert {el.id for el in all_tasks} == {binary.id, transform.id}

new_binary = CustomTask.copy(binary.id)
assert new_binary.latest_version.id != binary.latest_version.id

original_binary = CustomTask.get(binary.id)

assert len(CustomTask.list()) ==

You can update the metadata of a task. When you do this, the object is also updated to the latest data.

assert binary.description == new_binary.description
binary.update(description="totally new description')

assert binary.description != new_binary.description
assert original_binary.description != binary.description # hasn't refreshed from the.
—server yet

original_binary.refresh()
assert original_binary.description == binary.description

And finally, you can delete only if the task is not in use by any of the following:
* Trained models
* Deployments
* Blueprints in the Al catalog

Once you have deleted the objects that use the task, you will be able to delete the task itself.

Manage Custom Task Versions

Code for Custom Tasks can be uploaded by creating a Custom Task Version. When creating a Custom Task Version,
the version must be associated with a base execution environment. If the base environment supports additional task
dependencies (R or Python environments) and the Custom Task Version contains a valid requirements.txt file, the task
version will run in an environment based on the base environment with the additional dependencies installed.

2.2. User Guide 83

DataRobot Python API Documentation, Release 3.2.2

Create Custom Task Version

Upload actual custom task content by creating a clean Custom Task Version:

import os

custom_task_id = binary.id
custom_task_folder = "datarobot-user-tasks/task_templates/python3_pytorch"

add files from the folder to the custom task

task_version = dr.CustomTaskVersion.create_clean(
custom_task_id=custom_task_id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

To create a new Custom Task Version from a previous one, with just some files added or removed, do the following:

import os
import datarobot as dr

new_files_folder = "datarobot-user-tasks/task_templates/my_files_to_add_to_pytorch_task"

file_to_delete = task_version.items[0].id

task_version_2 = dr.CustomTaskVersion.create_from_previous(
custom_task_id=custom_task_id,

base_environment_id=execution_environment.id,
folder_path=new_files_folder,

Please refer to CustomTaskFileItem for description of custom task file properties.

List Custom Task Versions

Use the following command to list Custom Task Versions available to the user:

import datarobot as dr
dr.CustomTaskVersion.list(custom_task_id)

>>> [CustomTaskVersion('v2.0"'), CustomTaskVersion('v1.0')]

84 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieve Custom Task Version

To retrieve a specific Custom Task Version, run:

import datarobot as dr

dr.CustomTaskVersion.get(custom_task_id, custom_task_version_id='5ebe96b84024035cc6a6560b
‘—>')

>>> CustomTaskVersion('v2.0"')

Update Custom Task Version

To update Custom Task Version description execute the following:

import datarobot as dr

custom_task_version = dr.CustomTaskVersion.get(
custom_task_id,
custom_task_version_id="'5ebe96b84024035cc6a6560b",

)

custom_task_version.update(description="new description')

custom_task_version.description
>>> 'new description'

Download Custom Task Version

Download content of the Custom Task Version as a ZIP archive:

import datarobot as dr
path_to_download = '/home/user/Documents/myTask.zip'
custom_task_version = dr.CustomTaskVersion.get(

custom_task_id,
custom_task_version_id="'5ebe96b84024035cc6a6560b",

custom_task_version.download(path_to_download)

2.2. User Guide 85

DataRobot Python API Documentation, Release 3.2.2

Preparing a Custom Task Version for Use

If your custom task version has dependencies, a dependency build must be completed before the task can be used. The
dependency build installs your task’s dependencies into the base environment associated with the task version.

see: Preparing a Custom Model Version for Use

Monotonic Constraints

Training with monotonic constraints allows users to force models to learn monotonic relationships with respect to some
features and the target. This helps users create accurate models that comply with regulations (e.g. insurance, banking).
Currently, only certain blueprints (e.g. xgboost) support this feature, and it is only supported for regression and binary
classification projects. Typically working with monotonic constraints follows the following two workflows:

Workflow one - Running a project with default monotonic constraints
* set the target and specify default constraint lists for the project

* when running autopilot or manually training models without overriding constraint settings, all blueprints that
support monotonic constraints will use the specified default constraint featurelists

Workflow two - Running a model with specific monotonic constraints
* create featurelists for monotonic constraints
e train a blueprint that supports monotonic constraints while specifying monotonic constraint featurelists

* the specified constraints will be used, regardless of the defaults on the blueprint

Creating featurelists

When specifying monotonic constraints, users must pass a reference to a featurelist containing only the features to
be constrained, one for features that should monotonically increase with the target and another for those that should
monotonically decrease with the target.

import datarobot as dr
project = dr.Project.get(project_id)

features_mono_up = ['feature_0', 'feature_1'] # features that have monotonically.,
—»increasing relationship with target
features_mono_down = ['feature_2', 'feature_3'] # features that have monotonically.,

—decreasing relationship with target
flist_mono_up = project.create_featurelist(name="mono_up',
features=features_mono_up)
flist_mono_down = project.create_featurelist(name='"mono_down',
features=features_mono_down)

86 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Specify default monotonic constraints for a project

Users can specify default monotonic constraints for the project, to ensure that autopilot models use the desired settings,
and optionally to ensure that only blueprints supporting monotonic constraints appear in the project. Regardless of
the defaults specified via advanced options selection, the user can override them when manually training a particular
model.

import datarobot as dr

from datarobot.enums import AUTOPILOT_MODE

project = dr.Project.get(project_id)

As of v3.0, “Project.set_options may be used as an alternative to passing ‘advanced_

—options™ into “Project.analyze_and_model"".

project.set_options(
monotonic_increasing_featurelist_id=flist_mono_up.id,
monotonic_decreasing_featurelist_id=flist_mono_down.id,
only_include_monotonic_blueprints=True

)

project.analyze_and_model (target="'target', mode=AUTOPILOT_MODE.FULL_AUTO)

If Project.set_options is not used, alternatively, an advanced options instance may be passed directly to
project.analyze_and_model:

project.analyze_and_model (

target="target',

mode=AUTOPILOT_MODE.FULL_AUTO,

advanced_options=AdvancedOptions(monotonic_increasing_featurelist_id=flist_mono_up.
—»id, monotonic_decreasing_featurelist_id=flist_mono_down.id, only_include_monotonic_
—blueprints=True)

)

Retrieve models and blueprints using monotonic constraints

When retrieving models, users can inspect to see which supports monotonic constraints, and which actually enforces
them. Some models will not support monotonic constraints at all, and some may support constraints but not have any
constrained features specified.

import datarobot as dr
project = dr.Project.get(project_id)
models = project.get_models()
retrieve models that support monotonic constraints
models_support_mono = [model for model in models if model.supports_monotonic_constraints]
retrieve models that support and enforce monotonic constraints
models_enforce_mono = [model for model in models

if (model.monotonic_increasing_featurelist_id or

model .monotonic_decreasing_featurelist_id)]

When retrieving blueprints, users can check if they support monotonic constraints and see what default constraint lists
are associated with them. The monotonic featurelist ids associated with a blueprint will be used every time it is trained,
unless the user specifically overrides them at model submission time.

import datarobot as dr
project = dr.Project.get(project_id)

(continues on next page)

2.2. User Guide 87

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

blueprints = project.get_blueprints()
retrieve blueprints that support monotonic constraints
blueprints_support_mono = [blueprint for blueprint in blueprints if blueprint.supports_
—monotonic_constraints]
retrieve blueprints that support and enforce monotonic constraints
blueprints_enforce_mono = [blueprint for blueprint in blueprints

if (blueprint.monotonic_increasing_featurelist_id or

blueprint.monotonic_decreasing_featurelist_id)]

Train a model with specific monotonic constraints

Even after specifying default settings for the project, users can override them to train a new model with different
constraints, if desired.

import datarobot as dr

features_mono_up = ['feature_2', 'feature_3'] # features that have monotonically.,,
—»increasing relationship with target
features_mono_down = ['feature_0', 'feature_1'] # features that have monotonically.,

—decreasing relationship with target
project = dr.Project.get(project_id)
flist_mono_up = project.create_featurelist(name="mono_up',
features=features_mono_up)
flist_mono_down = project.create_featurelist(name='"mono_down',
features=features_mono_down)
model_job_id = project.train(
blueprint,
sample_pct=55,
featurelist_id=featurelist.id,
monotonic_increasing_featurelist_id=flist_mono_up.id,
monotonic_decreasing_featurelist_id=flist_mono_down.id

Working with binary data
Preparing data for training

Working with binary files using the DataRobot API requires prior dataset preparation in one of the supported formats.
See “Prepare the dataset” for more detail. When the dataset is ready, you can start a project following one of the methods
described in working with Datasets and Projects.

88 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-model.html#prepare-the-dataset

DataRobot Python API Documentation, Release 3.2.2

Preparing data for predictions

For project creation and a lot of the prediction options, DataRobot allows you to upload ZIP archives with binary files
(e.g. images files). Whenever possible it is recommended to use this option. However, in a few cases the API routes
only allow you to upload your dataset in the JSON or CSV format. In these cases, you can add the binary files as base64
strings to your dataset.

Processing images
Installation

To enable support for processing images, install the datarobot library with the images option:

pip install datarobot[images]

This will install all needed dependencies for image processing.

Processing images

When working with image files, helper functions may first transform your images before encoding their binary data as
base64 strings.

Specifically, helper functions will perform these steps:
* Retrieve binary data from the file in the specified location (local path or URL).
* Resize images to the image size used by DataRobot and save them in a different format
* Convert binary data to base64-encoded strings.

Working with images locally and located on external servers differs only in the steps related to binary file retrieval. The
following steps for transformation and conversion to base64-encoded strings are the same.

This examples uses data stored in a folder structure:

/home/user/data/predictions
images
animal®1l. jpg
animal®2. jpg
animal®3.png
data.csv

As an input for processing, DataRobot needs a collection of image locations. Helper functions will process the images
and return base64-encoded strings in the same order. The first example uses the contents of data.csv as an input. This
file holds data needed for model predictions and also the image storage locations (in the “image_path” column).

Contents of data.csv:

weight_in_grams,age_in_months, image_path

5000, 34, /home/user/data/predictions/images/animal®1l. jpg
4300,56, /home/user/data/predictions/images/animal®2. jpg
4200,22, /home/user/data/predictions/images/animal®3.png

This code snippet will read each image from the “image_path” column and store the base64-string with image data in
the “image_base64” column.

2.2. User Guide 89

DataRobot Python API Documentation, Release 3.2.2

import os
import pandas as pd
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

dataset_dir = '/home/user/data/predictions’
file_in = os.path.join(dataset_dir, 'data.csv')
file_out = os.path.join(dataset_dir, 'out.csv')

df = pd.read_csv(file_in)
df['image_base64'] = get_encoded_image_contents_from_paths(df['image_path'])
df.to_csv(file_out, index=False)

The same helper function will work with other iterables:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images’
images_absolute_paths = [

os.path.join(images_dir, file) for file in ['animalO®1l.jpg’', 'animal®2.jpg’,
—'animal®3.png']

]

images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths)

There is also one helper function to work with remote data. This function retrieves binary content from specified URLSs,
transforms the images, and returns base64-encoded strings (in the the same way as it does for images loaded from local
paths).

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_urls

image_urls = [
'https://<YOUR_SERVER_ADDRESS>/animal®1l. jpg',
'https://<YOUR_SERVER_ADDRESS>/animal02. jpg',
'"https://<YOUR_SERVER_ADDRESS>/animal03.png'

]

images_base64 = get_encoded_image_contents_from_urls(image_urls)

Examples of helper functions up to this points have used default settings. If needed, the following functions allow
for further customization by passing explicit parameters related to error handling, image transformations, and request
header customization.

90 Chapter 2. Table of contents

DataRobot Python APl Documentation, Release 3.2.2

Custom image transformations

By default helper functions will apply transformations, which have proven good results. The default values align with
the preprocessing used for images uploaded in ZIP archives for training. Therefore, using default values should be
the first choice when preparing datasets with images for predictions. However, you can also specify custom image
transformation settings to override default transformations before converting data into base64 strings. To override the
default behavior, create an instance of the ImageOptions class and pass it as an additional parameter to the helper
function.

Examples:

import os
from datarobot.helpers.image_utils import ImageOptions
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images’
images_absolute_paths = [

os.path.join(images_dir, file) for file in ['animalO®1l.jpg', 'animal®2.jpg’,
—'animal®3.png']

]

Override the default behavior for image quality and subsampling, but the images
will still be resized because that's the default behavior. Note: the ‘keep_quality’
parameter for JPEG files by default preserves the quality of the original images,
so this behavior must be disabled to manually override the quality setting with an
explicit value.
image_options = ImageOptions(keep_quality=False, image_quality=80, image_subsampling=0)
images_base64 = get_encoded_image_contents_from_paths(
paths=images_absolute_paths, image_options=image_options

)

overwrite default behavior for image resizing, this will keep image aspect

ratio and will resize all images using specified size: width=300 and height=300.

Note: if image had different aspect ratio originally it will generate image

thumbnail, not larger than the original, that will fit in requested image size

image_options = ImageOptions(image_size=(300, 300))

images_base64 = get_encoded_image_contents_from_paths(
paths=images_absolute_paths, image_options=image_options

)

Override the default behavior for image resizing, This will force the image
to be resized to size: width=300 and height=300. When the image originally
had a different aspect ratio - than resizing it using ‘force_size' parameter
will alter its aspect ratio modifying the image (e.g. stretching)
image_options = ImageOptions(image_size=(300, 300), force_size=True)
images_base64 = get_encoded_image_contents_from_paths(
paths=images_absolute_paths, image_options=image_options

)

overwrite default behavior and retain original image sizes
image_options = ImageOptions(should_resize=False)
images_base64 = get_encoded_image_contents_from_paths(

(continues on next page)

2.2. User Guide 91

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

paths=images_absolute_paths, image_options=image_options

Custom request headers

If needed, you can specify custom request headers for downloading binary data.

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_urls

token = 'N169vmABaEuchUsj88N0eOoH2k fUbhCCByhoFDf4wh]yJINT£7NOhhPrNQKqVVI]'
custom_headers = {

'User-Agent': 'My User Agent',

'Authorization': 'Bearer ', format (token)

image_urls = [
'https://<YOUR_SERVER_ADDRESS>/animal@1l. jpg’,
'https://<YOUR_SERVER_ADDRESS>/animal02. jpg’,
'https://<YOUR_SERVER_ADDRESS>/animal®3.png"',

]

images_base64 = get_encoded_image_contents_from_urls(image_urls, custom_headers)

Handling errors

When processing multiple images, any error during processing will, by default, stop operations (i.e., the helper function
will raise datarobot.errors.ContentRetrievalTerminatedError and terminate further processing). In the case
of an error during content retrieval (“connectivity issue”, “file not found” etc), you can override this behavior by passing
continue_on_error=True to the helper function. When specified, processing will continue. In rows where the error
was raised, the value*None™ value will be returned instead of a base64-encoded string. This applies only to errors
during content retrieval, other errors will always terminate execution.

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images’
images_absolute_paths = [
os.path.join(images_dir, file) for file in ['animalO®l.jpg', 'missing.jpg', 'animal®3.
—png"]
]

This execution will print None for missing files and base64 strings for exising files
images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths, continue_on_
—error=True)

for value in images_base64:

(continues on next page)

92 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

print(value)

This execution will raise error during processing of missing file terminating operation
images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths)

Processing other binary files

Other binary files can be processed by dedicated functions. These functions work similarly to the functions used for
images, although they do not provide functionality for any transformations. Processing follows two steps instead of
three:

* Retrieve binary data from the file in the specified location (local path or URL).
» Convert binary data to base64-encoded strings.
To process documents into base64-encoded strings use these functions:
* To retrieve files from local paths: get_encoded_file_contents_from_paths - t
* To retrieve files from locations specified as URLs: get_encoded_file_contents_from_urls -

Examples:

import os
from datarobot.helpers.binary_data_utils import get_encoded_file_contents_from_urls

document_urls = [
'https://<YOUR_SERVER_ADDRESS>/document®1.pdf"',
'"https://<YOUR_SERVER_ADDRESS>/missing.pdf',
'https://<YOUR_SERVER_ADDRESS>/document®3.pdf',

]

this call will return base64 strings for existing documents and None for missing files
documents_base64 = get_encoded_file_contents_from_urls(document_urls, continue_on_
—error=True)
for value in documents_base64:

print(value)

This execution will raise error during processing of missing file terminating operation
documents_base64 = get_encoded_file_contents_from_urls(document_urls)

Model Insights

The Modeling section provides information to help you easily navigate the process of building, understanding, and
analyzing models.

2.2. User Guide 93

DataRobot Python API Documentation, Release 3.2.2

Prediction Explanations

To compute prediction explanations you need to have feature impact computed for a model, and predictions for an
uploaded dataset computed with a selected model.

Computing prediction explanations is a resource-intensive task, but you can configure it with maximum explanations
per row and prediction value thresholds to speed up the process.

Quick Reference

import datarobot as dr
Get project
my_projects = dr.Project.list()
project = my_projects[0]
Get model
models = project.get_models()
model = models[0]
Compute feature impact
feature_impacts = model.get_or_request_feature_impact()
Upload dataset
dataset = project.upload_dataset('./data_to_predict.csv')
Compute predictions
predict_job = model.request_predictions(dataset.id)
predict_job.wait_for_completion()
Initialize prediction explanations
pei_job = dr.PredictionExplanationsInitialization.create(project.id, model.id)
pei_job.wait_for_completion()
Compute prediction explanations with default parameters
pe_job = dr.PredictionExplanations.create(project.id, model.id, dataset.id)
pe = pe_job.get_result_when_complete()
Iterate through predictions with prediction explanations
for row in pe.get_rows():
print(row.prediction)
print(row.prediction_explanations)
download to a CSV file
pe.download_to_csv('prediction_explanations.csv')

List Prediction Explanations

You can use the PredictionExplanations.list() method to return a list of prediction explanations computed for
a project’s models:

import datarobot as dr

prediction_explanations = dr.PredictionExplanations.list('58591727100d2b57196701b3")

print (prediction_explanations)

>>> [PredictionExplanations(id=585967e7100d2b6afc93b13b,
project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8acf),

PredictionExplanations(id=58596bc2100d2b639329eae4,

project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8ac5),

(continues on next page)

94 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

PredictionExplanations(id=58763db4100d2b66759cc187,
project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8ac5),

L]

pe = prediction_explanations[0]

pe.project_id

>>> u'58591727100d2b57196701b3"
pe.model_id

>>> 1u'585932c5100d2b7c298b8act!’

You can pass following parameters to filter the result:
* model_id — str, used to filter returned prediction explanations by model_id.
e limit — int, limit for number of items returned, default: no limit.
e offset — int, number of items to skip, default: 0.

List Prediction Explanations Example:

project_id = '58591727100d2b57196701b3"
model_id = '585932c5100d2b7c298b8act’
dr.PredictionExplanations.list(project_id, model_id-model_id, limit=20, offset=100)

Initialize Prediction Explanations

In order to compute prediction explanations you have to initialize it for a particular model.

dr.PredictionExplanationsInitialization.create(project_id, model_id)

Compute Prediction Explanations

If all prerequisites are in place, you can compute prediction explanations in the following way:

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0"’

model_id = '5506fcd98bd88f1641a720a3"

dataset_id = '5506fcd98hd88a8142h725c8"’

pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,
max_explanations=2, threshold_low=0.2, threshold_high=0.38)

pe = pe_job.get_result_when_complete()

Where:
* max_explanations are the maximum number of prediction explanations to compute for each row.

e threshold_low and threshold_high are thresholds for the value of the prediction of the row. Prediction
explanations will be computed for a row if the row’s prediction value is higher than threshold_high or lower
than threshold_low. If no thresholds are specified, prediction explanations will be computed for all rows.

2.2. User Guide 95

DataRobot Python API Documentation, Release 3.2.2

Retrieving Prediction Explanations

You have three options for retrieving prediction explanations.

Note: PredictionExplanations.get_all_as_dataframe() and PredictionExplanations.
download_to_csv() reformat prediction explanations to match the schema of CSV file downloaded from UI
(Rowld, Prediction, Explanation 1 Strength, Explanation 1 Feature, Explanation 1 Value, ..., Explanation N Strength,
Explanation N Feature, Explanation N Value)

Get prediction explanations rows one by one as PredictionExplanationsRow objects:

import datarobot as dr
project_id = '5506fcd38bd88£5953219da0’
prediction_explanations_id = '5506fcd98bd88f1641a720a3"
pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
for row in pe.get_rows():
print(row.prediction_explanations)

Get all rows as pandas.DataFrame:

import datarobot as dr

project_id = '5506fcd38bd88£5953219dald"’

prediction_explanations_id = '5506fcd98bd88f1641a720a3"

pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
prediction_explanations_df = pe.get_all_as_dataframe()

Download all rows to a file as CSV document:

import datarobot as dr

project_id = '5506fcd38bd88£5953219dal"’

prediction_explanations_id = '5506fcd98bd88f1641a720a3"’

pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
pe.download_to_csv('prediction_explanations.csv')

Adjusted Predictions In Prediction Explanations

In some projects such as insurance projects, the prediction adjusted by exposure is more useful compared with raw
prediction. For example, the raw prediction (e.g. claim counts) is divided by exposure (e.g. time) in the project with
exposure column. The adjusted prediction provides insights with regard to the predicted claim counts per unit of time.
To include that information, set exclude_adjusted_predictions to False in correspondent method calls.

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0"

prediction_explanations_id = '5506fcd98bd88f1641a720a3"’

pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
pe.download_to_csv('prediction_explanations.csv', exclude_adjusted_predictions=False)
prediction_explanations_df = pe.get_all_as_dataframe(exclude_adjusted_predictions=False)

96 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Multiclass/Clustering Prediction Explanation Modes

When calculating prediction explanations for the multiclass or clustering model you need to specify which classes
should be explained in each row. By default we only explain the predicted class but it can be set with the mode
parameter of PredictionExplanations.create

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0’

model_id = '5506fcd98bd88f1641a720a3"’

dataset_id = '5506fcd98bd88a8142b725c8"’

Explain predicted and second-best class results in each row

pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,
mode=dr.models.TopPredictionsMode(2))

pe = pe_job.get_result_when_complete()

Explain results for classes "setosa" and "versicolor" in each row

pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,
mode=dr.models.ClassListMode(["setosa",

—"versicolor"]))

pe = pe_job.get_result_when_complete()

SHAP based prediction explanations

You can request SHAP based prediction explanations using previously uploaded scoring dataset for models that support
SHAP. Unlike for XEMP prediction explanations you do not need to have feature impact computed for a model, and
predictions for an uploaded dataset.

See datarobot.models.ShapMatrix.create() reference for a description of the types of parameters that can be
passed in.

import datarobot as dr

project_id = '5ea6d3354cfadl2lcf33a5el’

model_id = '5ea6d38b4cfadl2lcf33a60d’

project = dr.Project.get(project_id)

model = dr.Model.get(project=project_id, model_id=model_id)
check if model supports SHAP

model_capabilities = model.get_supported_capabilities()
print(model_capabilities.get('supportsShap'))

>>> True

upload dataset to generate prediction explanations
dataset_from_path = project.upload_dataset('./data_to_predict.csv')

shap_matrix_job = ShapMatrix.create(project_id=project_id, model_id=model_id, dataset_
—~id=dataset_from_path.id)

shap_matrix_job

>>> Job(shapMatrix, status=inprogress)

wait for job to finish

shap_matrix = shap_matrix_job.get_result_when_complete()

shap_matrix

>>> ShapMatrix(id='5ea84b624cfad1361c53f65d"', project_id="'5ea6d3354cfadl21cf33a5el’,.
—model_id="5eabd38b4cfadl21cf33a60d', dataset_id='5ea84b464cfadl1361c53£655")

retrieve SHAP matrix as pandas.DataFrame

(continues on next page)

2.2. User Guide 97

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

df = shap_matrix.get_as_dataframe()

list as available SHAP matrices for a project

shap_matrices = dr.ShapMatrix.list(project_id)

shap_matrices

>>> [ShapMatrix(id='5ea84b624cfad1361c53f65d', project_id="'5ea6d3354cfadl21cf33a5el’,.
—model_id="5eabd38b4cfadl21cf33a60d', dataset_id='5ea84b464cfadl1361c53£655")]

shap_matrix = shap_matrices[0]
retrieve SHAP matrix as pandas.DataFrame
df = shap_matrix.get_as_dataframe()

Rating Table

A rating table is an exportable csv representation of a Generalized Additive Model. They contain information about the
features and coefficients used to make predictions. Users can influence predictions by downloading and editing values
in a rating table, then reuploading the table and using it to create a new model.

See the page about interpreting Generalized Additive Models’ output in the Datarobot user guide for more details on
how to interpret and edit rating tables.

Download A Rating Table

You can retrieve a rating table from the list of rating tables in a project:

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0’
project = dr.Project.get(project_id)
rating_tables = project.get_rating_tables()
rating_table = rating_tables[0]

Or you can retrieve a rating table from a specific model. The model must already exist:

import datarobot as dr

from datarobot.models import RatingTableModel, RatingTable
project_id = '5506fcd38bd88£5953219da0’

project = dr.Project.get(project_id)

Get model from list of models with a rating table
rating_table_models = project.get_rating_table_models()
rating_table_model = rating_table_models[0]

Or retrieve model by id. The model must have a rating table.
model_id = '5506fcd98bd88f1641a720a3"’
rating_table_model = dr.RatingTableModel.get(project=project_id, model_id=model_id)

Then retrieve the rating table from the model
rating_table_id = rating_table_model.rating_table_id
rating_table = dr.RatingTable.get(projcet_id, rating_table_id)

Then you can download the contents of the rating table:

98 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

rating_table.download('./my_rating_table.csv')

Uploading A Rating Table

After you’'ve retrieved the rating table CSV and made the necessary edits, you can re-upload the CSV so you can create
a new model from it:

job = dr.RatingTable.create(project_id, model_id, './my_rating_table.csv')
new_rating_table = job.get_result_when_complete()

job = new_rating_table.create_model ()

model = job.get_result_when_complete()

Automated Documentation

DataRobot can generate Automated Documentation about various entities within the platform, such as specific models
or projects. These reports can be downloaded and shared to help with regulatory compliance as well as to provide a
general understanding of the Al lifecycle.

Check Available Document Types

Automated Documentation is available behind different feature flags set up according to your POC settings or subscrip-
tion plan. MODEL_COMPLTIANCE documentation is a premium add-on DataRobot product, while AUTOPILOT_SUMMARY
report is available behind an optional feature flag for Self-Service and other platforms.

import datarobot as dr

Connect to your DataRobot platform with your token
dr.Client (token=my_token, endpoint=endpoint)
options = dr.AutomatedDocument.list_available_document_types()

In response, you get a data dictionary with a list of document types that are available for generation with your account.

Generate Automated Documents

Now that you know which documents you can generate, create one with AutomatedDocument .generate method.
Note that for AUTOPILOT_SUMMARY report, you need to assign a project ID to the entity_id parameter, while
MODEL_COMPLTIANCE expects an ID of a model with the entity_id parameter.

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

doc_type = "AUTOPILOT_SUMMARY"
entity_id = "5e8b6a34d2426053ab9a39ed" # This is an ID of a project
file_format="docx"

doc = dr.AutomatedDocument (document_type=doc_type, entity_id=entity_id, output_
—format=file_format)
doc.generate()

2.2. User Guide 99

DataRobot Python API Documentation, Release 3.2.2

You can specify other attributes. For example, filepath presets the file location and name to use when downloading
the document. Please see the API Reference for more details.

Download Automated Documents

If you followed the steps above to generate an automated document, you can use the AutomatedDocument . download
method right away to get the document.

doc.filepath = "Users/jeremy/DR_project_docs/autopilot_report_staff_2021.docx"
doc.download()

You can set a desired filepath (that includes the future file’s name) before you download a document. Otherwise, it
will be automatically downloaded to the directory from which you launched your script.

Please note that to download the document, you need its ID. When you generate a document with the Python client,
the ID is set automatically without your interference. However, if the document has already been generated from the
application interface (or REST API) and you want to download it using the Python client, you need to provide the ID
of the document you want to download:

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

doc_id = "604£81f0£3d6397d250c35bc"

path = "Users/jeremy/DR_project_docs/xgb_model_doc_staff_project_2021.docx"
doc = dr.AutomatedDocument(id=doc_id, filepath=path)

doc.download()

List Previously Generated Automated Documents

You can retrieve information about previously generated documents available for your account. The information in-
cludes document ID and type, ID of the entity it was generated for, time of creation, and other information. Documents
are sorted by creation time — created_at key — from most recent to oldest.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = dr.AutomatedDocument.list_generated_documents()

This returns list of AutomatedDocument objects. You can request a list of specific documents. For example, get a list
of all MODEL_COMPLIANCE documents:

model_docs = dr.AutomatedDocument.list_generated_documents(document_types=["MODEL_
—COMPLIANCE"])

Or get a list of documents created for specific entities:

otv_project_reports = dr.AutomatedDocument.list_generated_documents(
entity_ids=["604f81f0f3d6397d250c35bc", "5ed60de32£18d97d250c3db5"]
)

For more information about all query options, see AutomatedDocument .list_generated_documents in the AP/
Reference.

100 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Delete Automated Documents

To delete a document from the DataRobot application, use the AutomatedDocument .delete method.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument (id="604£f81f0f3d6397d250c35bc")
doc.delete()

All locally saved automated documents will remain intact.

External Testset

Testing with external datasets allows better evaluation model performance, you can compute metric scores and insights
on external test dataset to ensure consistent performance prior to deployment.

Note: Not available for Time series models.

Requesting External Scores and Insights

To compute scores and insights on a dataset

Upload a prediction dataset that contains the target column PredictionDataset.contains_target_values ==
True. Dataset should be in the same structure as the original project.

import datarobot as dr

Upload dataset

project = dr.Project(project_id)

dataset = project.upload_dataset('./test_set.csv')
dataset.contains_target_values

>>>True

request external test to compute metric scores and insights on dataset
select model using project.get_models()

external_test_job = model.request_external_test(dataset.id)

once job is complete, scores and insights are ready for retrieving
external_test_job.wait_for_completion()

Retrieving External Metric Scores and Insights

After completion of external test job, metric scores and insights for external testsets will be ready.

Note: Please check PredictionDataset.data_quality_warnings for dataset warnings. Insights are not available
if dataset is too small (less than 10 rows). ROC curve cannot be calculated if dataset has only one class in target column

2.2. User Guide 101

DataRobot Python API Documentation, Release 3.2.2

Retrieving External Metric Scores

import datarobot as dr

retrieving list of external metric scores on multiple datasets
metric_scores_list = dr.ExternalScores.list(project_id, model_id)

retrieving external metric scores on one dataset

metric_scores = dr.ExternalScores.get(project_id, model_id, dataset_id)

Retrieving External Lift Chart

import datarobot as dr

retrieving list of lift charts on multiple datasets

lift_list = dr.ExternallLiftChart.list(project_id, model_id)

retrieving one lift chart for dataset

lift = dr.ExternallLiftChart.get(project_id, model_id, dataset_id)

Retrieving External Multiclass Lift Chart

Lift chart for Multiclass models only

import datarobot as dr

retrieving list of lift charts on multiple datasets

lift_list = ExternalMulticlassLiftChart.list(project_id, model_id)

retrieving one lift chart for dataset and a target class

lift = ExternalMulticlassLiftChart.get(project_id, model_id, dataset_id, target_class)

Retrieving External ROC Curve

Available for Binary classification models only

import datarobot as dr

retrieving list of roc curves on multiple datasets
roc_list = ExternalRocCurve.list(project_id, model_id)

retrieving one ROC curve for dataset

roc = ExternalRocCurve.get(project_id, model_id, dataset_id)

Retrieving Multiclass Confusion Matrix

Available for Multiclass classification models only

import datarobot as dr

retrieving list of confusion charts on multiple datasets
confusion_list = ExternalConfusionChart.list(project_id, model_id)

retrieving one confusion chart for dataset

confusion = ExternalConfusionChart.get(project_id, model_id, dataset_id)

102 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieving Residuals Chart

Auvailable for Regression models only

import datarobot as dr

retrieving list of residuals charts on multiple datasets
residuals_list = ExternalResidualsChart.list(project_id, model_id)

retrieving one residuals chart for dataset

residuals = ExternalResidualsChart.get(project_id, model_id, dataset_id)

Jobs

The Job class is a generic representation of jobs running through a project’s queue. Many tasks involved in modeling,
such as creating a new model or computing feature impact for a model, will use a job to track the worker usage and
progress of the associated task.

Checking the Contents of the Queue

To see what jobs running or waiting in the queue for a project, use the Project.get_all_jobs method.

from datarobot.enums import QUEUE_STATUS

jobs_list = project.get_all_jobs() # gives all jobs queued or inprogress
jobs_by_type = {}
for job in jobs_list:
if job.job_type not in jobs_by_type:
jobs_by_type[job.job_type] = [0, 0]
if job.status == QUEUE_STATUS.QUEUE:
jobs_by_type[job.job_type][0] += 1
else:
jobs_by_type[job.job_type]l[1] += 1
for type in jobs_by_type:
(num_queued, num_inprogress) = jobs_by_type[type]
print(’ jobs: queued, inprogress'.format(type, num_queued, num_inprogress))

Cancelling a Job

If a job is taking too long to run or no longer necessary, it can be cancelled easily from the Job object.

from datarobot.enums import QUEUE_STATUS

project.pause_autopilot()
bad_jobs = project.get_all_jobs(status=QUEUE_STATUS.QUEUE)
for job in bad_jobs:
job.cancel ()
project.unpause_autopilot()

2.2. User Guide 103

DataRobot Python API Documentation, Release 3.2.2

Retrieving Results From a Job

Once you’ve found a particular job of interest, you can retrieve the results once it is complete. Note that the type of the
returned object will vary depending on the job_type. All return types are documented in Job.get_result.

from datarobot.enums import JOB_TYPE

time_to_wait = 60 * 60 # how long to wait for the job to finish (in seconds) - i.e. an.
—hour

assert my_job.job_type == JOB_TYPE.MODEL

my_model = my_job.get_result_when_complete(max_wait=time_to_wait)

Model Jobs

Model creation is an asynchronous process. This means that when explicitly invoking new model creation (with
project.train or model. train for example) all you get is the id of the process, responsible for model creation.
With this id you can get info about the model that is being created or the model itself, when the creation process is
finished. For this you should use the ModelJob class.

Get an existing ModelJob

To retrieve existing ModelJob use ModelJob.get method. For this you need the id of Project that is used for model
creation and the id of ModelJob. Having ModelJob might be useful if you want to know parameters of model creation,
automatically chosen by the API backend, before actual model was created.

If model is already created, ModelJob.get will raise PendingJobFinished exception

import time
import datarobot as dr

blueprint_id = '5506fcd38bd88£5953219dad"’

model_job_id = project.train(blueprint_id)

model_job = dr.ModelJ]ob.get(project_id=project.id,
model_job_id=model_job_id)

model_job.sample_pct

>>> 64.0

wait for model to be created (in a very inefficient way)

time.sleep(10 * 60)

model_job = dr.ModelJob.get(project_id=project.id,
model_job_id=model_job_id)

>>> datarobot.errors.Pending]obFinished

get the job attached to the model
model_job.model
>>> Model ('5d518cd3962d741512605e2b")

104 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get a created model

After model is created, you can use ModelJob.get_model to get newly created model.

import datarobot as dr

model = dr.Modellob.get_model (project_id=project.id,
model_job_id=model_job_id)

wait_for_async_model_creation function

If you just want to get the created model after getting the ModelJob id, you can use the wait_for_async_model_creation
function. It will poll for the status of the model creation process until it’s finished, and then will return the newly created
model. Note the differences below between datetime partitioned projects and non-datetime-partitioned projects.

from datarobot.models.modeljob import wait_for_async_model_creation

used during training based on blueprint
model_job_id = project.train(blueprint, sample_pct=33)
new_model = wait_for_async_model_creation(
project_id=project.id,
model_job_id=model_job_id,
)

used during training based on existing model

model_job_id = existing _model.train(sample_pct=33)

new_model = wait_for_async_model_creation(
project_id=existing_model.project_id,
model_job_id=model_job_id,

)

For datetime-partitioned projects, use project.train_datetime. Note that train_
—datetime returns a ModelJob instead
of just an id.
model_job = project.train_datetime(blueprint)
new_model = wait_for_async_model_creation(
project_id=project.id,
model_job_id=model_job.id

DataRobot Prime

DataRobot Prime allows the download of executable code approximating models. For more information about this
feature, see the documentation within the DataRobot webapp. Contact your Account Executive or CFDS for information
on enabling DataRobot Prime, if needed.

2.2. User Guide 105

DataRobot Python API Documentation, Release 3.2.2

Approximate a Model

Given a Model you wish to approximate, Model .request_approximation will start a job creating several Ruleset
objects approximating the parent model. Each of those rulesets will identify how many rules were used to approximate
the model, as well as the validation score the approximation achieved.

rulesets_job = model.request_approximation()

rulesets = rulesets_job.get_result_when_complete()

for ruleset in rulesets:
info = (ruleset.id, ruleset.rule_count, ruleset.score)
print('id: , rule_count: , score: ' format(*info))

Prime Models vs. Models

Given a ruleset, you can create a model based on that ruleset. We consider such models to be Prime models. The
PrimeModel class inherits from the Model class, so anything a Model can do, as PrimeModel can do as well.

The PrimelModel objects available within a Project can be listed by project.get_prime_models, or a particular
one can be retrieve via PrimeModel . get. If a ruleset has not yet had a model built for it, ruleset.request_model
can be used to start a job to make a PrimeModel using a particular ruleset.

rulesets = parent_model.get_rulesets()
selected_ruleset = sorted(rulesets, key=lambda x: x.score)[-1]
if selected_ruleset.model_id:
prime_model = PrimeModel.get(selected_ruleset.project_id, selected_ruleset.model_id)
else:
prime_job = selected_ruleset.request_model()
prime_model = prime_job.get_result_when_complete()

The PrimeModel class has two additional attributes and one additional method. The attributes are ruleset, which is
the Ruleset used in the PrimeModel, and parent_model_id which is the id of the model it approximates.

Finally, the new method defined is request_download_validation which is used to prepare code download for the
model and is discussed later on in this document.

Retrieving Code from a PrimeModel

Given a PrimeModel, you can download the code used to approximate the parent model, and view and execute it locally.

The first step is to validate the PrimeModel, which runs some basic validation of the generated code, as well as preparing
it for download. We use the PrimeFile object to represent code that is ready to download. PrimeFiles can be
prepared by the request_download_validation method on PrimeModel objects, and listed from a project with the
get_prime_£files method.

Once you have a PrimeFile you can check the is_valid attribute to verify the code passed basic validation, and then
download it to a local file with download.

validation_job = prime_model.request_download_validation(enums.PRIME_LANGUAGE.PYTHON)
prime_file = validation_job.get_result_when_complete()
if not prime_file.is_valid:
raise ValueError('File was not valid')
prime_file.download(' /home/myuser/drCode/primeModelCode.py"')

106 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Model Recommendation
During the Autopilot modeling process, DataRobot will recommend a model for deployment based on its accuracy and
complexity.

When running Autopilot in Full or Comprehensive mode, DataRobot uses the following deployment preparation pro-
cess:

1. First, DataRobot calculates Feature Impact for the selected model and uses it to generate a reduced feature list.

2. Next, DataRobot retrains the selected model on the reduced feature list. If the new model performs better than
the original model, DataRobot uses the new model for the next stage. Otherwise, the original model is used.

3. DataRobot then retrains the selected model at an up-to-holdout sample size (typically 80%). As long as the
sample is under the frozen threshold (1.5GB), the stage is not frozen.

4. Finally, DataRobot retrains the selected model as a frozen run (hyperparameters are not changed from the up-to-
holdout run) using a 100% sample size and selects it as Recommended for Deployment.

Note: The higher sample size DataRobot uses in Step 3 is either:

1. Up to holdout if the training sample size does not exceed the maximum Autopilot size threshold: sample size is
the training set plus the validation set (for TVH) or 5-folds (for CV). In this case, DataRobot compares retrained
and original models on the holdout score.

2. Up to validation if the training sample size does exceed the maximum Autopilot size threshold: sample size is
the training set (for TVH) or 4-folds (for CV). In this case, DataRobot compares retrained and original models
on the validation score.

DataRobot gives one model the Recommended for Deployment™ badge. This is the most accurate individual, non-
blender model on the Leaderboard. After completing the steps described above, it will receive the Prepared for
Deployment badge.

Retrieve all recommendations

The following code will return all models recommended for the project.

import datarobot as dr

recommendations = dr.ModelRecommendation.get_all(project_id)

Retrieve a default recommendation

If you are unsure about the tradeoffs between the various types of recommendations, DataRobot can make this choice
for you. The following route will return the Recommended for Deployment model to use for predictions for the project.

import datarobot as dr

recommendation = dr.ModelRecommendation.get(project_id)

2.2. User Guide 107

DataRobot Python API Documentation, Release 3.2.2

Retrieve a specific recommendation

If you know which recommendation you want to use, you can select a specific recommendation using the following
code.

import datarobot as dr

recommendation_type = dr.enums.RECOMMENDED_FOR_DEPLOYMENT
recommendations = dr.ModelRecommendation.get(project_id, recommendation_type)

Get recommended model

You can use method get_model() of a recommendation object to retrieve a recommended model.

import datarobot as dr

recommendation = dr.ModelRecommendation.get(project_id)
recommended_model = recommendation.get_model()

2.2.3 Predictions

The following sections describe the components to making predictions in DataRobot:

* Generate predictions: Initiate a prediction job with the Model.request_predictions() method. This
method can use either a training dataset or predictions dataset for scoring.

» Batch predictions: Score large sets of data with batch predictions. You can define jobs and their schedule.

¢ Prediction API: Use DataRobot’s Prediction API. to make predictions on both a dedicated and/or a standalone
prediction server.

* Scoring Code: Qualifying models allow you to export Scoring Code and use DataRobot-generated models out-
side of the platform

Predictions

Predictions generation is an asynchronous process. This means that when starting predictions with Model.
request_predictions () you will receive back a PredictJob for tracking the process responsible for fulfilling your
request.

With this object you can get info about the predictions generation process before it has finished and be rerouted to the
predictions themselves when the process is finished. For this you should use the PredictJob class.

108 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/predictions/api/dr-predapi.html
https://docs.datarobot.com/en/docs/predictions/scoring-code/index.html

DataRobot Python API Documentation, Release 3.2.2

Starting predictions generation

Before actually requesting predictions, you should upload the dataset you wish to predict via Project.
upload_dataset. Previously uploaded datasets can be seen under Project.get_datasets. When uploading the
dataset you can provide the path to a local file, a file object, raw file content, a pandas.DataFrame object, or the url
to a publicly available dataset.

To start predicting on new data using a finished model use Model.request_predictions(). It will create a new
predictions generation process and return a PredictJob object tracking this process. With it, you can monitor an existing
PredictJob and retrieve generated predictions when the corresponding PredictJob is finished.

import datarobot as dr

project_id = '5506fcd38bd88£5953219da0’
model_id = '5506fcd98bd88f1641a720a3"’
project = dr.Project.get(project_id)
model = dr.Model.get(
project=project_id,
model_id=model_id,

)

As of v3.0, in addition to passing a dataset_id™", you can pass in a "dataset ’,.
— file', “file_path™ or
“‘dataframe’ to "Model.request_predictions’.

predict_job = model.request_predictions(file_path="'./data_to_predict.csv')

Alternative version uploading the dataset from a local path and passing it by its id
dataset_from_path = project.upload_dataset('./data_to_predict.csv')
predict_job = model.request_predictions(dataset_id=dataset_from_path.id)

Alternative version: upload the dataset as a file object and pass it by using its.
—dataset id
with open('./data_to_predict.csv') as data_to_predict:

dataset_from_file = project.upload_dataset(data_to_predict)
predict_job = model.request_predictions(dataset_id=dataset_from_file.id) # OR predict_
—job = model.request_predictions(dataset_id=dataset_from_file.id)

Listing Predictions

You can use the Predictions.list () method to return a list of predictions generated on a project.

import datarobot as dr
predictions = dr.Predictions.list('58591727100d2b57196701b3")

print (predictions)
>>>[Predictions(prediction_id="'5b6b163eca36c0108fc5d411",
project_id="'5b61bd68ca36c0®4aed8aab7Lf",
model_id="'5b61bd7aca36c05744846630",
dataset_id='5b6b1632ca36c03b5875e6a0'),
Predictions(prediction_id="'5b6b2315ca36c0108fc5d41b",
project_id="'5b61bd68ca36cO®4aed8aab7f",

(continues on next page)

2.2. User Guide 109

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

model_id="'5b61bd7aca36c0574484662e",
dataset_id='5b6b1632ca36c03b5875e6a0'),
Predictions(prediction_id="'5b6b23b7ca36c0108fc5d422",
project_id="'5b61bd68ca36cO®4aed8aab7Lf",
model_id="'5b61bd7aca36c0574484662¢e",
dataset_id="55b6b1632ca36c03b5875e6a0"')

You can pass following parameters to filter the result:
e model_id - str, used to filter returned predictions by model_id.

* dataset_id — str, used to filter returned predictions by dataset_id.

Get an existing PredictJob

To retrieve an existing PredictJob use the PredictJob.get method. This will give you a PredictJob matching the
latest status of the job if it has not completed.

If predictions have finished building, PredictJob.get will raise a PendingJobFinished exception.

import time
import datarobot as dr

predict_job = dr.PredictJ]ob.get(
project_id=project_id,
predict_job_id=predict_job_id,
)
predict_job.status
>>> 'queue'

wait for generation of predictions (in a very inefficient way)
time.sleep(10 * 60)
predict_job = dr.PredictJob.get(
project_id=project_id,
predict_job_id=predict_job_id,
)

>>> dr.errors.PendingJobFinished

now the predictions are finished

predictions = dr.PredictJob.get_predictions(
project_id=project.id,
predict_job_id=predict_job_id,

110 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get generated predictions

After predictions are generated, you can use PredictJob.get_predictions to get newly generated predictions.

If predictions have not yet been finished, it will raise a JobNotFinished exception.

import datarobot as dr

predictions = dr.PredictJob.get_predictions(
project_id=project.id,
predict_job_id=predict_job_id,

Wait for and Retrieve results

If you just want to get generated predictions from a PredictJob, you can use the PredictJob.
get_result_when_complete function. It will poll the status of the predictions generation process until it has
finished, and then will return predictions.

dataset = project.get_datasets()[0]
predict_job = model.request_predictions(dataset.id)
predictions = predict_job.get_result_when_complete()

Get previously generated predictions

If you don’t have a Model.predict_job on hand, there are two more ways to retrieve predictions from the
Predictions interface:

1. Get all prediction rows as a pandas.DataFrame object:

import datarobot as dr

preds = dr.Predictions.get("5b61bd68ca36c04aed8aab7f", prediction_id=
—"5b6b163eca36c0108fc5d411")

df = preds.get_all_as_dataframe()

df_with_serializer = preds.get_all_as_dataframe(serializer='csv')

2. Download all prediction rows to a file as a CSV document:

import datarobot as dr
preds = dr.Predictions.get("5b61bd68ca36c04aed8aab7f", prediction_id=
—"5b6b163eca36c0108fc5d411")

preds.download_to_csv('predictions.csv')

preds.download_to_csv('predictions_with_serializer.csv', serializer='csv')

2.2. User Guide 111

DataRobot Python API Documentation, Release 3.2.2

Training predictions

The training predictions interface allows computing and retrieving out-of-sample predictions for a model using the
original project dataset. The predictions can be computed for all the rows, or restricted to validation or holdout data.
As the predictions generated will be out-of-sample, they can be expected to have different results than if the project
dataset were reuploaded as a prediction dataset.

Quick reference

Training predictions generation is an asynchronous process. This means that when starting predictions with
datarobot.models.Model.request_training_predictions() you will receive back a datarobot.models.
TrainingPredictionsJob for tracking the process responsible for fulfilling your request. Actual predictions may be
obtained with the help of a datarobot.models. training_predictions. TrainingPredictions object returned
as the result of the training predictions job. There are three ways to retrieve them:

1. Iterate prediction rows one by one as named tuples:

import datarobot as dr

Calculate new training predictions on all dataset
training predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.ALL)
training predictions = training predictions_job.get_result_when_complete()

Fetch rows from API and print them
for prediction in training_predictions.iterate_rows(batch_size=250):
print(prediction.row_id, prediction.prediction)

2. Get all prediction rows as a pandas.DataFrame object:

import datarobot from dr

Calculate new training predictions on holdout partition of dataset

training predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.
-~HOLDOUT)

training_predictions = training_predictions_job.get_result_when_complete()

Fetch training predictions as data frame
dataframe = training_predictions.get_all_as_dataframe()

3. Download all prediction rows to a file as a CSV document:

import datarobot from dr

Calculate new training predictions on all dataset
training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.ALL)
training predictions = training predictions_job.get_result_when_complete()

Fetch training predictions and save them to file
training _predictions.download_to_csv('my-training-predictions.csv')

112 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Batch Predictions
The Batch Prediction API provides a way to score large datasets using flexible options for intake and output on the
Prediction Servers you have already deployed.
The main features are:
* Flexible options for intake and output.
 Stream local files and start scoring while still uploading - while simultaneously downloading the results.
* Score large datasets from and to S3.
» Connect to your database using JDBC with bidirectional streaming of scoring data and results.

* Intake and output options can be mixed and doesn’t need to match. So scoring from a JDBC source to an S3
target is also an option.

* Protection against overloading your prediction servers with the option to control the concurrency level for scoring.
* Prediction Explanations can be included (with option to add thresholds).

* Passthrough Columns are supported to correlate scored data with source data.

* Prediction Warnings can be included in the output.

To interact with Batch Predictions, you should use the BatchPredictionJob class.

Make batch predictions with a deployment

DataRobot provides a utility function to make batch predictions using a deployment: Deployment.predict_batch.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")

To note: ‘source’ can be a file path, a file or a pandas DataFrame

prediction_results_as_dataframe = deployment.predict_batch(
source="./my_local_file.csv",

)

Scoring local CSV files

We provide a small utility function for scoring from/to local CSV files: BatchPredictionJob.score_to_file. The
first parameter can be either:

e Path to a CSV dataset
* File-like object
¢ Pandas DataFrame

For larger datasets, you should avoid using a DataFrame, as that will load the entire dataset into memory. The other
options don’t.

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9%aa’

(continues on next page)

2.2. User Guide 113

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.BatchPredictionl]ob.score_to_file(
deployment_id,
'./data_to_predict.csv',
'./predicted.csv',

The input file will be streamed to our API and scoring will start immediately. As soon as results start coming in, we
will initiate the download concurrently. The entire call will block until the file has been scored.

Scoring from and to S3

We provide a small utility function for scoring from/to CSV files hosted on S3 BatchPredictionJob. score_s3. This
requires that the intake and output buckets share the same credentials (see Credentials and Credential.create_s3)
or that their access policy is set to public:

import datarobot as dr
deployment_id = '5dc5b1015e6e762a6241f9aa’
cred = dr.Credential.get('5a8ac9ab07a57a0001be501£f")

job = dr.BatchPredictionJ]ob.score_s3(
deployment=deployment_id,
source_url="s3://mybucket/data_to_predict.csv"',
destination_url="s3://mybucket/predicted.csv’,
credential=cred,

Note: The S3 output functionality has a limit of 100 GB.

Scoring from and to Azure Cloud Storage

Like with S3, we provide the same support for Azure through the utility function BatchPredictionJob.
score_azure. This required that an Azure connection string has been added to the DataRobot credentials store.
(see Credentials and Credential.create_azure)

import datarobot as dr
deployment_id = '5dc5b1015e6e762a6241f9aa’
cred = dr.Credential.get('5a8ac9ab07a57a0001be501£f")

job = dr.BatchPredictionl]ob.score_azure(
deployment=deployment_id,
source_url="https://mybucket.blob.core.windows.net/bucket/data_to_predict.csv',
destination_url="https://mybucket.blob.core.windows.net/results/predicted.csv',
credential=cred,

114 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Scoring from and to Google Cloud Platform

Like with Azure, we provide the same support for GCP through the utility function BatchPredictionJob.
score_gcp. This required that an Azure connection string has been added to the DataRobot credentials store. (see
Credentials and Credential.create_gcp)

import datarobot as dr
deployment_id = '5dc5b1015e6e762a6241f9aa’
cred = dr.Credential.get('5a8ac9ab07a57a0001be501£f")

job = dr.BatchPrediction]ob.score_gcp(
deployment=deployment_id,
source_url="gs:/bucket/data_to_predict.csv',
destination_url='gs://results/predicted.csv',
credential=cred,

Wiring a Batch Prediction Job manually

If you can’t use any of the utilities above, you are also free to configure your job manually. This requires configuring
an intake and output option:

import datarobot as dr
deployment_id = '5dc5b1015e6e762a6241f9aa’

dr.BatchPredictionJob. score(
deployment_id,
intake_settings={
"type': 's3',
'url': 's3://public-bucket/data_to_predict.csv',
'credential_id': '5a8ac9ab07a57a0001be501f",
1
output_settings={
"type': 'localFile',
'path': './predicted.csv',
1

Credentials may be created with Credentials API.

2.2. User Guide 115

DataRobot Python API Documentation, Release 3.2.2

Supported intake types

These are the supported intake types and descriptions of their configuration parameters:

Local file intake

This requires you to pass either a path to a CSV dataset, file-like object or a Pandas DataFrame as the file parameter:

intake_settings={
"type': 'localFile',
'file': './data_to_predict.csv',

S3 CSV intake

This requires you to pass an S3 URL to the CSV file your scoring in the url parameter:

intake_settings={
"type': 's3',
'url': 's3://public-bucket/data_to_predict.csv',

}

If the bucket is not publicly accessible, you can supply AWS credentials using the three parameters:
e aws_access_key_id
* aws_secret_access_key
* aws_session_token

And save it to the Credential API. Here is an example:

import datarobot as dr

get to make sure it exists
credential_id = '5a8ac9ab0®7a57a0001be501f"
cred = dr.Credential.get(credential_id)

intake_settings={
"type': 's3',
'url': 's3://private-bucket/data_to_predict.csv',
'credential_id': cred.credential_id,

116 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

JDBC intake

This requires you to create a DataStore and Credential for your database:

get to make sure it exists
datastore_id = '5a8ac9ab07a57a0001be5010"
data_store = dr.DataStore.get(datastore_id)

credential_id = '5a8ac9ab07a57a0001be501f"
cred = dr.Credential.get(credential_id)

intake_settings = {

"type': 'jdbc',
'table': 'table_name',
'schema': 'public', # optional, if supported by database

'catalog': 'master', # optional, if supported by database
'data_store_id': data_store.id,
'credential_id': cred.credential_id,

BigQuery intake

This requires you to create a GCS Credential for your database:

get to make sure it exists
credential_id = '5a8ac9ab0®7a57a0001be501f"
cred = dr.Credential.get(credential_id)

intake_settings = {
"type': 'bigquery',

'dataset': 'dataset_name',
'table': 'table_or_view_name',
'"bucket': 'bucket_in_gcs',

'credential_id': cred.credential_id,

Al Catalog intake

This requires you to create a Dataset and identify the dataset_id of that to use as input.

get to make sure it exists
dataset_id = '5a8ac9ab0®7a57a0001be501f"’
dataset = dr.Dataset.get(dataset_id)

intake_settings={
"type': 'dataset',
'dataset': dataset

Or, in case you want another version_id than the latest, supply your own.

2.2. User Guide 117

DataRobot Python API Documentation, Release 3.2.2

get to make sure it exists
dataset_id = '5a8ac9ab07a57a0001be501f"’
dataset = dr.Dataset.get(dataset_id)

intake_settings={
"type': 'dataset',
'dataset': dataset,
'dataset_version_id': 'another_version_id'

Supported output types

These are the supported output types and descriptions of their configuration parameters:

Local file output

For local file output you have two options. You can either pass a path parameter and have the client block and download
the scored data concurrently. This is the fastest way to get predictions as it will upload, score and download concurrently:

output_settings={
"type': 'localFile',
'path': './predicted.csv',

Another option is to leave out the parameter and subsequently call BatchPredictionJob.download at your own
convenience. The BatchPredictionJob. score call will then return as soon as the upload is complete.

If the job is not finished scoring, the call to BatchPredictionJob.download will start streaming the data that has
been scored so far and block until more data is available.

You can poll for job completion using BatchPredictionJob.get_status or use BatchPredictionJob.
wait_for_completion to wait.

import datarobot as dr
deployment_id = '5dc5b1015e6e762a6241f9%aa’

job = dr.BatchPrediction]ob.score(
deployment_id,
intake_settings={
"type': 'localFile',
'file': './data_to_predict.csv',
1,
output_settings={
"type': 'localFile',
1
)

job.wait_for_completion()

with open('./predicted.csv', 'wb') as f:
job.download(f)

118 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

S3 CSV output

This requires you to pass an S3 URL to the CSV file where the scored data should be saved to in the url parameter:

output_settings={
"type': 's3',
'url': 's3://public-bucket/predicted.csv’',

Most likely, the bucket is not publicly accessible for writes, but you can supply AWS credentials using the three param-
eters:

e aws_access_key_id
e aws_secret_access_key
e aws_session_token

And save it to the Credential API. Here is an example:

get to make sure it exists
credential_id = '5a8ac9ab0®7a57a0001be501f"
cred = dr.Credential.get(credential_id)

output_settings={

"type': 's3',
'url': 's3://private-bucket/predicted.csv’',
'credential_id': cred.credential_id,

}

JDBC output

Same as for the input, this requires you to create a DataStore and Credential for your database, but for output_settings
you also need to specify statementType, which should be one of datarobot.enums.AVAILABLE _STATEMENT_TYPES:

get to make sure it exists
datastore_id = '5a8ac9ab07a57a0001be5010"
data_store = dr.DataStore.get(datastore_id)

credential_id = '5a8ac9ab07a57a0001be501f"
cred = dr.Credential.get(credential_id)

output_settings = {

"type': 'jdbc',

"table': 'table_name',

'schema': 'public', # optional, if supported by database
'catalog': 'master', # optional, if supported by database
'statementType': 'insert',

'data_store_id': data_store.id,
'credential_id': cred.credential_id,

2.2. User Guide 119

DataRobot Python API Documentation, Release 3.2.2

BigQuery output

Same as for the input, this requires you to create a GCS Credential to access BigQuery:

get to make sure it exists
credential_id = '5a8ac9ab0®7a57a0001be501f"
cred = dr.Credential.get(credential_id)

output_settings = {
"type': 'bigquery',

'dataset': 'dataset_name',
'table': 'table_name',
'bucket': 'bucket_in_gcs',

"credential_id': cred.credential_id,

Copying a previously submitted job

We provide a small utility function for submitting a job using parameters from a job previously submitted:
BatchPredictionJob.score_from_existing. The first parameter is the job id of another job.

import datarobot as dr
previously_submitted_job_id = '5dc5bl015e6e762a6241f9%aa’
dr.BatchPredictionlJob.score_from_existing(

previously_submitted_job_id,

)

Scoring an in-memory Pandas DataFrame

When working with DataFrames, we provide a method for scoring the data without first writing it to a CSV file and
subsequently reading the data back from a CSV file.

This will also take care of joining the computed predictions into the existing DataFrame.

Use the method BatchPredictionJob.score_pandas. The first parameter is the deployment ID and then the
DataFrame to score.

import datarobot as dr
import pandas as pd

deployment_id = '5dc5b1015e6e762a6241f9aa’
df = pd.read_csv('testdata/titanic_predict.csv')

job, df = dr.BatchPrediction]ob.score_pandas(deployment_id, df)

The method returns a copy of the job status and the updated DataFrame with the predictions added. So your DataFrame
will now contain the following extra columns:

e Survived_1_PREDICTION

120 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Survived_0_PREDICTION
Survived_PREDICTION
THRESHOLD
POSITIVE_CLASS

prediction_status

print(df)

PassengerId Pclass

Name

—PREDICTION THRESHOLD POSITIVE_CLASS

413

414

415

416

417

892 3 Kelly, Mr. James
0 0.5 1

893 3 Wilkes, Mrs. James (Ellen Needs)
1 0.5 1

894 2 Myles, Mr. Thomas Francis
0 0.5 1

895 3 Wirz, Mr. Albert
0 0.5 1

896 3 Hirvonen, Mrs. Alexander (Helga E Lindgvist)
1 0.5 1

1305 3 Spector, Mr. Woolf
0 0.5 1

1306 1 Oliva y Ocana, Dona. Fermina
0 0.5 1

1307 3 Saether, Mr. Simon Sivertsen
0 0.5 1

1308 3 Ware, Mr. Frederick
0 0.5 1

1309 3 Peter, Master. Michael J
1 0.5 1

[418 rows x 16 columns]

. Survived_

If you don’t want all of them or if you're not happy with the names of the added columns, they can be modified using
column remapping:

import datarobot as dr
import pandas as pd

deployment_id = '5dc5b1015e6e762a6241f9aa’

df = pd.read_csv('testdata/titanic_predict.csv')

job, df = dr.BatchPrediction]ob.score_pandas(

deployment_id,

df,

column_names_remapping={
'Survived_1_PREDICTION': None,
'Survived_0O_PREDICTION': None,

discard column
discard column

'Survived_PREDICTION': 'predicted', # rename column

'"THRESHOLD': None,

discard column

(continues on next page)

2.2. User Guide

121

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'"POSITIVE_CLASS': None, # discard column
1,

Any column mapped to None will be discarded. Any column mapped to a string will be renamed. Any column not
mentioned will be kept in the output untouched. So your DataFrame will now contain the following extra columns:

* predicted
* prediction_status

Refer to the documentation for BatchPredictionJob. score for the full range of available options.

Batch Prediction Job Definitions

To submit a working Batch Prediction job, you must supply a variety of elements to the datarobot.models.
BatchPredictionJob.score() request payload depending on what type of prediction is required. Additionally,
you must consider the type of intake and output adapters used for a given job.

Every time a new Batch Prediction is created, the same amount of information must be stored somewhere outside of
DataRobot and re-submitted every time.

For example, a request could look like:

import datarobot as dr
deployment_id = "5dc5b1015e6e762a6241f9aa"
job = dr.BatchPrediction]ob.score(

deployment_id,
intake_settings={

"type": "s3",

"url": "s3://bucket/container/file.csv",

"credential_id": "5dc5b1015e6e762a6241f9bb"
1,
output_settings={

"type": "s3",

"url": "s3://bucket/container/output.csv",

"credential_id": "5dc5b1015e6e762a6241f9bb"
1,

)
job.wait_for_completion()

with open("./predicted.csv", "wb") as f:
job.download(f)

122 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Job Definitions

If your use case requires the same, or close to the same, type of prediction to be done multiple times, you can choose
to create a Job Definition of the Batch Prediction job and store this inside DataRobot for future use.

The method for creating job definitions is identical to the existing datarobot.models.BatchPredictionJob.
score() method, except for the addition of a enabled, name and schedule parameter: datarobot.models.
BatchPredictionJobDefinition.create()

>>> import datarobot as dr
>>> job_spec = {
"num_concurrent": 4,
"deployment_id": "5dc5b1015e6e762a6241f9%aa",
"intake_settings": {

"url": "s3://foobar/123",

"type": "s3",

"format": "csv",

"credential_id": "5dc5b1015e6e762a6241£f9bb"
1,
"output_settings": {

"url": "s3://foobar/123",

"type": "s3",

"format": "csv",

"credential_id": "5dc5b1015e6e762a6241f9bb"
. 1,
"
>>> definition = BatchPredictionJobDefinition.create(
enabled=False,
batch_prediction_job=job_spec,
name="some_definition_name",
.. schedule=None

.)

>>> definition
BatchPredictionJobDefinition(foobar)

Note: The name parameter must be unique across your organization. If you attempt to create multiple definitions
with the same name, the request will fail. If you wish to free up a name, you must first datarobot.models.
BatchPredictionJobDefinition.delete() the existing definition before creating this one. Alternatively you can
just datarobot.models.BatchPredictionJobDefinition.update () the existing definition with a new name.

Executing a job definition
Manual job execution

To submit a stored job definition for scoring, you can either do so on a scheduled basis, described below, or manually
submit the definition ID using datarobot.models.BatchPredictionJobDefinition.run_once(), as such:

>>> import datarobot as dr

>>> definition = dr.BatchPredictionJobDefinition.get("5dc5b1015e6e762a6241f9aa")
>>> job = definition.run_once()

>>> job.wait_for_completion()

2.2. User Guide 123

DataRobot Python API Documentation, Release 3.2.2

Scheduled job execution

A Scheduled Batch Prediction job works just like a regular Batch Prediction job, except DataRobot handles the execution
of the job.

In order to schedule the execution of a Batch Prediction job, a definition must first be created, us-
ing datarobot.models.BatchPredictionjobDefinition.create(), or updated, using datarobot.models.
BatchPredictionJobDefinition.update (), where enabled is set to True and a schedule payload is provided.

Alternatively, you can use a short-hand version with datarobot.models.BatchPredictionJobDefinition.
run_on_schedule() as such:

>>> import datarobot as dr
>>> schedule = {
"day_of_week": [
1
1,
"month": [
1,
"hour": [
16
]1
"minute": [
0
1,
"day_of_month": [
1
..]
-
>>> definition = dr.BatchPredictionJob.get("5dc5b1015e6e762a6241f9aa™)
>>> job = definition.run_on_schedule(schedule)

If the created job was not enabled previously, this method will also enable it.

The Schedule payload

The schedule payload defines at what intervals the job should run, which can be combined in various ways to construct
complex scheduling terms if needed. In all of the elements in the objects, you can supply either an asterisk ["*"]
denoting “every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a specific interval.

124 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Table 1: The schedule payload elements

Key

Possible values

Example

Description

minute

["*"]or [0 ...

59]

[15, 30, 45]

The job will
run at these
minute val-
ues for every
hour of the
day.

hour

["*"Jor [0 ...

23]

[12,23]

The hour(s)
of the day
that the job
will run.

month

["*"Jor[1 ...

12]

["jan"]

Strings, ei-
ther 3-letter
abbreviations
or the full
name of the
month, can
be used inter-
changeably

(e.g., “jan” or
“october”).

Months that
are not com-
patible with

day_of_month

are ignored,
for example {

"day_of_mont

" [311,
"month": [
"feb"]}.

day_of_week

["*"] or [® ...

(Sunday=0)

6] where

["sun"]

The day(s) of
the week that
the job will
run. Strings,
either 3-letter
abbrevia-

tions or the
full name
of the day,
can be used
interchange-
ably (e.g.,
“sunday”,

“Sunday”,

“sun”, or
“Sun”, all
map to [0]).
NOTE: This
field is ad-
ditive with
day_of_month

meaning the
iob will

2.2. User Guide

job will
run botRS
on the date
specified by
day_of_month

17

DataRobot Python API Documentation, Release 3.2.2

Disabling a scheduled job

Job definitions are only be executed by the scheduler if enabled is set to True. If you have a
job definition that was previously running as a scheduled job, but should now be stopped, simply
datarobot.models.BatchPredictionJobDefinition.delete() to remove it completely, or datarobot.
models.BatchPredictionJobDefinition.update() it with enabled=False if you want to keep the definition,
but stop the scheduled job from executing at intervals. If a job is currently running, this will finish execution regardless.

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.get("5dc5b1015e6e762a6241f9aa")
>>> definition.delete()

2.2.4 MLOps

DataRobot MLOps provides a central hub to deploy, monitor, manage, and govern all your models in production.

Deployments

Deployment is the central hub for users to deploy, manage and monitor their models.

Manage Deployments

The following commands can be used to manage deployments.

Create a Deployment

A new deployment can be created from:
¢ DataRobot model - use create_from_learning model ()

* Custom model version with dependency management - use create_from_custom_model_version(). Please
refer to Custom Model documentation on how to create a custom model version

When creating a new deployment, a DataRobot model_id/custom_model_image_id and label must be provided.
A description can be optionally provided to document the purpose of the deployment.

The default prediction server is used when making predictions against the deployment, and is a requirement for creating
a deployment on DataRobot cloud. For on-prem installations, a user must not provide a default prediction server and
a pre-configured prediction server will be used instead. Refer to datarobot.PredictionServer.list for more
information on retrieving available prediction servers.

import datarobot as dr

project = dr.Project.get('5506fcd38bd88£5953219dad")
model = project.get_models()[0]
prediction_server = dr.PredictionServer.list()[0]

deployment = dr.Deployment.create_from_learning_model (
model.id, label='New Deployment', description='A new deployment',
default_prediction_server_id=prediction_server.id)

deployment

>>> Deployment ('New Deployment")

126 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

List Deployments

Use the following command to list deployments a user can view.

import datarobot as dr

deployments = dr.Deployment.list()
deployments
>>> [Deployment('New Deployment'), Deployment('Previous Deployment')]

Refer to Deployment for properties of the deployment object.

You can also filter the deployments that are returned by passing an instance of the DeploymentListFilters class to
the filters keyword argument.

import datarobot as dr

filters = dr.models.deployment.DeploymentListFilters(
role="OWNER",
accuracy_health=dr.enums.DEPLOYMENT_ACCURACY_HEALTH_STATUS.FAILING
)
deployments = dr.Deployment.list(filters=filters)
deployments
>>> [Deployment('Deployment Owned by Me w/ Failing Accuracy 1'), Deployment('Deployment.
—Owned by Me w/ Failing Accuracy 2')]

Retrieve a Deployment

It is possible to retrieve a single deployment with its identifier, rather than list all deployments.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
deployment.id

>>> '5c939e08962d741e34£609f0"

deployment.label

>>> 'New Deployment'

Refer to Deployment for properties of the deployment object.

Update a Deployment

Deployment’s label and description can be updated.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
deployment .update(label="new label')

2.2. User Guide 127

DataRobot Python API Documentation, Release 3.2.2

Delete a Deployment

To mark a deployment as deleted, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
deployment.delete()

Activate or deactivate a Deployment

To activate a deployment, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
deployment.activate()

deployment.status

>>> 'active'

To deactivate a deployment, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
deployment.deactivate()

deployment.status

>>> 'inactive'

Make batch predictions with a deployment

DataRobot provides a small utility function to make batch predictions using a deployment: Deployment.
predict_batch.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")

To note: “source’ can be a file path, a file, or a pandas DataFrame

prediction_results_as_dataframe = deployment.predict_batch(
source="./my_local_file.csv",

)

128 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Model Replacement

A deployment’s model can be replaced effortlessly with zero interruption of predictions.

Model replacement is an asynchronous process, which means some preparatory work may be performed after the initial
request is completed. Predictions made against this deployment will start using the new model as soon as the request
is completed. There will be no interruption for predictions throughout the process. The replace_model () function
won’t return until the asynchronous process is fully finished.

Alongside the identifier of the new model, a reason is also required. The reason is stored in model history of the
deployment for bookkeeping purpose. An enum MODEL_REPLACEMENT_REASON is provided for convenience, all
possible values are documented below:

» MODEL_REPLACEMENT_REASON.ACCURACY

* MODEL_REPLACEMENT_REASON.DATA_DRIFT

* MODEL_REPLACEMENT_REASON.ERRORS

» MODEL_REPLACEMENT_REASON.SCHEDULED_REFRESH
MODEL_REPLACEMENT_REASON.SCORING_SPEED
MODEL_REPLACEMENT_REASON.OTHER

Here is an example of model replacement:

import datarobot as dr
from datarobot.enums import MODEL_REPLACEMENT_REASON

project = dr.Project.get('5cc899abc191a20104ff446a')
model = project.get_models()[0]

deployment = Deployment.get(deployment_id="'5c939e08962d741e34£f609f0")
deployment .model['id'], deployment.model['type']
>>> ('5c0a979859b00004ba52e431', 'Decision Tree Classifier (Gini)')

deployment.replace_model ('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.ACCURACY)
deployment .model['id'], deployment.model['type']
>>> ('5c0a969859b00004ba52e41b', 'Support Vector Classifier (Linear Kernel)')

Validation

Before initiating the model replacement request, it is usually a good idea to use the validate_replacement_model ()
function to validate if the new model can be used as a replacement.

The validate_replacement_model () function returns the validation status, a message and a checks dictionary. If
the status is ‘passing’ or ‘warning’, use replace_model () to perform model the replacement. If status is ‘failing’,
refer to the checks dict for more details on why the new model cannot be used as a replacement.

import datarobot as dr

project = dr.Project.get('5cc899abc191a20104ff446a')

model = project.get_models()[0]

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")

status, message, checks = deployment.validate_replacement_model (new_model_id=model.id)
status

(continues on next page)

2.2. User Guide 129

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> 'passing'

“checks® can be inspected for detail, showing two examples here:
checks['target']

>>> {'status': 'passing', 'message': 'Target is compatible.'}

checks['permission']

>>> {'status': 'passing', 'message': 'User has permission to replace model.'}
Monitoring

Deployment monitoring can be categorized into several area of concerns:
 Service Stats & Service Stats Over Time
e Accuracy & Accuracy Over Time

With a Deployment object, get functions are provided to allow querying of the monitoring data. Alternatively, it is
also possible to retrieve monitoring data directly using a deployment ID. For example:

from datarobot.models import Deployment, ServiceStats
deployment_id = '5c939e08962d741e34£609£0"

call ‘get® functions on a ‘Deployment” object
deployment = Deployment.get(deployment_id)

service_stats = deployment.get_service_stats()

directly fetch without a "Deployment” object
service_stats = ServiceStats.get(deployment_id)

When querying monitoring data, a start and end time can be optionally provided, will accept either a datetime object
or a string. Note that only top of the hour datetimes are accepted, for example: 2019-08-01T00:00:00Z. By default,
the end time of the query will be the next top of the hour, the start time will be 7 days before the end time.

In the over time variants, an optional bucket_size can be provided to specify the resolution of time buckets. For ex-
ample, if start time is 20719-08-01T00:00:00Z, end time is 2019-08-02T00: 00 : 00Z and bucket_size is T1H, then 24
time buckets will be generated, each providing data calculated over one hour. Use construct_duration_string()
to help construct a bucket size string.

Note: The minimum bucket size is one hour.

Service Stats

Service stats are metrics tracking deployment utilization and how well deployments respond to prediction requests.
Use SERVICE_STAT_METRIC.ALL to retrieve a list of supported metrics.

ServiceStats retrieves values for all service stats metrics; ServiceStatsOverTime can be used to fetch how one
single metric changes over time.

from datetime import datetime
from datarobot.enums import SERVICE_STAT_METRIC

(continues on next page)

130 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment

deployment = Deployment.get(deployment_id='5c939e08962d741e34£609f0"')
service_stats = deployment.get_service_stats(
start_time=datetime (2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15)
)
service_stats[SERVICE_STAT_METRIC.TOTAL_PREDICTIONS]
>>> 12597

total_predictions = deployment.get_service_stats_over_time(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
bucket_size=construct_duration_string(days=1),
metric=SERVICE_STAT_METRIC.TOTAL_PREDICTIONS

)

total_predictions.bucket_values

>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1610),
(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 2249),
(datetime.datetime(2019, 8, 3, 15, 0, tzinfo=tzutc()), 254),
(datetime.datetime(2019, 8, 4, 15, 0, tzinfo=tzutc()), 943),
(datetime.datetime(2019, 8, 5, 15, 0, tzinfo=tzutc()), 1967),
(datetime.datetime(2019, 8, 6, 15, 0, tzinfo=tzutc()), 2810),
(datetime.datetime(2019, 8, 7, 15, 0, tzinfo=tzutc()), 2775)])

Data Drift

Data drift describe how much the distribution of target or a feature has changed comparing to the training data. Deploy-
ment’s target drift and feature drift can be retrieved separately using datarobot.models.deployment. TargetDrift
and datarobot.models.deployment.FeatureDrift. Use DATA_DRIFT_METRIC.ALL to retrieve a list of sup-
ported metrics.

from datetime import datetime
from datarobot.enums import DATA_DRIFT_METRIC
from datarobot.models import Deployment, FeatureDrift

deployment = Deployment.get(deployment_id='5c939e08962d741e34£609f0"')
target_drift = deployment.get_target_drift(

start_time=datetime(2019, 8, 1, hour=15),

end_time=datetime(2019, 8, 8, hour=15)
)
target_drift.drift_score
>>> 0.00408514

feature_drift_data = FeatureDrift.list(
deployment_id="'5c939e08962d741e34£f609f0",
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
metric=DATA_DRIFT_METRIC.HELLINGER

(continues on next page)

2.2. User Guide 131

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

feature_drift = feature_drift_data[0]
feature_drift.name

>>> 'age'

feature_drift.drift_score

>>> 4.16981594

Predictions Over Time

Predictions over time gives insight on how deployment’s prediction response has changed over time. Different data can
be retrieved in each bucket, depending on deployment’s target type:

* row_count: number of rows in the bucket, available for all target types
* mean_predicted_value: mean of predicted value for all rows in the bucket, available for regression target type

* mean_probabilities: mean of predicted probability for each class, available for binary or multiclass classification
target types

* class_distribution: count and percent of predicted class labels, available for binary or multiclass classification
target types

* percentiles: 10th and 90th percentile of predicted value or positive class probability, available for regression and
binary target type

from datetime import datetime
from datarobot.enums import BUCKET_SIZE
from datarobot.models import Deployment

deployment with regression target type
deployment = Deployment.get(deployment_id='5c939e08962d741e34£609f0")
predictions_over_time = deployment.get_predictions_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 30),
bucket_size=BUCKET_SIZE.P1D,
)
predicted = [bucket['mean_predicted_value'] for bucket in predictions_over_time.buckets]
predicted
>>> [0.3772, 0.6642,, 0.7937]

deployment with binary target type
deployment = Deployment.get(deployment_id='62fff28a0f5fee488587ce92")
predictions_over_time = deployment.get_predictions_over_time(
start_time=datetime(2023, 4, 1),
end_time=datetime (2023, 4, 22),
bucket_size=BUCKET_SIZE.P7D,
)
predicted = [
{item['class_name']: item['value'] for item in bucket['mean_probabilities']}.get(
—'True')
for bucket in predictions_over_time.buckets
]
predicted
>>> [0.3955, 0.4274, None]

132 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Accuracy

A collection of metrics are provided to measure the accuracy of a deployment’s predictions. For deployments with clas-
sification model, use ACCURACY_METRIC.ALL_CLASSIFICATION for all supported metrics; in the case of deployment
with regression model, use ACCURACY_METRIC.ALL_REGRESSION instead.

Similarly with Service Stats, Accuracy and AccuracyOverTime are provided to retrieve all default accuracy metrics
and how one single metric change over time.

from datetime import datetime

from datarobot.enums import ACCURACY_METRIC

from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment

deployment = Deployment.get(deployment_id='5c939e08962d741e34£609f0"')
accuracy = deployment.get_accuracy(

start_time=datetime (2019, 8, 1, hour=15),

end_time=datetime(2019, 8, 1, 15, ®)
)
accuracy [ACCURACY_METRIC.RUMSE]
>>> 943,225

rmse = deployment.get_accuracy_over_time(
start_time=datetime(2019, 8, 1),
end_time=datetime(2019, 8, 3),
bucket_size=construct_duration_string(days=1),
metric=ACCURACY_METRIC.RMSE

)

rmse.bucket_values

>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1777.190657),

(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 1613.140772)1)

It is also possible to retrieve how multiple metrics changes over the same period of time, enabling easier side by side
comparison across different metrics.

from datarobot.enums import ACCURACY_METRIC
from datarobot.models import Deployment

accuracy_over_time = AccuracyOverTime.get_as_dataframe(
ram_app.id, [ACCURACY_METRIC.RMSE, ACCURACY_METRIC.GAMMA_DEVIANCE, ACCURACY_METRIC.
—MAD])

Delete Data

Monitoring data accumulated on a deployment can be deleted using delete_monitoring_data(). A start and end
timestamp could be provided to limit data deletion to certain time period.

Warning: Monitoring data is not recoverable once deleted.

import datarobot as dr

(continues on next page)

2.2. User Guide 133

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
deployment.delete_monitoring_data(model_id=deployment.model['id"'])

Settings
Drift Tracking Settings

Drift tracking is used to help analyze and monitor the performance of a model after it is deployed. When the model of
a deployment is replaced drift tracking status will not be altered.

Use get_drift_tracking_settings() to retrieve the current tracking status for target drift and feature drift.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
settings = deployment.get_drift_tracking_settings()

settings

>>> {'target_drift': {'enabled': True}, 'feature_drift': {'enabled': True}}

Use update_drift_tracking_settings() to update target drift and feature drift tracking status.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
deployment.update_drift_tracking_settings(target_drift_enabled=True, feature_drift_
—enabled=True)

Association ID Settings

Association ID is used to identify predictions, so that when actuals are acquired, accuracy can be calculated.

Use get_association_id_settings() to retrieve current association ID settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609{f0")

settings = deployment.get_association_id_settings()

settings

>>> {'column_names': ['application_id'], 'required_in_prediction_requests': True}

Use update_association_id_settings () to update association ID settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
deployment.update_association_id_settings(column_names=['application_id'], required_in_
—prediction_requests=True)

134 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Predictions By Forecast Date

Forecast date setting for the deployment.

Use get_predictions_by_forecast_date_settings() to retrieve current predictions by forecast date settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")

settings = deployment.get_predictions_by_forecast_date_settings()

settings

>>> {'enabled': False, 'column_name': 'date (actual)', 'datetime_format': '%Y-%m-%d'}

Use update_predictions_by_forecast_date_settings() to update predictions by forecast date settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609{f0")

deployment .update_predictions_by_forecast_date_settings(
enable_predictions_by_forecast_date=True,
forecast_date_column_name='date (actual)',
forecast_date_format="%Y-%m-%d")

Challenger Models Settings

Challenger models can be used to compare the currently deployed model (the “champion” model) to another model.

Use get_challenger_models_settings() to retrieve current challenger model settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
settings = deployment.get_challenger_models_settings()

settings

>>> {'enabled': False}

Use update_challenger_models_settings() to update challenger models settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
deployment .update_challenger_models_settings(challenger_models_enabled=True)

Segment Analysis Settings

Segment analysis is a deployment utility that filters data drift and accuracy statistics into unique segment attributes and
values.

Use get_segment_analysis_settings() to retrieve current segment analysis settings.

import datarobot as dr

(continues on next page)

2.2. User Guide 135

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
settings = deployment.get_segment_analysis_settings()

settings

>>> {'enabled': False, 'attributes': []}

Use update_segment_analysis_settings() to update segment analysis settings. Any categorical column can be
a segment attribute.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")

deployment .update_segment_analysis_settings(
segment_analysis_enabled=True,
segment_analysis_attributes=["country_code", "is_customer"])

Predictions Data Collection Settings

Predictions Data Collection configures whether prediction requests and results should be saved to Predictions Data
Storage.

Use get_predictions_data_collection_settings() to retrieve current settings of predictions data collection.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
settings = deployment.get_predictions_data_collection_settings()
settings

>>> {'enabled': True}

Use update_predictions_data_collection_settings() to update predictions data collection settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")
deployment.update_predictions_data_collection_settings(enabled=True)

Prediction Warning Settings

Prediction Warning is used to enable Humble Al for a deployment which determines if a model is misbehaving when
a prediction goes outside of the calculated boundaries.

Use get_prediction_warning_settings() to retrieve the current prediction warning settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609{f0")
settings = deployment.get_prediction_warning_settings()

settings

>>> {{'enabled': True}, 'custom_boundaries': {'upper': 1337, 'lower': 0}}

Use update_prediction_warning_settings () to update current prediction warning settings.

136 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

Set custom boundaries
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609£f0")
deployment.update_prediction_warning_settings(
prediction_warning_enabled=True,
use_default_boundaries=False,
lower_boundary=1337,
upper_boundary=2000,
)

Reset boundaries

deployment .update_prediction_warning_settings(
prediction_warning_enabled=True,
use_default_boundaries=True,

Secondary Dataset Config Settings

The secondary dataset config for a deployed Feature discovery model can be replaced and retrieved.
Secondary dataset config is used to specify which secondary datasets to use during prediction for a given deployment.

Use update_secondary_dataset_config() to update the secondary dataset config

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")

config = deployment.update_secondary_dataset_config(secondary_dataset_config_id=
— '5f48cbh94408673683ecaldfab')

config

>>> '5f48ch94408673683ecalfab’

Use get_secondary_dataset_config() to get the secondary dataset config.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
config = deployment.get_secondary_dataset_config()

config

>>> '5£48ch94408673683ecalfab’

Share deployments

You can grant or revoke other users’ access to a deployment.

2.2. User Guide 137

DataRobot Python API Documentation, Release 3.2.2

Access levels

For deployments, there are 3 access levels:
OWNER - Allows all actions on a deployment.

USER - Can see the deployment in the DataRobot UI and see the prediction statistics of the deployment, but cannot edit
or delete the deployment.

CONSUMER - Can only make predictions on the deployment. Cannot see the deployment in the DataRobot UI or retrieve
prediction statistics for the deployment in the API.

Sharing

Use list_shared_roles() to get a list of users, groups, and organizations that currently have a role on the project.
Each role will be returned as a datarobot.models.deployment.DeploymentSharedRole.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0")
roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': '"OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
—'name': 'user@datarobot.com'},
{'role': 'USER', 'id': '5c939e08962d741e34f609f1', 'share_recipient_type': 'group',
< 'name': 'Example Group'},
{'role': 'CONSUMER', 'id': '5c939e08962d741e34f609f2', 'share_recipient_type':
—'organization', 'name': 'Example Org'}]

Use update_shared_roles() to grant and revoke roles on the deployment. This function takes a list
of datarobot.models.deployment.DeploymentGrantSharedRoleWithId and datarobot.models.
deployment.DeploymentGrantSharedRolellithUsername objects and updates roles accordingly.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34£609f0")

roles = deployment.list_shared_roles()

[role.to_dict() for role in roles]

>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
—'name': 'user@datarobot.com'}]

new_role = DeploymentGrantSharedRoleWithUsername (username="'user_2@datarobot.com', role=
— "OWNER")

response = deployment.update_shared_roles([new_role])

response.status_code

>>> 204

roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
—'name': 'user@datarobot.com'},

{'role': 'OWNER', 'id': '5c939e08962d741e34f609f1', 'share_recipient_type': 'user',
—'name': 'user_2@datarobot.com'}]

(continues on next page)

138 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

revoke_role = DeploymentGrantSharedRoleWithUsername (username="'user_2@datarobot.com',.
—role="NO_ROLE")

response = deployment.update_shared_roles([revoke_role])

response.status_code

>>> 204

roles = deployment.list_shared_roles()

[role.to_dict() for role in roles]

>>> [{'role': '"OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
< 'name': 'user@datarobot.com'}]

Custom Models

Custom models provide users the ability to run arbitrary modeling code in an environment defined by the user.

Manage Execution Environments

Execution Environment defines the runtime environment for custom models. Execution Environment Version is a
revision of Execution Environment with an actual runtime definition. Please refer to DataRobot User Models (https:
//github.com/datarobot/datarobot-user-models) for sample environments.

Create Execution Environment

To create an Execution Environment run:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",

execution_environment.id
>>> '5b6b2315ca36c0108fc5d41b’

There are 2 ways to create an Execution Environment Version: synchronous and asynchronous.

Synchronous way means that program execution will be blocked until an Execution Environment Version creation
process is finished with either success or failure:

import datarobot as dr
use execution_environment created earlier

environment_version = dr.ExecutionEnvironmentVersion.create(
execution_environment.id,
docker_context_path="datarobot-user-models/public_dropin_environments/python3_pytorch

—

max_wait=3600, # 1 hour timeout

(continues on next page)

2.2. User Guide 139

https://github.com/datarobot/datarobot-user-models
https://github.com/datarobot/datarobot-user-models

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

environment_version.id

>>> '5eb538959bc057003b487b2d’
environment_version.build_status
>>> 'success'

Asynchronous way means that program execution will be not blocked, but an Execution Environment Version created
will not be ready to be used for some time, until its creation process is finished. In such case, it will be required to
manually call refresh() for the Execution Environment Version and check if its build_status is “success”. To create
an Execution Environment Version without blocking a program, set max_wait to None:

import datarobot as dr
use execution_environment created earlier

environment_version = dr.ExecutionEnvironmentVersion.create(
execution_environment.id,
docker_context_path="datarobot-user-models/public_dropin_environments/python3_pytorch
o

max_wait=None, # set None to not block execution on this method

environment_version.id

>>> '5eb538959bc057003b487b2d’
environment_version.build_status
>>> 'processing'

after some time
environment_version.refresh()
environment_version.build_status
>>> 'success'

If your environment requires additional metadata to be supplied for models using it, you can create an environment
with additional metadata keys. Custom model versions that use this environment must specify values for these keys
before they can be used to run tests or make deployments. The values will be baked in as environment variables with
field_name as the environment variable name.

import datarobot as dr
from datarobot.models.execution_environment import RequiredMetadataKey

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",
required_metadata_keys=[
RequiredMetadataKey(field_name="MY_VAR", display_name="A value needed by hte.
—environment")

1,

model_version = dr.CustomModelVersion.create_clean(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,

(continues on next page)

140 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

folder_path=custom_model_folder,
required_metadata={"MY_VAR": "a value"}

List Execution Environments

Use the following command to list execution environments available to the user.

import datarobot as dr

execution_environments = dr.ExecutionEnvironment.list()

execution_environments

>>> [ExecutionEnvironment (' [DataRobot] Python 3 PyTorch Drop-In'), ExecutionEnvironment (
- ' [DataRobot] Java Drop-In')]

environment_versions = dr.ExecutionEnvironmentVersion.list(execution_environment.id)
environment_versions
>>> [ExecutionEnvironmentVersion('vl')]

Refer to ExecutionEnvironment for properties of the execution environment object and
ExecutionEnvironmentVersion for properties of the execution environment object version.

You can also filter the execution environments that are returned by passing a string as search_for parameter - only the
execution environments that contain the passed string in name or description will be returned.

import datarobot as dr

execution_environments = dr.ExecutionEnvironment.list(search_for="'java')
execution_environments
>>> [ExecutionEnvironment (' [DataRobot] Java Drop-In')]

Execution environment versions can be filtered by build status.

import datarobot as dr

environment_versions = dr.ExecutionEnvironmentVersion.list(

execution_environment.id, dr.EXECUTION_ENVIRONMENT_VERSION_BUILD_STATUS.PROCESSING
)
environment_versions
>>> [ExecutionEnvironmentVersion('vl')]

Retrieve Execution Environment

To retrieve an execution environment and an execution environment version by identifier, rather than list all available
ones, do the following:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
—'5506fcd38bd88£5953219da0d ")

(continues on next page)

2.2. User Guide 141

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

execution_environment
>>> ExecutionEnvironment('[DataRobot] Python 3 PyTorch Drop-In')

environment_version = dr.ExecutionEnvironmentVersion.get(
execution_environment_id=execution_environment.id, version_id=

— '5eb538959bc0®57003b487b2d")

environment_version

>>> ExecutionEnvironmentVersion('vl')

Update Execution Environment

To update name and/or description of the execution environment run:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
—"'5506fcd38bd88£5953219da0d ")
execution_environment.update(name="new name', description='new description')

Delete Execution Environment

To delete the execution environment and execution environment version, use the following commands.

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
—'5506fcd38bd88£5953219dad ")
execution_environment.delete()

Get Execution Environment build log

To get execution environment version build log run:

import datarobot as dr

environment_version = dr.ExecutionEnvironmentVersion.get(
execution_environment_id="'5506fcd38bd88£5953219da®"', version_id=

< '5eb538959bc0®57003b487b2d")

log, error = environment_version.get_build_log()

142 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Manage Custom Models

Custom Inference Model is user-defined modeling code that supports making predictions against it. Custom Inference
Model supports regression and binary classification target types.

To upload actual modeling code Custom Model Version must be created for a custom model. Please see Custom Model
Version documentation.

Create Custom Inference Model

To create a regression Custom Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(

name="Python 3 PyTorch Custom Model',

target_type=dr.TARGET_TYPE.REGRESSION,

target_name="MEDV"',

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on boston housing',

language="python'
)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b’

When creating a binary classification Custom Inference Model, positive_class_label and negative_class_label must be
set:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(

name="Python 3 PyTorch Custom Model',

target_type=dr.TARGET_TYPE.BINARY,

target_name='readmitted',

positive_class_label="False"',

negative_class_label="True',

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on 10k_diabetes dataset',

language="'Python 3'
)

custom_model .id
>>> '5b6b2315ca36c0108fc5d41b’

When creating a multiclass classification Custom Inference Model, class_labels must be provided:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name="Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.MULTICLASS,
target_name='readmitted’,

(continues on next page)

2.2. User Guide 143

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

class_labels=['hot dog', 'burrito', 'hoagie', 'reuben'],

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on sandwich dataset',

language="'Python 3'
)

custom_model .id
>>> '5b6b2315ca36c0108fc5d41b’

For convenience when there are many class labels, multiclass labels can also be provided as a file. The file should have
all the class labels separated by newline:

import datarobot as dr

custom_model = dr.CustomInferencelModel.create(

name="Python 3 PyTorch Custom Model',

target_type=dr.TARGET_TYPE.MULTICLASS,

target_name='readmitted',

class_labels_file="'/path/to/classlabels.txt"',

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on sandwich dataset',

language="Python 3'
)

custom_model .id
>>> '5b6b2315ca36c0108fc5d41b’

For unstructured model farget_name parameter is optional and is ignored if provided. To create an unstructured Custom
Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name="'Python 3 Unstructured Custom Model',
target_type=dr.TARGET_TYPE.UNSTRUCTURED,
description='This is a Python3-based unstructured model',
language="python'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b’

For anomaly detection models, the farget_name parameter is also optional and is ignored if provided. To create an
anomaly Custom Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferencelModel.create(
name='Python 3 Unstructured Custom Model',
target_type=dr.TARGET_TYPE.ANOMALY,
description='This is a Python3-based anomaly detection model',
language="python'

(continues on next page)

144 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b’

To create a Custom Inference Model with specific k8s resources:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(

name="'Python 3 PyTorch Custom Model',

target_type=dr.TARGET_TYPE.BINARY,

target_name='readmitted',

positive_class_label="False"',

negative_class_label="True"',

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on 10k_diabetes dataset',

language="Python 3',

maximum_memory=512*1024*1024,

Custom Inference Model k8s resources are optional and unless specifically provided, the configured defaults will be
used.

To create a Custom Inference Model enabling training data assigment on the model version level, provide
is_training_data_for_versions_permanently_enabled=True parameter. For more information, refer to Cus-
tom model version creation with training data documentation.

import datarobot as dr

custom_model = dr.CustomInferencelModel.create(

name="Python 3 PyTorch Custom Model',

target_type=dr.TARGET_TYPE.REGRESSION,

target_name="MEDV"',

description='This is a Python3-based custom model. It has a simple PyTorch model..
—built on boston housing',

language="python',

is_training data_for_versions_permanently_enabled=True

)

custom_model .id
>>> '5b6b2315ca36c0108fc5d41b’

List Custom Inference Models

Use the following command to list Custom Inference Models available to the user:

import datarobot as dr

dr.CustomInferenceModel.list()
>>> [CustomInferenceModel ('my model 2'), CustomInferenceModel('my model 1')]

use these parameters to filter results:

(continues on next page)

2.2. User Guide 145

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.CustomInferenceModel.list(
is_deployed=True, # set to return only deployed models

order_by="'-updated', # set to define order of returned results
search_for="model 1', # return only models containing 'model 1' in name or.
—description

)

>>> CustomInferenceModel ('my model 1'")

Please refer to 1ist () for detailed parameter description.

Retrieve Custom Inference Model

To retrieve a specific Custom Inference Model, run:

import datarobot as dr

dr.CustomInferenceModel.get('5ebe95044024035cc6a65602")
>>> CustomInferenceModel ('my model 1")

Update Custom Model

To update Custom Inference Model properties execute the following:

import datarobot as dr
custom_model = dr.CustomInferenceModel.get('5ebe95044024035cc6a65602")
custom_model .update(

name='new name',
description="new description',

Please, refer to update () for the full list of properties that can be updated.

Download latest revision of Custom Inference Model

To download content of the latest Custom Model Version of CustomlInferenceModel as a ZIP archive:

import datarobot as dr
path_to_download = '/home/user/Documents/myModel.zip"
custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b')

custom_model .download_latest_version(path_to_download)

146 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Assign training data to Custom Inference Model

This example assigns training data on the model level. To assign training data on the model version level, see the
Custom model version creation with training data documentation.

To assign training data to Custom Inference Model, run:

import datarobot as dr

path_to_dataset = '/home/user/Documents/trainingDataset.csv'’
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b')

custom_model .assign_training_data(dataset.id)

To assign training data without blocking a program, set max_wait to None:

import datarobot as dr

path_to_dataset = '/home/user/Documents/trainingDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b")

custom_model.assign_training_data(
dataset.id,
max_wait=None

custom_model . training_data_assignment_in_progress
>>> True

after some time

custom_model .refresh()

custom_model . training_data_assignment_in_progress
>>> False

Note: training data must be assigned to retrieve feature impact from Custom Model Version. Please see to Custom
Model Version documentation.

Manage Custom Model Versions

Modeling code for Custom Inference Models can be uploaded by creating a Custom Model Version. When creating
a Custom Model Version, the version must be associated with a base execution environment. If the base environment
supports additional model dependencies (R or Python environments) and the Custom Model Version contains a valid
requirements.txt file, the model version will run in an environment based on the base environment with the additional
dependencies installed.

2.2. User Guide 147

DataRobot Python API Documentation, Release 3.2.2

Create Custom Model Version

Upload actual custom model content by creating a clean Custom Model Version:

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"

add files from the folder to the custom model

model_version = dr.CustomModelVersion.create_clean(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,
folder_path=custom_model_folder,

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b’

or add a list of files to the custom model

model_version_2 = dr.CustomModelVersion.create_clean(
custom_model_id=custom_model.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],

)

and/or set k8s resources to the custom model

model_version_3 = dr.CustomModelVersion.create_clean(
custom_model_id=custom_model.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],
network_egress_policy=dr.NETWORK_EGRESS_POLICY.PUBLIC,
maximum_memory=512*1024%1024,
replicas=1,

To create a new Custom Model Version from a previous one, with just some files added or removed, do the following:

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"
file_to_delete = model_version_2.items[0].id

model_version_3 = dr.CustomModelVersion.create_from_previous(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],
files_to_delete=[file_to_delete],

Please refer to CustomModelFileItem for description of custom model file properties.

To create a new Custom Model Version from a previous one, with just new k8s resources values, do the following:

148 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"

file_to_delete = model_version_2.items[0].id

model_version_3 = dr.CustomModelVersion.create_from_previous(
custom_model_id=custom_model.id,

base_environment_id=execution_environment.id,
maximum_memory=1024*1024*1024,

Create a custom model version with training data

Model version creation allows to provide training (and holdout) data information. Every custom model has to be
explicitly switched to allow training data assignment for model versions. Note that the training data assignment differs
for structured and unstructured models, and should be handled differently.

Enable training data assignment for custom model versions

By default, custom model training data is assigned on the model level; for more information, see the Custom model
training data assignment documentation. When training data is assigned to a model, the same training data is used for
every model version. This method of training data assignment is deprecated and scheduled for removal; however, to
avoid introducing issues for existing models, you must individually convert existing models to perform training data
assignment by model version. This change is permanent and can not be undone. Because the conversion process is
irreversible, it is highly recommended that you do not convert critical models to the new training data assignment
method. Instead, you should duplicate the existing model and test the new method.

To permanently enable training data assignment on the model version level for the specified model, do the following:
.. code-block:: python

import datarobot as dr
dr.Client(token=my_token, endpoint=endpoint)
custom_model = dr.CustomInferenceModel.get(custom_model_id)

custom_model.update(is_training_data_for_versions_permanently_enabled=True) cus-
tom_model.is_training_data_for_versions_permanently_enabled >>> True

Assign training data for structured models

Assign training data for structured models, you can provide the parameters training_dataset_id and partition_column.
Training data assignment is performed asynchronously, so you can create a version in a blocking or non-blocking way
(see examples).

Create a structured model version with blocking (default max_wait=600) and wait for the training data assignment
result.

If the training data assignment fails:

* a datarobot.errors.TrainingDataAssignmentError exception is raised. The exception contains the custom
model ID, the custom model version ID, the failure message.

2.2. User Guide 149

DataRobot Python API Documentation, Release 3.2.2

* anew custom model version is still created and can be fetched for further processing, but it’s not possible

to create a model package from it or deploy it.

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client (token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",
)
except TrainingDataAssignmentError as e:
print(e)

Fetching model version in the case of the assignment error, example 1:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client (token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbec6bad6dd",
)
except TrainingDataAssignmentError as e:
version = CustomModelVersion.get(
custom_model_id="6444482e5583f6ee2e572265",
custom_model_version_id=e.custom_model_version_id,
)
print(version.training_data.dataset_id)
print(version.training_data.dataset_version_id)
print(version.training_data.dataset_name)
print(version.training_data.assignment_error)

Fetching model version in the case of the assignment error, example 2:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)
custom_model = dr.CustomInferenceModel.get("'6444482e5583f6ee2e572265")

try:
version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",

(continues on next page)

150 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

except TrainingDataAssignmentError as e:
pass

custom_model .refresh()

version = custom_model.latest_version
print(version.training_data.dataset_id)
print(version.training_data.dataset_version_id)
print(version.training_data.dataset_name)
print(version.training_data.assignment_error)

Create a structured model version with a non-blocking (set max_wat=None) training data assignment. In this case, it
is the user’s responsibility to poll for version.training_data.assignment_in_progress. Once the assignment is finished,
check for errors if version.training_data.assignment_in_progress==False. If version.training_data.assignment_error
is None, then there is no error.

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",
max_wait=None,

while version.training_data.assignment_in_progress:
time.sleep(10)
version.refresh()

if version.training_data.assignment_error:
print(version.training_data.assignment_error["message"])

Assign training data for unstructured models

For unstructured models: you can provide the parameters training_dataset_id and holdout_dataset_id. The training
data assignment is performed synchronously and the max_wait parameter is ignored.

The example below shows how to create an unstructured model version with training and holdout data.

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbadbdd",
holdout_dataset_id="6421f2149a4f9blbecbadbef",

)

if version.training_data.assignment_error:
print(version.training_data.assignment_error["message"])

2.2. User Guide 151

DataRobot Python API Documentation, Release 3.2.2

Remove training data

By default, training and holdout data are copied to a new model version from the previous model version. If you don’t
want to keep training and holdout data for the new version, set keep_training_holdout_data to False.

import datarobot as dr
dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
keep_training_holdout_data=False,

List Custom Model Versions

Use the following command to list Custom Model Versions available to the user:

import datarobot as dr
dr.CustomModelVersion.list(custom_model.id)

>>> [CustomModelVersion('v2.0'), CustomModelVersion('v1.0')]

Retrieve Custom Model Version

To retrieve a specific Custom Model Version, run:

import datarobot as dr

dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
— '5ebe96b84024035cc6a6560b"')

>>> CustomModelVersion('v2.0")

Update Custom Model Version

To update Custom Model Version description execute the following:

import datarobot as dr

custom_model_version = dr.CustomModelVersion.get(
custom_model .id,
custom_model_version_id="'5ebe96b84024035cc6a6560b",

)

custom_model_version.update(description="new description')

(continues on next page)

152 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_version.description
>>> 'new description’

Download Custom Model Version

Download content of the Custom Model Version as a ZIP archive:

import datarobot as dr
path_to_download = '/home/user/Documents/myModel.zip’
custom_model_version = dr.CustomModelVersion.get(

custom_model.id,
custom_model_version_id="'5ebe96b84024035cc6ab560b",

custom_model_version.download(path_to_download)

Start Custom Model Inference Legacy Conversion

Custom model version may include SAS files, with a main program entrypoint. In order to be able to use this model it
is required to run a conversion. The conversion can later be fetched and examined by reading the conversion print-outs.
By default, a conversion is initiated in a non-blocking mode. If a max_wait parameter is provided, than the call is
blocked until the conversion is completed. The results can than be read by fetching the conversion entity.

import datarobot as dr

Read a custom model version

custom_model_version = dr.CustomModelVersion.get(model_id, model_version_id)

Find the main program item ID
main_program_item_id = None
for item in cm_ver.items:

if item.file_name.lower().endswith('.sas'):

main_program_item_id = item.id

Execute the conversion
if async:
This is a non-blocking call

conversion_id = dr.models.CustomModelVersionConversion.run_conversion(

custom_model_version.custom_model_id,

custom_model_version.id,
main_program_item_id,

else:

This call is blocked until a completion or a timeout

conversion_id = dr.models.CustomModelVersionConversion.run_conversion(

custom_model_version.custom_model_id,

custom_model_version.id,

(continues on next page)

2.2. User Guide

153

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

main_program_item_id,
max_wait=60,

Monitor Custom Model Inference Legacy Conversion Process

If a custom model version conversion was initiated in a non-blocking mode, it is possible to monitor the progress as
follows:

import datarobot as dr

while True:
conversion = dr.models.CustomModelVersionConversion.get(
custom_model_id, custom_model_version_id, conversion_id,

)

if conversion.conversion_in_progress:
logging.info('Conversion is in progress...')
time.sleep(1)

else:

if conversion.conversion_succeeded:
logging.info('Conversion succeeded')
else:
logging.error(f'Conversion failed!\n{conversion.log_message

break

Stop a Custom Model Inference Legacy Conversion

It is possible to stop a custom model version conversion that is in progress. The call is non-blocking and you may keep
monitoring the conversion progress (see above) until is it completed.

import datarobot as dr

dr.models.CustomModelVersionConversion.stop_conversion(
custom_model_id, custom_model_version_id, conversion_id,

Calculate Custom ModelVersion feature impact

To trigger calculation of Custom Model Version feature impact, training data must be assigned to a Custom Inference
Model. Please refer to Custom Inference Model documentation. If training data is assigned, run the following to trigger
the calculation of the feature impact:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
< '5ebe96b84024035cc6a6560b ')

version.calculate_feature_impact()

154 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

To trigger calculating feature impact without blocking a program, set max_wait to None:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
< '5ebe96b84024035cc6a6560b ')

version.calculate_feature_impact(max_wait=None)

Retrieve Custom Inference Image feature impact

To retrieve Custom Model Version feature impact, it must be calculated beforehand. Please refer to Custom Inference
Image feature impact documentation. Run the following to get feature impact:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
— '5ebe96b84024035cc6a6560b')

version.get_feature_impact()
>>> [{'featureName': 'B', 'impactNormalized': 1.0, 'impactUnnormalized': 1.
—1085356209402688, 'redundantWith': 'B'}...]

Preparing a Custom Model Version for Use

If your custom model version has dependencies, a dependency build must be completed before the model can be used.
The dependency build installs your model’s dependencies into the base environment associated with the model version.

Starting the Dependency Build

To start the Custom Model Version Dependency Build, run:

import datarobot as dr

build_info = dr.CustomModelVersionDependencyBuild.start_build(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
max_wait=3600, # 1 hour timeout

)

build_info.build_status
>>> 'success'

To start Custom Model Version Dependency Build without blocking a program until the test finishes, set max_wait to
None:

import datarobot as dr

build_info = dr.CustomModelVersionDependencyBuild.start_build(
custom_model_id=custom_model.id,

(continues on next page)

2.2. User Guide 155

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_version_id=model_version.id,
max_wait=None,

)

build_info.build_status
>>> 'submitted'

after some time
build_info.refresh()
build_info.build_status
>>> 'success'

In case the build fails, or you are just curious, do the following to retrieve the build log once complete:

print(build_info.get_log())

To cancel a Custom Model Version Dependency Build, simply run:

build_info.cancel()

Manage Custom Model Tests

A Custom Model Test represents testing performed on custom models.

Create Custom Model Test

To create Custom Model Test, run:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv’
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout

custom_model_test.overall_status
>>> 'succeeded'

or, with k&8s resources:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv’
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

(continues on next page)

156 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id-model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout
maximum_memory=1024%1024*1024,

custom_model_test.overall_status
>>> 'succeeded'

To start Custom Model Test without blocking a program until the test finishes, set max_wait to None:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv’
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=None,

custom_model _test.overall_status
>>> 'in_progress'

after some time
custom_model_test.refresh()
custom_model_test.overall_status
>>> 'succeeded'

Running a Custom Model Test uses the Custom Model Version’s base image with its dependencies installed as an
execution environment. To start Custom Model Test using an execution environment “as-is”, without the model’s
dependencies installed, supply an environment ID and (optionally) and environment version ID:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv’
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id-model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout

custom_model_test.overall_status
>>> 'succeeded'

In case a test fails, do the following to examine details of the failure:

2.2. User Guide 157

DataRobot Python API Documentation, Release 3.2.2

for name, test in custom_model_test.detailed_status.items():

print('Test: ' format (name))
print('Status: ' format(test['status']))
print('Message: '.format(test['message']))

print(custom_model_test.get_log())

To cancel a Custom Model Test, simply run:

custom_model_test.cancel()

To start Custom Model Test for an unstructured custom model, dataset details should not be provided:

import datarobot as dr

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,

List Custom Model Tests

Use the following command to list Custom Model Tests available to the user:

import datarobot as dr

dr.CustomModelTest.list(custom_model_id=custom_model.id)
>>> [CustomModelTest('5ec262604024031bed5aaal6’)]

Retrieve Custom Model Test

To retrieve a specific Custom Model Test, run:

import datarobot as dr

dr.CustomModelTest.get(custom_model test_id='5ec262604024031bed5aaal6")
>>> CustomModelTest('5ec262604024031bed5aaal6")

2.2.5 Administration

The administration section provides details for users and administrators.

158 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Credentials

Credentials for user with Database and Data Storage Connectivity can be stored by the system.

To interact with Credentials API, you should use the Credential class.

List credentials

In order to retrieve the list of all credentials accessible for current user you can use Credential.list.

import datarobot as dr

credentials = dr.Credential.list()

Each Credential object contains the credential_id string field which can be used e.g. in Batch Predictions.

Basic credentials

You can store generic user/password credentials:

>>> import datarobot as dr
>>> cred = dr.Credential.create_basic(
name="my_db_cred",
user='<user>"',
. password="<password>",

.)
>>> cred
Credential ('5e429d6ecf8a5f36¢c5693e0f', 'my_db_cred', 'basic'),

store cred.credential_id
>>> cred = dr.Credential.get(credential_id)

>>> cred.credential_id
'5e429d6ecf8a5£36c5693e0f"’

Stored credential can be used e.g. in Batch Bredictions for JDBC intake or output.

S3 credentials

You can store AWS credentials using the three parameters:
e aws_access_key_id
* aws_secret_access_key

¢ aws_session_token

>>> import datarobot as dr

>>> cred = dr.Credential.create_s3(
name="my_s3_cred',
aws_access_key_id="'<aws access key id>",
aws_secret_access_key="'<aws secret access key>',
aws_session_token='<aws session token>',

(continues on next page)

2.2. User Guide 159

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

.)
>>> cred
Credential ('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),

store cred.credential_id
>>> cred = dr.Credential.get(credential_id)

>>> cred.credential_id
'5e429d6ecf8a5£36c5693e03"'

Stored credential can be used e.g. in Batch Bredictions for S3 intake or output.

OAUTH credentials

You can store oauth credentials in the store:

>>> import datarobot as dr

>>> cred = dr.Credential.create_oauth(
name="my_oauth_cred',
token="'<token>",

. refresh_token='<refresh_token>"',
.)
>>> cred
Credential ('5e429d6ecf8a5f36c5693e0f', 'my_oauth_cred', 'oauth'),

store cred.credential_id
>>> cred = dr.Credential.get(credential_id)

>>> cred.credential_id
'5e429d6ecf8a5£36c5693e0f"’

Credential Data

For methods that accept credential data instead of user/password, or credential ID:

{
"credentialType": "basic",
"user": "userl23",
"password": '"passl23",

}

{
"credentialType": "s3",
"awsAccessKeyId": "keyl123",
"awsSecretAccessKey": "secret123",

}

{

"credentialType": "oauth",

(continues on next page)

160 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

"oauthRefreshToken": "tokenl23",
"oauthClientId": "client123",
"oauthClientSecret": "secret123",

Sharing
Once you have created entities in DataRobot, you may want to share them with collaborators. DataRobot provides an
API for sharing the following entities:

* Data Sources and Data Stores (see Database Connectivity for more info on connecting to JDBC databases)

* Datasets

* Projects

Calendar Files

Model Deployments (see Deployment Sharing for more information on sharing deployments)

e Use Cases (Sharing for Use Cases is slightly different than what’s documented on this page. See Use Case
Sharing for more information and examples.)

Access Levels

Entities can be shared at varying access levels. For example, you can allow someone to create projects from a data
source you have built without letting them delete it.

Each entity type uses slightly different permission names intended to convey more specifically what kind of actions are
available, and these roles fall into three categories. These generic role names can be used in the sharing API for any
entity.

For the complete set of actions granted by each role on a given entity, please see the user documentation in the web
application.

* OWNER
— used for all entities
— allows any action including deletion
* READ_WRITE
— known as as EDITOR on data sources and data stores

— allows modifications to the state, e.g. renaming and creating data sources from a data store, but not deleting
the entity

* READ_ONLY
— known as CONSUMER on data sources and data stores
— for data sources, enables creating projects and predictions; for data stores, allows viewing them only.
Finally, when a user’s new role is specified as None, their access will be revoked.

In addition to the role, some entities (currently only data sources and data stores) allow separate control over whether
a new user should be able to share that entity further. When granting access to a user, the can_share parameter
determines whether that user can, in turn, share this entity with another user. When this parameter is specified as false,

2.2. User Guide 161

DataRobot Python API Documentation, Release 3.2.2

the user in question will have all the access to the entity granted by their role and be able to remove themselves if
desired, but be unable to change the role of any other user.

Examples

Transfer access to the data source from old_user@datarobot.com to new_user @datarobot.com

import datarobot as dr

new_access = dr.SharingAccess(
"new_user@datarobot.com",
dr.enums.SHARING_ROLE.OWNER,
can_share=True,

)

access_list = [dr.SharingAccess("old_user@datarobot.com", None), new_access]

dr.DataSource.get('my-data-source-id') .share(access_list)

Checking access to a project

import datarobot as dr
project = dr.Project.create('mydata.csv', project_name='My Data')
access_list = project.get_access_list()

access_list[0] .username

Transfer ownership of all projects owned by your account to new_user@datarobot.com without sending notifications.

import datarobot as dr

Put path to YAML credentials below
dr.Client(config_path= '.yaml')

Get all projects for your account and store the ids in a list
projects = dr.Project.list()

project_ids = [project.id for project in projects]

List of emails to share with
share_targets = ['new_user@datarobot.com']

Target role
target_role = dr.enums.SHARING_ROLE.OWNER

for pid in project_ids:
project = dr.Project.get(project_id=pid)
shares = []

for user in share_targets:

(continues on next page)

162 Chapter 2. Table of contents

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

shares.append(dr.SharingAccess(username=user, role=target_role))

project.share(shares, send_notification=False)

2.2.6 Use Cases

The Use Cases section provides details on how to utilize and manage DataRobot Use Cases in your Python code.

Use Cases

Use Cases are folder-like containers in DataRobot Workbench that allow you to group all assets related to solving a
specific business problem inside of a single, manageable entity. These assets include datasets, models, experiments,
No-Code AI Apps, and notebooks. You can share entire Use Cases or the individual assets they contain.

The primary benefit of a Use Case is that it enables experiment-based, iterative workflows. By housing all key insights
in a single location, data scientists have improved navigation of assets and a cleaner interface for experiment creation
and model training, review, and evaluation.

Specifically, Use Cases allow you to:
* Organize your work — group all related datasets, experiments, notebooks, etc. by the problem they solve.

» Find assets easily. Use Cases eliminate the need to search through hundreds of unrelated projects or scrape emails
for hyperlinks to specific assets.

* Share collections of assets. You can share entire Use Cases, containing all the assets your team needs to partici-
pate.

* Manage access. Add or remove members to a Use Case to control their access.
* Monitor changes. Receive notifications when a team member adds, removes, or modifies any asset in a Use Case.

Currently, Use Cases in the Python client support interactions with binary classification and regression projects, appli-
cations, and datasets. Development is ongoing, so see the release notes for a full list of supported capabilities.

For a more in-depth look at Use Cases and the DataRobot Workbench, refer to the Workbench documentation.

Add to a Use Case

Currently, only project, dataset, and application instances can be added to a Use Case via the Python client.

The process of adding a dataset is shown in the example below:

import datarobot as dr
dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")
risk_use_case = dr.UseCase.create(

name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

new_dataset = dr.Dataset.create_from_file(

(continues on next page)

2.2. User Guide 163

https://docs.datarobot.com/en/docs/workbench/wb-getstarted/wb-overview.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

file_path="/foo/bar/risk_data.csv",

risk_use_case.add(entity=new_dataset)

risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474h27"')]

You can add an application to a Use Case in a similar way. The primary difference is that you cannot create applications
with the Python client. Instead, retrieve an application using its ID or pull it from a retrieved list of applications and
then add it to a Use Case:

import datarobot as dr
dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")
risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",
existing_application = dr.Application.list()[0]

risk_use_case.add(entity=existing_application)

risk_use_case.list_applications()
>>> [Application(name='Financial Risk Detection')]

Alternatively, the UseCaseReferenceEntity returned from UseCase.add can be used to share an entity between
Use Cases:

import datarobot as dr
dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case_1 = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

risk_use_case_2 = dr.UseCase.create(
name="Financial Risk Experimentation Environment 2",
description="For running experiments on modeling financial risks to our business.",

new_dataset = dr.Dataset.create_from_file(
file_path="/foo/bar/risk_data.csv",

dataset_entity = risk_use_case_1l.add(entity=new_dataset)
risk_use_case_2.add(entity=dataset_entity)

(continues on next page)

164 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

risk_use_case_2.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474hb27"')]

To add a project to a Use Case, it must meet the following conditions:
« It must be binary classification or regression project
* The associated dataset must be linked to the same Use Case

* Modeling must be in progress (via Ul, the analyze_and_model method, or any other methods that initiate mod-
eling)

import datarobot as dr
dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

new_dataset = dr.Dataset.create_from_file(
file_path="/foo/bar/risk_data.csv",
use_case=risk_use_case

risk_use_case.add(entity=new_dataset)

new_project = dr.Project.create_from_dataset(
dataset_id=new_dataset.dataset_id,
project_name="Risk Assessment v1",
use_case=risk_use_case

)

new_project.analyze_and_model (target="credit_risk")
risk_use_case.add(entity=new_project)

risk_use_case.list_projects()

>>> [Project(Risk Assessment v1)]

risk_use_case.list_datasets()

>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27"')]

Configuration

There are three primary ways of adding new projects or datasets to Use Cases once they’ve been generated.

1. The easiest method is to directly pass a Use Case to one of the project or dataset creation methods. Passing the
use case directly allows for you to finely control what is added to a Use Case in your code. For example, the
following code example creates a new Use Case, then creates a new project that is automatically added to the
Use Case.

import datarobot as dr

(continues on next page)

2.2. User Guide 165

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

new_project = dr.Project.create(
sourcedata="/foo/bar/risk_data.csv",
project_name="Risk Assessment v1",
use_case=risk_use_case

risk_use_case.list_projects()
>>> [Project(Risk Assessment v1)]

2. You can also use a context manager to perform a series of actions that automatically result in projects or datasets
being added to a Use Case without having to manually pass the Use Case yourself. This can be extremely useful
if you have a series of calls you want to make that all should be added to a Use Case. For example:

import datarobot as dr
from datarobot.client import client_configuration

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")
risk_use_case = dr.UseCase.create(

name="Financial Risk Experimentation Environment",

description="For running experiments on modeling financial risks to our business.",
)
with risk use_case:

new_dataset = dr.Dataset.create_from_file(

file_path="/foo/bar/risk_data.csv",

risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474h27"')]

3. You can also set a global Use Case to automatically add all project and dataset instances that are created by
your code. This is useful if all of the work you are doing should be contained in a single Use Case, but risks
accidentally adding projects and datasets that should not be included in your Use Case. Setting a global default
Use Case requires knowing the ID of your Use Case ahead of time. For example:

import datarobot as dr
from datarobot.client import client_configuration

dr.Client (token="<token>", endpoint="https://app.datarobot.com/api/v2", default_use_case=
—"639ce542862e9b1blbfa8f1b")

new_dataset = dr.Dataset.create_from_file(file_path="/foo/bar/risk_data.csv'")

(continues on next page)

166 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

risk_use_case = dr.UseCase.get(id="639ce542862e9b1blbfa8f1b")
risk_use_case.list_datasets()
>>> [Dataset(name='risk _data.csv', id='646e8bb507b108ce7b474b27"')]

Sharing

Overview

Instances of datarobot.models. sharing.SharingRole can be created to define a new role grant (or revocation).

The UseCase. share() instance method takes a list of SharingRole as its only argument. Calling this method will
apply the list of SharingRoles to the given UseCase.

Use Cases support SHARING_ROLE.OWNER, SHARING_ROLE.EDITOR, SHARING_ROLE.CONSUMER and
SHARING_ROLE.NO_ROLE as possible role designations (see datarobot.enums.SHARING_ROLE). Currently,
the only supported SHARING_RECIPIENT_TYPE is USER.

Examples

Suppose you had a list of user IDs you wanted to share this Use Case with. You could use a loop to generate a list of
SharingRole objects for them, and bulk share this Use Case.

>>> from datarobot.models.use_cases.use_case import UseCase
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_ids = ["60912e09fd1f04e832a575cl", "639ce542862e9blblbfa8flb",
—"63e185e7cd3a5£f8e190c6393"]
>>> sharing_roles = []
>>> for user_id in user_ids:
new_sharing_role = SharingRole(
role=SHARING_ROLE.CONSUMER,
share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
id=user_id,
can_share=True,
)
. sharing_roles.append(new_sharing_role)
>>> use_case = UseCase.get(use_case_id="5f33f1£fd9071ael3568237bh2")
>>> use_case.share(roles=sharing_roles)

Similarly, a SharingRole instance can be used to remove a user’s access if the role is set to SHARING_ROLE . NO_ROLE,
like in this example:

>>> from datarobot.models.use_cases.use_case import UseCase

>>> from datarobot.models.sharing import SharingRole

>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE

>>>

>>> user_to_remove = "foo.bar@datarobot.com"

. remove_sharing_role = SharingRole(

role=SHARING_ROLE.NO_ROLE,
share_recipient_type=SHARING_RECIPIENT_TYPE.USER,

(continues on next page)

2.2. User Guide 167

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

username=user_to_remove,
. can_share=False,

v)
>>> use_case = UseCase.get(use_case_id="5f33f1£fd9071ael3568237b2")
>>> use_case.share(roles=[remove_sharing_role])

2.3 API Reference

2.3.1 API Object

class datarobot.models.api_object.APIObject

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters

data [dict] Correctly snake_cased keys and their values.
Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

168 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.2 Advanced Options

class datarobot.helpers.AdvancedOptions (weights=None, response_cap=None, blueprint_threshold=None,

seed=None, smart_downsampled=None,
majority_downsampling_rate=None, offset=None,
exposure=None, accuracy_optimized_mb=None,
scaleout_modeling_mode=None, events_count=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
only_include_monotonic_blueprints=None,
allowed_pairwise_interaction_groups=None,
blend_best_models=None, scoring_code_only=None,
prepare_model_for_deployment=None,
consider_blenders_in_recommendation=None,
min_secondary_validation_model_count=None,
shap_only_mode=None,
autopilot_data_sampling_method=None,
run_leakage_removed_feature_list=None,
autopilot_with_feature_discovery=False,
feature_discovery_supervised_feature_reduction=None,
exponentially_weighted_moving_alpha=None,
external_time_series_baseline_dataset_id=None,
use_supervised_feature_reduction=True,
primary_location_column=None, protected_features=None,
preferable_target_value=None, fairness_metrics_set=None,

fairness_threshold=None, bias_mitigation_feature_name=None,

bias_mitigation_technique=None,

include_bias_mitigation_feature_as_predictor_variable=None,

default_monotonic_increasing_featurelist_id=None,
default_monotonic_decreasing_featurelist_id=None)

Used when setting the target of a project to set advanced options of modeling process.

Parameters

weights [string, optional] The name of a column indicating the weight of each row

response_cap [bool or float in [0.5, 1), optional] Defaults to none here, but server defaults to
False. If specified, it is the quantile of the response distribution to use for response capping.

blueprint_threshold [int, optional] Number of hours models are permitted to run before being
excluded from later autopilot stages Minimum 1

seed [int, optional] a seed to use for randomization

smart_downsampled [bool, optional] whether to use smart downsampling to throw away excess
rows of the majority class. Only applicable to classification and zero-boosted regression
projects.

majority_downsampling rate [float, optional] the percentage between 0 and 100 of the major-
ity rows that should be kept. Specify only if using smart downsampling. May not cause the
majority class to become smaller than the minority class.

offset [list of str, optional] (New in version v2.6) the list of the names of the columns containing
the offset of each row

exposure [string, optional] (New in version v2.6) the name of a column containing the exposure
of each row

23.

API Reference

169

DataRobot Python API Documentation, Release 3.2.2

accuracy_optimized_mb [bool, optional] (New in version v2.6) Include additional, longer-
running models that will be run by the autopilot and available to run manually.

scaleout_modeling_mode [string, optional] (Deprecated in 2.28. Will be removed in 2.30)
DataRobot no longer supports scaleout models. Please remove any usage of this parame-
ter as it will be removed from the API soon.

events_count [string, optional] (New in version v2.8) the name of a column specifying events
count.

monotonic_increasing_featurelist_id [string, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. If None, no such constraints are enforced. When specified, this will set a default for
the project that can be overriden at model submission time if desired.

monotonic_decreasing_featurelist_id [string, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the
target. If None, no such constraints are enforced. When specified, this will set a default for
the project that can be overriden at model submission time if desired.

only_include_monotonic_blueprints [bool, optional] (new in version 2.11) when true, only
blueprints that support enforcing monotonic constraints will be available in the project or
selected for the autopilot.

allowed_pairwise_interaction_groups [list of tuple, optional] (New in version v2.19) For
GA2M models - specify groups of columns for which pairwise interactions will be allowed.
E.g. if setto [(A, B, C), (C, D)] then GA2M models will allow interactions between columns
AxB, BxC, AxC, CxD. All others (AxD, BxD) will not be considered.

blend_best_models: bool, optional (New in version v2.19) blend best models during Autopilot
run.

scoring_code_only: bool, optional (New in version v2.19) Keep only models that can be con-
verted to scorable java code during Autopilot run

shap_only_mode: bool, optional (New in version v2.21) Keep only models that support SHAP
values during Autopilot run. Use SHAP-based insights wherever possible. Defaults to False.

prepare_model_for_deployment: bool, optional (New in version v2.19) Prepare model for
deployment during Autopilot run. The preparation includes creating reduced feature list
models, retraining best model on higher sample size, computing insights and assigning
“RECOMMENDED FOR DEPLOYMENT” label.

consider_blenders_in_recommendation: bool, optional (New in version 2.22.0) Include
blenders when selecting a model to prepare for deployment in an Autopilot Run. Defaults to
False.

min_secondary_validation_model_count: int, optional (New in version v2.19) Compute “All
backtest” scores (datetime models) or cross validation scores for the specified number of the
highest ranking models on the Leaderboard, if over the Autopilot default.

autopilot_data_sampling_method: str, optional (New in version v2.23) one of datarobot.
enums .DATETIME_AUTOPILOT_DATA_SAMPLING_METHOD. Applicable for OTV projects
only, defines if autopilot uses “random” or “latest” sampling when iteratively building mod-
els on various training samples. Defaults to “random” for duration-based projects and to
“latest” for row-based projects.

run_leakage_removed_feature_list: bool, optional (New in version v2.23) Run Autopilot on
Leakage Removed feature list (if exists).

170 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

autopilot_with_feature_discovery: bool, default *“False ", optional (New in version v2.23) If
true, autopilot will run on a feature list that includes features found via search for interactions.

feature_discovery_supervised_feature_reduction: bool, optional (New in version v2.23)
Run supervised feature reduction for feature discovery projects.

exponentially_weighted_moving_alpha: float, optional (New in version v2.26) defaults to
None, value between 0 and 1 (inclusive), indicates alpha parameter used in exponentially
weighted moving average within feature derivation window.

external_time_series_baseline_dataset_id: str, optional (New in version v2.26) If provided,
will generate metrics scaled by external model predictions metric for time series projects.
The external predictions catalog must be validated before autopilot starts, see Project.
validate_external_time_series_baseline and external baseline predictions docu-
mentation for further explanation.

use_supervised_feature_reduction: bool, default " True" optional Time Series only. When
true, during feature generation DataRobot runs a supervised algorithm to retain only quali-
fying features. Setting to false can severely impact autopilot duration, especially for datasets
with many features.

primary_location_column: str, optional. The name of primary location column.

protected_features: list of str, optional. (New in version v2.24) A list of project features to
mark as protected for Bias and Fairness testing calculations. Max number of protected fea-
tures allowed is 10.

preferable_target_value: str, optional. (New in version v2.24) A target value that should be
treated as a favorable outcome for the prediction. For example, if we want to check gender
discrimination for giving a loan and our target is named is_bad, then the positive outcome
for the prediction would be No, which means that the loan is good and that’s what we treat
as a favorable result for the loaner.

fairness_metrics_set: str, optional. (New in version v2.24) Metric to use for cal-
culating fairness. Can be one of proportionalParity, equalParity,
predictionBalance, trueFavorableAndUnfavorableRateParity or
favorableAndUnfavorablePredictiveValueParity. Used and required only if
Bias & Fairness in AutoML feature is enabled.

fairness_threshold: str, optional. (New in version v2.24) Threshold value for the fairness met-
ric. Can be in a range of [0.0, 1.0]. If the relative (i.e. normalized) fairness score is
below the threshold, then the user will see a visual indication on the

bias_mitigation_feature_name [str, optional] The feature from protected features that will be
used in a bias mitigation task to mitigate bias

bias_mitigation_technique [str, optional] One of datarobot.enums.BiasMitigationTechnique
Options: - ‘preprocessingReweighing’ - ‘postProcessingRejectionOptionBasedClassifica-
tion’ The technique by which we’ll mitigate bias, which will inform which bias mitigation
task we insert into blueprints

include_bias_mitigation_feature_as_predictor_variable [bool, optional] Whether we should
also use the mitigation feature as in input to the modeler just like any other categorical used
for training, i.e. do we want the model to “train on” this feature in addition to using it for
bias mitigation

default_monotonic_increasing_featurelist_id [str, optional] Returned from server on Project
GET request - not able to be updated by user

default_monotonic_decreasing_featurelist_id [str, optional] Returned from server on Project
GET request - not able to be updated by user

2.3. API Reference 171

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
advanced_options = dr.AdvancedOptions(

weights="weights_column',

offset=['offset_column'],

exposure="exposure_column',

response_cap=0.7,

blueprint_threshold=2,

smart_downsampled=True, majority_downsampling_rate=75.0)

update_individual_options(**kwargs)

Update individual attributes of an instance of AdvancedOptions.

Return type None

2.3.3 Anomaly Assessment

class datarobot.models.anomaly_assessment.AnomalyAssessmentRecord (status, status_details,

start_date, end_date,
prediction_threshold,
preview_location,
delete_location,
latest_explanations_location,
**record_kwargs)

Object which keeps metadata about anomaly assessment insight for the particular subset, backtest and series and
the links to proceed to get the anomaly assessment data.

New in version v2.25.

Notes

Record contains:

record_id : the ID of the record.

project_id : the project ID of the record.

model_id : the model ID of the record.

backtest : the backtest of the record.

source : the source of the record.

series_id : the series id of the record for the multiseries projects.
status : the status of the insight.

status_details : the explanation of the status.

start_date : the ISO-formatted timestamp of the first prediction in the subset. Will be None if status is
not AnomalyAssessmentStatus. COMPLETED.

end_date : the ISO-formatted timestamp of the last prediction in the subset. Will be None if status is not
AnomalyAssessmentStatus. COMPLETED.

prediction_threshold : the threshold, all rows with anomaly scores greater or equal to it have shap
explanations computed. Will be None if status is not AnomalyAssessmentStatus. COMPLETED.

172

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

* preview_location : URL to retrieve predictions preview for the subset. Will be None if status is not
AnomalyAssessmentStatus. COMPLETED.

* latest_explanations_location: the URL to retrieve the latest predictions with the shap explanations.
Will be None if status is not AnomalyAssessmentStatus. COMPLETED.

e delete_location : the URL to delete anomaly assessment record and relevant insight data.

Attributes
record_id: str The ID of the record.
project_id: str The ID of the project record belongs to.
model_id: str The ID of the model record belongs to.
backtest: int or ‘“holdout” The backtest of the record.
source: “training” or “validation” The source of the record

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

status: str The status of the insight. One of datarobot.enums.AnomalyAssessmentStatus
status_details: str The explanation of the status.

start_date: str or None See start_date info in Notes for more details.

end_date: str or None See end_date info in Notes for more details.

prediction_threshold: float or None See prediction_threshold info in Notes for more details.
preview_location: str or None See preview_location info in Notes for more details.

latest_explanations_location: str or None See latest_explanations_location info in Notes for
more details.

delete_location: str The URL to delete anomaly assessment record and relevant insight data.
classmethod list(project_id, model_id, backtest=None, source=None, series_id=None, limit=100,
offset=0, with_data_only=False)

Retrieve the list of the anomaly assessment records for the project and model. Output can be filtered and
limited.

Parameters
project_id: str The ID of the project record belongs to.
model_id: str The ID of the model record belongs to.
backtest: int or “holdout” The backtest to filter records by.
source: “training” or ‘““validation” The source to filter records by.

series_id: str, optional The series id to filter records by. Can be specified for multiseries
projects.

limit: int, optional 100 by default. At most this many results are returned.
offset: int, optional This many results will be skipped.

with_data_only: bool, False by default Filter by sfatus == AnomalyAssessmentSta-
tus. COMPLETED. If True, records with no data or not supported will be omitted.

Returns

2.3. API Reference 173

DataRobot Python API Documentation, Release 3.2.2

AnomalyAssessmentRecord The anomaly assessment record.

Return type List[AnomalyAssessmentRecord]

classmethod compute(project_id, model_id, backtest, source, series_id=None)
Request anomaly assessment insight computation on the specified subset.

Parameters
project_id: str The ID of the project to compute insight for.
model_id: str The ID of the model to compute insight for.
backtest: int or “holdout” The backtest to compute insight for.
source: “training” or ‘“validation” The source to compute insight for.

series_id: str, optional The series id to compute insight for. Required for multiseries
projects.

Returns
AnomalyAssessmentRecord The anomaly assessment record.
Return type AnomalyAssessmentRecord
delete()
Delete anomaly assessment record with preview and explanations.

Return type None

get_predictions_preview()
Retrieve aggregated predictions statistics for the anomaly assessment record.

Returns
AnomalyAssessmentPredictionsPreview
Return type AnomalyAssessmentPredictionsPreview
get_latest_explanations()
Retrieve latest predictions along with shap explanations for the most anomalous records.
Returns

AnomalyAssessmentExplanations
Return type AnomalyAssessmentExplanations

get_explanations (start_date=None, end_date=None, points_count=None)
Retrieve predictions along with shap explanations for the most anomalous records in the specified date
range/for defined number of points. Two out of three parameters: start_date, end_date or points_count
must be specified.

Parameters

start_date: str, optional The start of the date range to get explanations in. Example:
2020-01-01T00:00:00.000000Z

end_date: str, optional The end of the date range to get explanations in. Example:
2020-10-01T00:00:00.000000Z

points_count: int, optional The number of the rows to return.

174 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
AnomalyAssessmentExplanations
Return type AnomalyAssessmentExplanations
get_explanations_data_in_regions (regions, prediction_threshold=0.0)
Get predictions along with explanations for the specified regions, sorted by predictions in descending order.
Parameters
regions: list of preview_bins For each region explanations will be retrieved and merged.

prediction_threshold: float, optional If specified, only points with score greater or equal
to the threshold will be returned.

Returns

dict in a form of {‘explanations’: explanations, ‘shap_base_value’: shap_base_value}
Return type RegionExplanationsData

class datarobot.models.anomaly_assessment.AnomalyAssessmentExplanations (shap_base_value,
data, start_date,
end_date, count,
**pecord_kwargs)
Object which keeps predictions along with shap explanations for the most anomalous records in the specified
date range/for defined number of points.

New in version v2.25.

Notes

AnomalyAssessmentExplanations contains:
e record_id: the id of the corresponding anomaly assessment record.
e project_id : the project ID of the corresponding anomaly assessment record.
e model_id : the model ID of the corresponding anomaly assessment record.
* backtest : the backtest of the corresponding anomaly assessment record.
* source : the source of the corresponding anomaly assessment record.
e series_id : the series id of the corresponding anomaly assessment record for the multiseries projects.

e start_date : the ISO-formatted first timestamp in the response. Will be None of there is no data in the
specified range.

* end_date : the ISO-formatted last timestamp in the response. Will be None of there is no data in the
specified range.

e count : The number of points in the response.
* shap_base_value : the shap base value.
» data : list of DataPoint objects in the specified date range.

DataPoint contains:

2.3. API Reference 175

DataRobot Python API Documentation, Release 3.2.2

* shap_explanation : None or an array of up to 10 ShapleyFeatureContribution objects. Only rows with
the highest anomaly scores have Shapley explanations calculated. Value is None if prediction is lower than
prediction_threshold.

e timestamp (str) : ISO-formatted timestamp for the row.

* prediction (float) : The output of the model for this row.
ShapleyFeatureContribution contains:

e feature_value (str) : the feature value for this row. First 50 characters are returned.

* strength (float) : the shap value for this feature and row.

e feature (str) : the feature name.

Attributes
record_id: str The ID of the record.
project_id: str The ID of the project record belongs to.
model_id: str The ID of the model record belongs to.
backtest: int or ‘“holdout” The backtest of the record.
source: ‘“training” or “validation” The source of the record.

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

start_date: str or None The ISO-formatted datetime of the first row in the data.
end_date: str or None The ISO-formatted datetime of the last row in the data.
data: array of “data_point" objects or None See data info in Notes for more details.
shap_base_value: float Shap base value.
count: int The number of points in the data.
classmethod get(project_id, record_id, start_date=None, end_date=None, points_count=None)
Retrieve predictions along with shap explanations for the most anomalous records in the specified date

range/for defined number of points. Two out of three parameters: start_date, end_date or points_count
must be specified.

Parameters
project_id: str The ID of the project.
record_id: str The ID of the anomaly assessment record.

start_date: str, optional The start of the date range to get explanations in. Example:
2020-01-01T00:00:00.000000Z

end_date: str, optional The end of the date range to get explanations in. Example:
2020-10-01T00:00:00.000000Z

points_count: int, optional The number of the rows to return.
Returns

AnomalyAssessmentExplanations

Return type AnomalyAssessmentExplanations

176 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.anomaly_assessment.AnomalyAssessmentPredictionsPreview(start_date,

end_date,
preview_bins,
**record_kwargs)

Aggregated predictions over time for the corresponding anomaly assessment record. Intended to find the bins
with highest anomaly scores.

New in version v2.25.

Notes

AnomalyAssessmentPredictionsPreview contains:

L]

record_id : the id of the corresponding anomaly assessment record.

project_id : the project ID of the corresponding anomaly assessment record.

model_id : the model ID of the corresponding anomaly assessment record.

backtest : the backtest of the corresponding anomaly assessment record.

source : the source of the corresponding anomaly assessment record.

series_id : the series id of the corresponding anomaly assessment record for the multiseries projects.
start_date : the ISO-formatted timestamp of the first prediction in the subset.

end_date : the ISO-formatted timestamp of the last prediction in the subset.

preview_bins : list of PreviewBin objects. The aggregated predictions for the subset. Bins boundaries
may differ from actual start/end dates because this is an aggregation.

PreviewBin contains:

L]

start_date (str) : the ISO-formatted datetime of the start of the bin.
end_date (str) : the ISO-formatted datetime of the end of the bin.

avg_predicted (float or None) : the average prediction of the model in the bin. None if there are no
entries in the bin.

max_predicted (float or None) : the maximum prediction of the model in the bin. None if there are no
entries in the bin.

frequency (int) : the number of the rows in the bin.

Attributes
record_id: str The ID of the record.
project_id: str The ID of the project record belongs to.
model_id: str The ID of the model record belongs to.
backtest: int or “holdout” The backtest of the record.
source: “training” or ‘“‘validation” The source of the record

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

start_date: str the ISO-formatted timestamp of the first prediction in the subset.

end_date: str the ISO-formatted timestamp of the last prediction in the subset.

2.3. API Reference 177

DataRobot Python API Documentation, Release 3.2.2

preview_bins: list of preview_bin objects. The aggregated predictions for the subset. See
more info in Notes.

classmethod get(project_id, record_id)
Retrieve aggregated predictions over time.
Parameters
project_id: str The ID of the project.
record_id: str The ID of the anomaly assessment record.
Returns

AnomalyAssessmentPredictionsPreview
Return type AnomalyAssessmentPredictionsPreview

find_anomalous_regions (max_prediction_threshold=0.0)

Sort preview bins by max_predicted value and select those with max predicted value greater or
equal to max prediction threshold. Sort the result by max predicted value in descending order.

Parameters

max_prediction_threshold: float, optional Return bins with maximum anomaly score
greater or equal to max_prediction_threshold.

Returns

preview_bins: list of preview_bin Filtered and sorted preview bins

Return type List[AnomalyAssessmentPreviewBin]

2.3.4 Application

class datarobot.Application(id, application_type_id, user_id, model_deployment_id, name, created_by,
created_at, updated_at, datasets, cloud_provider, deployment_ids, pool_used,
permissions, has_custom_logo, org_id, deployment_status_id=None,
description=None, related_entities=None, application_template_type=None,
deployment_name=None, deactivation_status_id=None,

created_first_name=None, creator_last_name=None, creator_userhash=None,
deployments=None)
An entity associated with a DataRobot Application.

Attributes
id [str] The ID of the created application.
application_type_id [str] The ID of the type of the application.
user_id [str] The ID of the user which created the application.
model_deployment_id [str] The ID of the associated model deployment.

deactivation_status_id [str or None] The ID of the status object to track the asynchronous app
deactivation process status. Will be None if the app was never deactivated.

name [str] The name of the application.

created_by [str] The username of the user created the application.

178 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

created_at [str] The timestamp when the application was created.
updated_at [str] The timestamp when the application was updated.

datasets [List[str]] The list of datasets IDs associated with the application.
creator_first_name [Optional[str]] Application creator first name. Optional.
creator_last_name [Optional[str]] Application creator last name. Optional.
creator_userhash [Optional[str]] Application creator userhash. Optional.

deployment_status_id [str] The ID of the status object to track the asynchronous deployment
process status.

description [str] A description of the application.

cloud_provider [str] The host of this application.

deployments [Optional[List[ApplicationDeployment]]] A list of deployment details. Optional.
deployment_ids [List[str]] A list of deployment IDs for this app.

deployment_name [Optional[str]] Name of the deployment. Optional.
application_template_type [Optional[str]] Application template type, purpose. Optional.
pool_used [bool] Whether the pool where used for last app deployment.

permissions [List[str]] The list of permitted actions, which the authenticated user can perform
on this application. Permissions should be ApplicationPermission options.

has_custom_logo [bool] Whether the app has a custom logo.

related_entities [Optional[ApplcationRelatedEntity]] IDs of entities, related to app for easy
search.

org_id [str] ID of the app’s organization.

classmethod list (offser=None, limit=None, use_cases=None)
Retrieve a list of user applications.

Parameters
offset [Optional[int]] Optional. Retrieve applications in a list after this number.

limit [Optional[int]] Optional. Retrieve only this number of applications.

use_cases: Optional[Union[UseCase, List[UseCase], str, List[str]]] Optional. Filter
available Applications by a specific Use Case or Use Cases. Accepts either the entity or
the ID.
Returns

applications [List[Application]] The requested list of user applications.
Return type List[Application]
classmethod get (application_id)
Retrieve a single application.
Parameters
application_id [str] The ID of the application to retrieve.
Returns

application [Application] The requested application.

. API Reference 179

DataRobot Python API Documentation, Release 3.2.2

Return type Application

2.3.5 Batch Predictions

class datarobot.models.BatchPredictionlob (data, completed_resource_url=None)
A Batch Prediction Job is used to score large data sets on prediction servers using the Batch Prediction APL

Attributes
id [str] the id of the job

classmethod score(deployment, intake_settings=None, output_settings=None, csv_settings=None,
timeseries_settings=None, num_concurrent=None, chunk_size=None,
passthrough_columns=None, passthrough_columns_set=None,
max_explanations=None, max_ngram_explanations=None, threshold_high=None,
threshold_low=None, prediction_warning_enabled=None,
include_prediction_status=False, skip_drift_tracking=False,
prediction_instance=None, abort_on_error=True, column_names_remapping=None,
include_probabilities=True, include_probabilities_classes=None,
download_timeout=120, download_read_timeout=660, upload_read_timeout=600,
explanations_mode=None)

Create new batch prediction job, upload the scoring dataset and return a batch prediction job.

The default intake and output options are both localFile which requires the caller to pass the file parameter
and either download the results using the download() method afterwards or pass a path to a file where the
scored data will be downloaded to afterwards.

Returns
BatchPredictionJob Instance of BatchPredictionJob
Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

intake_settings [dict (optional)] A dict configuring how data is coming from. Supported
options:

* type : string, either localFile, s3, azure, gcp, dataset, jdbc snowflake, synapse or big-
query

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a dr.Dataset object.

To score from a local file, add the this parameter to the settings:

* file : file-like object, string path to file or a pandas.DataFrame of scoring data
To score from S3, add the next parameters to the settings:

* url : string, the URL to score (e.g.: s3:/bucket/key)

* credential_id : string (optional)

* endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default)

To score from JDBC, add the next parameters to the settings:

* data_store_id : string, the ID of the external data store connected to the JDBC data source
(see Database Connectivity).

180 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

query : string (optional if table, schema and/or catalog is specified), a self-supplied
SELECT statement of the data set you wish to predict.

table : string (optional if query is specified), the name of specified database table.
schema : string (optional if query is specified), the name of specified database schema.

catalog : string (optional if query is specified), (new in v2.22) the name of specified
database catalog.

fetch_size : int (optional), Changing the fetchSize can be used to balance throughput and
memory usage.

credential_id : string (optional) the ID of the credentials holding information about a
user with read-access to the JDBC data source (see Credentials).

output_settings [dict (optional)] A dict configuring how scored data is to be saved. Sup-
ported options:

type : string, either localFile, s3, azure, gcp, jdbc, snowflake, synapse or bigquery

To save scored data to a local file, add this parameters to the settings:

path : string (optional), path to save the scored data as CSV. If a path is not specified,
you must download the scored data yourself with job.download(). If a path is specified,
the call will block until the job is done. if there are no other jobs currently processing for
the targeted prediction instance, uploading, scoring, downloading will happen in parallel
without waiting for a full job to complete. Otherwise, it will still block, but start down-
loading the scored data as soon as it starts generating data. This is the fastest method to
get predictions.

To save scored data to S3, add the next parameters to the settings:

url : string, the URL for storing the results (e.g.: s3:/bucket/key)
credential_id : string (optional)

endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default)

To save scored data to JDBC, add the next parameters to the settings:

data_store_id : string, the ID of the external data store connected to the JDBC data
source (see Database Connectivity).

table : string, the name of specified database table.
schema : string (optional), the name of specified database schema.
catalog : string (optional), (new in v2.22) the name of specified database catalog.

Statement_type : string, the type of insertion statement to create, one of datarobot.
enums .AVAILABLE_STATEMENT_TYPES.

update_columns : list(string) (optional), a list of strings containing those column names
to be updated in case statement_type is set to a value related to update or upsert.

where_columns : list(string) (optional), a list of strings containing those column names
to be selected in case statement_type is set to a value related to insert or update.

credential_id : string, the ID of the credentials holding information about a user with
write-access to the JDBC data source (see Credentials).

create_table_if not_exists : bool (optional), If no existing table is detected, attempt to
create it before writing data with the strategy defined in the statementType parameter.

2.3. API Reference

181

DataRobot Python API Documentation, Release 3.2.2

csv_settings [dict (optional)] CSV intake and output settings. Supported options:

* delimiter : string (optional, default ,), fields are delimited by this character. Use the
string tab to denote TSV (TAB separated values). Must be either a one-character string
or the string tab.

* quotechar : string (optional, default), fields containing the delimiter must be quoted
using this character.

* encoding : string (optional, default utf-8), encoding for the CSV files. For example (but
not limited to): shift_jis, latin_1 or mskanji.

timeseries_settings [dict (optional)] Configuration for time-series scoring. Supported op-
tions:

* type : string, must be forecast or historical (default if not passed is forecast).
forecast mode makes predictions using forecast_point or rows in the dataset with-
out target. historical enables bulk prediction mode which calculates predictions
for all possible forecast points and forecast distances in the dataset within predic-
tions_start_datelpredictions_end_date range.

forecast_point : datetime (optional), forecast point for the dataset, used for the fore-
cast predictions, by default value will be inferred from the dataset. May be passed if
timeseries_settings.type=forecast.

predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

num_concurrent [int (optional)] Number of concurrent chunks to score simultaneously. De-
faults to the available number of cores of the deployment. Lower it to leave resources for
real-time scoring.

chunk_size [string or int (optional)] Which strategy should be used to determine the chunk
size. Can be either a named strategy or a fixed size in bytes. - auto: use fixed or dynamic
based on flipper - fixed: use IMB for explanations, SMB for regular requests - dynamic:
use dynamic chunk sizes - int: use this many bytes per chunk

passthrough_columns [list[string] (optional)] Keep these columns from the scoring dataset
in the scored dataset. This is useful for correlating predictions with source data.

passthrough_columns_set [string (optional)] To pass through every column from the scor-
ing dataset, set this to all. Takes precedence over passthrough_columns if set.

max_explanations [int (optional)] Compute prediction explanations for this amount of fea-
tures.

max_ngram_explanations [int or str (optional)] Compute text explanations for this amount
of ngrams. Set to all to return all ngram explanations, or set to a positive integer value to
limit the amount of ngram explanations returned. By default no ngram explanations will
be computed and returned.

182 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

threshold_high [float (optional)] Only compute prediction explanations for predictions
above this threshold. Can be combined with threshold_low.

threshold_low [float (optional)] Only compute prediction explanations for predictions below
this threshold. Can be combined with threshold_high.

explanations_mode [PredictionExplanationsMode, optional] Mode of prediction explana-
tions calculation for multiclass and clustering models, if not specified - server default is to
explain only the predicted class, identical to passing TopPredictionsMode(1).

prediction_warning_enabled [boolean (optional)] Add prediction warnings to the scored
data. Currently only supported for regression models.

include_prediction_status [boolean (optional)] Include the prediction_status column in the
output, defaults to False.

skip_drift_tracking [boolean (optional)] Skips drift tracking on any predictions made from
this job. This is useful when running non-production workloads to not affect drift tracking
and cause unnecessary alerts. Defaults to False.

prediction_instance [dict (optional)] Defaults to instance specified by deployment or system
configuration. Supported options:

* hostName : string

* sslEnabled : boolean (optional, default true). Set to false to run prediction requests from
the batch prediction job without SSL.

* datarobotKey : string (optional), if running a job against a prediction instance in the
Managed AI Cloud, you must provide the organization level DataRobot-Key

* apiKey : string (optional), by default, prediction requests will use the API key of the user
that created the job. This allows you to make requests on behalf of other users.

abort_on_error [boolean (optional)] Default behavior is to abort the job if too many rows
fail scoring. This will free up resources for other jobs that may score successfully. Set
to false to unconditionally score every row no matter how many errors are encountered.
Defaults to True.

column_names_remapping [dict (optional)] Mapping with column renaming for output ta-
ble. Defaults to {}.

include_probabilities [boolean (optional)] Flag that enables returning of all probability
columns. Defaults to True.

include_probabilities_classes [list (optional)] List the subset of classes if a user doesn’t
want all the classes. Defaults to /].

download_timeout [int (optional)] New in version 2.22.

If using localFile output, wait this many seconds for the download to become available.
See download().

download_read_timeout [int (optional, default 660)] New in version 2.22.

If using localFile output, wait this many seconds for the server to respond between chunks.
upload_read_timeout: int (optional, default 600) New in version 2.28.

If using localFile intake, wait this many seconds for the server to respond after whole dataset

upload.

Return type BatchPredictionJob

2.3. API Reference 183

DataRobot Python API Documentation, Release 3.2.2

classmethod apply_time_series_data_prep_and_score (deployment, intake_settings,
timeseries_settings, **kwargs)
Prepare the dataset with time series data prep, create new batch prediction job, upload the scoring dataset,
and return a batch prediction job.

The supported intake_settings are of type localFile or dataset.
For timeseries_settings of type forecast the forecast_point must be specified.

Refer to the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

New in version v3.1.
Returns
BatchPredictionJob Instance of BatchPredictionJob
Raises

InvalidUsageError If the deployment does not support time series data prep. If the intake
type is not supported for time series data prep.

Attributes
deployment [Deployment] Deployment which will be used for scoring.
intake_settings [dict] A dict configuring where data is coming from. Supported options:
* type : string, either localFile, dataset

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a Dataset object.

To score from a local file, add this parameter to the settings:
* file : file-like object, string path to file or a pandas.DataFrame of scoring data.
timeseries_settings [dict] Configuration for time-series scoring. Supported options:

* type : string, must be forecast or historical (default if not passed is forecast). forecast
mode makes predictions using forecast_point. historical enables bulk prediction mode
which calculates predictions for all possible forecast points and forecast distances in the
dataset within predictions_start_datelpredictions_end_date range.

* forecast_point : datetime (optional), forecast point for the dataset, used for the forecast
predictions. Must be passed if timeseries_settings.type=forecast.

* predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

* predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

* relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

Return type BatchPredictionjob

184 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod score_to_file(deployment, intake_path, output_path, **kwargs)
Create new batch prediction job, upload the scoring dataset and download the scored CSV file concurrently.

Will block until the entire file is scored.

Refer to the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.
intake_path [file-like object/string path to file/pandas.DataFrame] Scoring data
output_path [str] Filename to save the result under

classmethod apply_time_series_data_prep_and_score_to_file (deployment, intake_path,
output_path, timeseries_settings,
**kwargs)
Prepare the input dataset with time series data prep. Then, create a new batch prediction job using the
prepared Al catalog item as input and concurrently download the scored CSV file.

The function call will return when the entire file is scored.
For timeseries_settings of type forecast the forecast_point must be specified.

Refer to the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

New in version v3.1.

Returns
BatchPredictionJob Instance of BatchPredictionJob.

Raises
InvalidUsageError If the deployment does not support time series data prep.

Attributes
deployment [Deployment] The deployment which will be used for scoring.
intake_path [file-like object/string path to file/pandas.DataFrame] The scoring data.
output_path [str] The filename under which you save the result.
timeseries_settings [dict] Configuration for time-series scoring. Supported options:

* type : string, must be forecast or historical (default if not passed is forecast). forecast
mode makes predictions using forecast_point. historical enables bulk prediction mode
which calculates predictions for all possible forecast points and forecast distances in the
dataset within predictions_start_datelpredictions_end_date range.

* forecast_point : datetime (optional), forecast point for the dataset, used for the forecast
predictions. Must be passed if timeseries_settings.type=forecast.

* predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

. API Reference 185

DataRobot Python API Documentation, Release 3.2.2

* predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

* relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

Return type BatchPredictionJjob

classmethod score_s3(deployment, source_url, destination_url, credential=None, endpoint_url=None,

*rkwargs)
Create new batch prediction job, with a scoring dataset from S3 and writing the result back to S3.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job)

Refer to the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.
source_url [string] The URL for the prediction dataset (e.g.: s3:/bucket/key)
destination_url [string] The URL for the scored dataset (e.g.: s3:/bucket/key)
credential [string or Credential (optional)] The AWS Credential object or credential id

endpoint_url [string (optional)] Any non-default endpoint URL for S3 access (omit to use
the default)

classmethod score_azure (deployment, source_url, destination_url, credential=None, **kwargs)

Create new batch prediction job, with a scoring dataset from Azure blob storage and writing the result back
to Azure blob storage.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job).

Referto the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob
Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

source_url [string] The URL for the prediction dataset (e.g.:
https://storage_account.blob.endpoint/container/blob_name)

destination_url [string] The URL for the scored dataset (e.g.:
https://storage_account.blob.endpoint/container/blob_name)

credential [string or Credential (optional)] The Azure Credential object or credential id

186

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod score_gcp (deployment, source_url, destination_url, credential=None, **kwargs)
Create new batch prediction job, with a scoring dataset from Google Cloud Storage and writing the result
back to one.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job).

Referto the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob
Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

source_url [string] The URL for the prediction dataset (e.g.:
http(s)://storage.googleapis.com/[bucket]/[object])

destination_url [string] The URL for the scored dataset (e.g.
http(s)://storage.googleapis.com/[bucket]/[object])

credential [string or Credential (optional)] The GCP Credential object or credential id

classmethod score_from_existing(batch_prediction_job_id)
Create a new batch prediction job based on the settings from a previously created one

Returns
BatchPredictionJob Instance of BatchPredictionJob
Attributes

batch_prediction_job_id: str ID of the previous batch prediction job
Return type BatchPredictionJjob

classmethod score_pandas (deployment, df, read_timeout=660, **kwargs)
Run a batch prediction job, with a scoring dataset from a pandas dataframe. The output from the prediction
will be joined to the passed DataFrame and returned.

Use columnNamesRemapping to drop or rename columns in the output
This method blocks until the job has completed or raises an exception on errors.

Referto the datarobot.models.BatchPredictionJob. score () method for details on the other kwargs
parameters.

Returns

BatchPredictionJob Instance of BatchPredictonJob

pandas.DataFrame The original dataframe merged with the predictions
Attributes

deployment [Deployment or string ID] Deployment which will be used for scoring.

df [pandas.DataFrame] The dataframe to score

Return type Tuple[BatchPredictionJob,DataFrame]

23.

API Reference 187

DataRobot Python API Documentation, Release 3.2.2

classmethod get (batch_prediction_job_id)
Get batch prediction job

Returns
BatchPredictionJob Instance of BatchPredictionJob
Attributes
batch_prediction_job_id: str ID of batch prediction job
Return type BatchPredictionJob
download (fileobj, timeout=120, read_timeout=660)
Downloads the CSV result of a prediction job

Attributes

fileobj: A file-like object where the CSV prediction results will be written to. Examples
include an in-memory buffer (e.g., i0.BytesIO) or a file on disk (opened for binary writing).

timeout [int (optional, default 120)] New in version 2.22.
Seconds to wait for the download to become available.

The download will not be available before the job has started processing. In case other jobs
are occupying the queue, processing may not start immediately.

If the timeout is reached, the job will be aborted and RuntimeError is raised.
Set to -1 to wait infinitely.
read_timeout [int (optional, default 660)] New in version 2.22.

Seconds to wait for the server to respond between chunks.
Return type None
delete (ignore_404_errors=False)
Cancel this job. If this job has not finished running, it will be removed and canceled.

Return type None

get_status()
Get status of batch prediction job

Returns
BatchPredictionJob status data Dict with job status

classmethod list_by_status(statuses=None)
Get jobs collection for specific set of statuses

Returns
BatchPredictionJob statuses List of job statuses dicts with specific statuses
Attributes
statuses List of statuses to filter jobs ((ABORTED|COMPLETED...]) if statuses is not pro-

vided, returns all jobs for user

Return type List[BatchPredictionJob]

188 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.BatchPredictionJobDefinition(id=None, name=None, enabled=None,

schedule=None, batch_prediction_job=None,

created=None, updated=None,
created_by=None, updated_by=None,
last_failed_run_time=None,
last_successful_run_time=None,
last_started_job_status=None,
last_scheduled_run_time=None)

classmethod get (batch_prediction_job_definition_id)
Get batch prediction job definition

Returns

BatchPredictionJobDefinition Instance of BatchPredictionJobDefinition

Examples

>>> import datarobot as dr

>>> definition
BatchPredictionJobDefinition(60912e09fd1f04e832a575cl)

>>> definition = dr.BatchPredictionJobDefinition.get('5a8ac9ab07a57a0001be501f")

Attributes
batch_prediction_job_definition_id: str ID of batch prediction job definition

Return type BatchPredictionJobDefinition

classmethod list()
Get job all definitions
Returns

List[BatchPredictionJobDefinition] List of job definitions the user has access to see

Examples

>>> import datarobot as dr

>>> definition = dr.BatchPrediction]obDefinition.list()

>>> definition

[
BatchPredictionJobDefinition(60912e09fd1f04e832a575cl),
BatchPrediction]obDefinition(6086ba0®53f3ef731e81af3ca)

Return type List[BatchPredictionJobDefinition]

classmethod create(enabled, batch_prediction_job, name=None, schedule=None)

Creates a new batch prediction job definition to be run either at scheduled interval or as a manual run.

Returns

BatchPredictionJobDefinition Instance of BatchPredictionJobDefinition

2.3. API Reference

189

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> job_spec = {
"num_concurrent": 4,
"deployment_id": "foobar",
"intake_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
1,
"output_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
. },
—
>>> schedule = {
"day_of_week": [

"minute": [
0
1,
"day_of_month": [
1
..]
}

>>> definition = BatchPredictionJobDefinition.create(

enabled=False,
batch_prediction_job=job_spec,
name="some_definition_name",

. schedule=schedule

ce)

>>> definition

BatchPredictionJobDefinition(60912e09fd1f04e832a575cl)

Attributes

enabled [bool (default False)] Whether or not the definition should be active on a scheduled

basis. If True, schedule is required.

batch_prediction_job: dict The job specifications for your batch prediction job. It requires
the same job input parameters as used with score (), only it will not initialize a job scoring,

only store it as a definition for later use.

name [string (optional)] The name you want your job to be identified with. Must be unique
across the organization’s existing jobs. If you don’t supply a name, a random one will be

generated for you.

190

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

schedule [dict (optional)] The schedule payload defines at what intervals the job should
run, which can be combined in various ways to construct complex scheduling terms if
needed. In all of the elements in the objects, you can supply either an asterisk ["*"]
denoting “every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a
specific interval.

The schedule payload is split up in the following items:
Minute:

nyen

The minute(s) of the day that the job will run. Allowed values are either [
every minute of the day or [® ... 59]

] meaning

Hour: The hour(s) of the day that the job will run. Allowed values are either ["*"]
meaning every hour of the day or [0 ... 23].

Day of Month: The date(s) of the month that the job will run. Allowed values are either
[1 ... 31] or ["*"] for all days of the month. This field is additive with dayOfWeek,
meaning the job will run both on the date(s) defined in this field and the day specified by
dayOfWeek (for example, dates 1st, 2nd, 3rd, plus every Tuesday). If dayOfMonth is set to
["*"] and dayOfWeek is defined, the scheduler will trigger on every day of the month that
matches dayOfWeek (for example, Tuesday the 2nd, 9th, 16th, 23rd, 30th). Invalid dates
such as February 31st are ignored.

Month: The month(s) of the year that the job will run. Allowed values are either [1 ...
12] or ["*"] for all months of the year. Strings, either 3-letter abbreviations or the full
name of the month, can be used interchangeably (e.g., “jan” or “october’’). Months that
are not compatible with dayOfMonth are ignored, for example {"dayOfMonth": [31],
"month":["feb"]}

Day of Week: The day(s) of the week that the job will run. Allowed values are [0 .. 6],
where (Sunday=0), or ["*"], for all days of the week. Strings, either 3-letter abbreviations

9% 99 <

or the full name of the day, can be used interchangeably (e.g., “sunday”, “Sunday”, “sun”,
or “Sun”, all map to [0]. This field is additive with dayOfMonth, meaning the job will
run both on the date specified by dayOfMonth and the day defined in this field.

Return type BatchPredictionJobDefinition

update (enabled, batch_prediction_job=None, name=None, schedule=None)
Updates a job definition with the changed specs.
Takes the same input as create ()

Returns

BatchPredictionJobDefinition Instance of the updated BatchPredictionJobDefinition

Examples

>>> import datarobot as dr
>>> job_spec = {
"num_concurrent": 5,
"deployment_id": "foobar_new",
"intake_settings": {
"url": "s3://foobar/123",
"type": "s3",

"format": "csv

(continues on next page)

2.3. API Reference 191

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

1,
"output_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
. 1,
"
>>> schedule = {
"day_of_week": [

1
1,
"month": [
1,
"hour": [
1,
"minute": [
30, 59
]1
"day_of_month": [
1, 2, 6
1

"
>>> definition = BatchPredictionJobDefinition.create(
enabled=False,
batch_prediction_job=job_spec,
name="updated_definition_name",
. schedule=schedule

-)
>>> definition
BatchPredictionJobDefinition(60912e09fd1f04e832a575cl)

Attributes
enabled [bool (default False)] Same as enabled in create().
batch_prediction_job: dict Same as batch_prediction_job in create().
name [string (optional)] Same as name in create().
schedule [dict] Same as schedule in create().
Return type BatchPredictionJobDefinition
run_on_schedule (schedule)
Sets the run schedule of an already created job definition.
If the job was previously not enabled, this will also set the job to enabled.

Returns

BatchPredictionJobDefinition Instance of the updated BatchPredictionJobDefinition with
the new / updated schedule.

192

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples
>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.create('...")
>>> schedule = {
"day_of_week": [
1
1,
"month": [
1,
"hour": [
1,
"minute": [
30, 59
1,
"day_of_month": [
1, 2, 6
..]
"
>>> definition.run_on_schedule(schedule)
BatchPredictionJobDefinition(60912e09fd1f04e832a575cl)

Attributes

schedule [dict] Same as schedule in create().
Return type BatchPredictionJobDefinition

run_once()
Manually submits a batch prediction job to the queue, based off of an already created job definition.

Returns

BatchPredictionJob Instance of BatchPredictionJob

Examples

>>> import datarobot as dr

>>> definition = dr.BatchPredictionJobDefinition.create('...")
>>> job = definition.run_once()

>>> job.wait_for_completion()

Return type BatchPredictionJjob

delete()
Deletes the job definition and disables any future schedules of this job if any. If a scheduled job is currently
running, this will not be cancelled.

23.

API Reference 193

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr

>>> definition.delete()

>>> definition = dr.BatchPredictionJobDefinition.get('5a8ac9ab07a57a0001be501f")

Return type None

2.3.6 Batch Monitoring

class datarobot.models.BatchMonitoringJob (data, completed_resource_uril=None)
A Batch Monitoring Job is used to monitor data sets outside DataRobot app.

Attributes
id [str] the id of the job

classmethod get(project_id, job_id)
Get batch monitoring job

Returns

BatchMonitoringJob Instance of BatchMonitoringJob
Attributes

job_id: str ID of batch job

Return type BatchMonitoringJob
download (fileobj, timeout=120, read_timeout=660)
Downloads the results of a monitoring job as a CSV.

Attributes

fileobj: A file-like object where the CSV monitoring results will be written to. Exam-
ples include an in-memory buffer (e.g., i0.BytesIO) or a file on disk (opened for binary
writing).

timeout [int (optional, default 120)] Seconds to wait for the download to become available.

The download will not be available before the job has started processing. In case other jobs
are occupying the queue, processing may not start immediately.

If the timeout is reached, the job will be aborted and RuntimeError is raised.
Set to -1 to wait infinitely.

read_timeout [int (optional, default 660)] Seconds to wait for the server to respond between
chunks.

Return type None

classmethod run(deployment, intake_settings=None, output_settings=None, csv_settings=None,
num_concurrent=None, chunk_size=None, abort_on_error=True,
monitoring_aggregation=None, monitoring_columns=None,
monitoring_output_settings=None, download_timeout=120,
download_read_timeout=660, upload_read_timeout=600)
Create new batch monitoring job, upload the dataset, and return a batch monitoring job.

194 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns

BatchMonitoringJob Instance of BatchMonitoringJob

Examples

>>> import datarobot as dr
>>> job_spec = {
"intake_settings": {

"type": "jdbc",
"data_store_id": "645043933d4fbc3215f17e34",
"catalog": "SANDBOX",
"table": "10kDiabetes_output_actuals",
"schema": "SCORING_CODE_UDF_SCHEMA",
"credential_id": "645043b61a158045f66fb329"

1,
>>> "monitoring_columns": {
"predictions_columns": [
{
"class_name": "True",
"column_name": "readmitted_True_PREDICTION"
1,
{
"class_name": "False",
"column_name": "readmitted_False_PREDICTION"
}
1,
"association_id_column": "rowID",
"actuals_value_column": "ACTUALS"
e }
-3
>>> deployment_id = "foobar"

>>> job = dr.BatchMonitoringlob.run(deployment_id, **job_spec)
>>> job.wait_for_completion()

Attributes

deployment [Deployment or string ID] Deployment which will be used for monitoring.
intake_settings [dict] A dict configuring how data is coming from. Supported options:

* type : string, either localFile, s3, azure, gcp, dataset, jdbc snowflake, synapse or big-
query

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a dr.Dataset object.

To monitor from a local file, add this parameter to the settings:

* file : A file-like object, string path to a file or a pandas.DataFrame of scoring data.
To monitor from S3, add the next parameters to the settings:

e url : string, the URL to score (e.g.: s3:/bucket/key).

* credential_id : string (optional).

2.3. API Reference 195

DataRobot Python API Documentation, Release 3.2.2

* endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default).

To monitor from JDBC, add the next parameters to the settings:

* data_store_id : string, the ID of the external data store connected to the JDBC data source
(see Database Connectivity).

e query : string (optional if fable, schema and/or catalog is specified), a self-supplied
SELECT statement of the data set you wish to predict.

* table : string (optional if query is specified), the name of specified database table.
* schema : string (optional if query is specified), the name of specified database schema.

e catalog : string (optional if query is specified), (new in v2.22) the name of specified
database catalog.

» fetch_size : int (optional), Changing the fetchSize can be used to balance throughput and
memory usage.

* credential_id : string (optional) the ID of the credentials holding information about a
user with read-access to the JDBC data source (see Credentials).

output_settings [dict (optional)] A dict configuring how monitored data is to be saved. Sup-
ported options:

* type : string, either localFile, s3, azure, gcp, jdbc, snowflake, synapse or bigquery
To save monitored data to a local file, add parameters to the settings:

* path : string (optional), path to save the scored data as CSV. If a path is not specified,
you must download the scored data yourself with job.download(). If a path is specified,
the call will block until the job is done. if there are no other jobs currently processing for
the targeted prediction instance, uploading, scoring, downloading will happen in parallel
without waiting for a full job to complete. Otherwise, it will still block, but start down-
loading the scored data as soon as it starts generating data. This is the fastest method to
get predictions.

To save monitored data to S3, add the next parameters to the settings:
e url : string, the URL for storing the results (e.g.: s3:/bucket/key).
* credential_id : string (optional).

* endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default).

To save monitored data to JDBC, add the next parameters to the settings:

* data_store_id : string, the ID of the external data store connected to the JDBC data
source (see Database Connectivity).

* table : string, the name of specified database table.
* schema : string (optional), the name of specified database schema.
* catalog : string (optional), (new in v2.22) the name of specified database catalog.

* statement_type : string, the type of insertion statement to create, one of datarobot.
enums.AVAILABLE_STATEMENT_TYPES.

* update_columns : list(string) (optional), a list of strings containing those column names
to be updated in case statement_type is set to a value related to update or upsert.

196

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

* where_columns : list(string) (optional), a list of strings containing those column names
to be selected in case statement_type is set to a value related to insert or update.

* credential_id : string, the ID of the credentials holding information about a user with
write-access to the JDBC data source (see Credentials).

* create_table_if not_exists : bool (optional), If no existing table is detected, attempt to
create it before writing data with the strategy defined in the statementType parameter.

csv_settings [dict (optional)] CSV intake and output settings. Supported options:

* delimiter : string (optional, default ,), fields are delimited by this character. Use the
string tab to denote TSV (TAB separated values). Must be either a one-character string
or the string tab.

* quotechar : string (optional, default), fields containing the delimiter must be quoted
using this character.

* encoding : string (optional, default utf-8), encoding for the CSV files. For example (but
not limited to): shift_jis, latin_1 or mskanji.

num_concurrent [int (optional)] Number of concurrent chunks to score simultaneously. De-
faults to the available number of cores of the deployment. Lower it to leave resources for
real-time scoring.

chunk_size [string or int (optional)] Which strategy should be used to determine the chunk
size. Can be either a named strategy or a fixed size in bytes. - auto: use fixed or dynamic
based on flipper. - fixed: use IMB for explanations, SMB for regular requests. - dynamic:
use dynamic chunk sizes. - int: use this many bytes per chunk.

abort_on_error [boolean (optional)] Default behavior is to abort the job if too many rows
fail scoring. This will free up resources for other jobs that may score successfully. Set
to false to unconditionally score every row no matter how many errors are encountered.
Defaults to True.

download_timeout [int (optional)] New in version 2.22.

If using localFile output, wait this many seconds for the download to become available.
See download().

download_read_timeout [int (optional, default 660)] New in version 2.22.
If using localFile output, wait this many seconds for the server to respond between chunks.
upload_read_timeout: int (optional, default 600) New in version 2.28.
If using localFile intake, wait this many seconds for the server to respond after whole dataset
upload.
Return type BatchMonitoringJob
cancel (ignore_404_errors=False)
Cancel this job. If this job has not finished running, it will be removed and canceled.
Return type None

get_status()
Get status of batch monitoring job

Returns

BatchMonitoringJob status data Dict with job status

23.

API Reference 197

DataRobot Python API Documentation, Release 3.2.2

Return type Any

class datarobot.models.BatchMonitoringJobDefinition(id=None, name=None, enabled=None,

schedule=None, batch_monitoring_job=None,

created=None, updated=None,
created_by=None, updated_by=None,
last_failed_run_time=None,
last_successful_run_time=None,
last_started_job_status=None,
last_scheduled_run_time=None)

classmethod get (batch_monitoring_job_definition_id)
Get batch monitoring job definition

Returns

BatchMonitoringJobDefinition Instance of BatchMonitoringJobDefinition

Examples

>>> import datarobot as dr

>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575cl)

>>> definition = dr.BatchMonitoringJobDefinition.get('5a8ac9ab07a57a0001be501f")

Attributes

batch_monitoring_job_definition_id: str ID of batch monitoring job definition
Return type BatchMonitoringJobDefinition

classmethod list()
Get job all monitoring job definitions

Returns

List[BatchMonitoringJobDefinition] List of job definitions the user has access to see

Examples

>>> import datarobot as dr

>>> definition = dr.BatchMonitoringJobDefinition.list()

>>> definition

[
BatchMonitoringJobDefinition(60912e09fd1f04e832a575cl),
BatchMonitoringJobDefinition(6086ba0®53f3ef731e81laf3ca)

Return type List[BatchMonitoringJobDefinition]

classmethod create(enabled, batch_monitoring_job, name=None, schedule=None)

Creates a new batch monitoring job definition to be run either at scheduled interval or as a manual run.

198 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns

BatchMonitoringJobDefinition Instance of BatchMonitoringJobDefinition

Examples

>>> import datarobot as dr
>>> job_spec = {
"num_concurrent": 4,
"deployment_id": "foobar",
"intake_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
1,
"output_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
. 1,
—
>>> schedule = {
"day_of_week": [
1
1,
"month": [
1,
"hour": [
16
1,
"minute": [
0
1,
"day_of_month": [
1
..]
—
>>> definition = BatchMonitoringJobDefinition.create(
enabled=False,
batch_monitoring_job=job_spec,
name="some_definition_name",
. schedule=schedule
-)
>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575cl)

Attributes

enabled [bool (default False)] Whether the definition should be active on a scheduled basis.
If True, schedule is required.

batch_monitoring_job: dict The job specifications for your batch monitoring job. It re-
quires the same job input parameters as used with BatchMonitoringJob

2.3. API Reference 199

DataRobot Python API Documentation, Release 3.2.2

name [string (optional)] The name you want your job to be identified with. Must be unique
across the organization’s existing jobs. If you don’t supply a name, a random one will be
generated for you.

schedule [dict (optional)] The schedule payload defines at what intervals the job should
run, which can be combined in various ways to construct complex scheduling terms if
needed. In all the elements in the objects, you can supply either an asterisk ["*"] denoting
“every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a specific
interval.

The schedule payload is split up in the following items:
Minute:

neen

The minute(s) of the day that the job will run. Allowed values are either [
every minute of the day or [® ... 59]

] meaning

Hour: The hour(s) of the day that the job will run. Allowed values are either ["*"]
meaning every hour of the day or [0 ... 23].

Day of Month: The date(s) of the month that the job will run. Allowed values are either
[1 ... 31] or ["*"] for all days of the month. This field is additive with dayOfWeek,
meaning the job will run both on the date(s) defined in this field and the day specified by
dayOfWeek (for example, dates 1st, 2nd, 3rd, plus every Tuesday). If dayOfMonth is set to
["*"] and dayOfWeek is defined, the scheduler will trigger on every day of the month that
matches dayOfWeek (for example, Tuesday the 2nd, 9th, 16th, 23rd, 30th). Invalid dates
such as February 31st are ignored.

Month: The month(s) of the year that the job will run. Allowed values are either [1 ...
12] or ["*"] for all months of the year. Strings, either 3-letter abbreviations or the full
name of the month, can be used interchangeably (e.g., “jan” or “october”’). Months that
are not compatible with dayOfMonth are ignored, for example {"dayOfMonth": [31],
"month":["feb"]}

Day of Week: The day(s) of the week that the job will run. Allowed values are [0 .. 6],
where (Sunday=0), or ["*"], for all days of the week. Strings, either 3-letter abbreviations

LLINNT3 LEINT3 LL)

or the full name of the day, can be used interchangeably (e.g., “sunday”, “Sunday”, “sun”,
or “Sun”, all map to [0]. This field is additive with dayOfMonth, meaning the job will
run both on the date specified by dayOfMonth and the day defined in this field.

Return type BatchlMonitoringJobDefinition
update (enabled, batch_monitoring_job=None, name=None, schedule=None)
Updates a job definition with the changed specs.
Takes the same input as create()
Returns

BatchMonitoringJobDefinition Instance of the updated BatchMonitoringJobDefinition

200 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> job_spec = {
"num_concurrent": 5,
"deployment_id": "foobar_new",
"intake_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
1,
"output_settings": {
"url": "s3://foobar/123",
"type": "s3",
"format": "csv"
. },
—
>>> schedule = {
"day_of_week": [

1
1,
"month": [
1,
"hour": [
1,
"minute": [
30, 59
1,
"day_of_month": [
1, 2, 6
]

_—
>>> definition = BatchMonitoringlobDefinition.create(
enabled=False,
batch_monitoring_job=job_spec,
name="updated_definition_name",
. schedule=schedule
ce)
>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575cl)

Attributes

enabled [bool (default False)] Same as enabled in create().

batch_monitoring_job: dict Same as batch_monitoring_job in create().

name [string (optional)] Same as name in create().

schedule [dict] Same as schedule in create().

Return type BatchMonitoringJobDefinition

2.3. API Reference

201

DataRobot Python API Documentation, Release 3.2.2

run_on_schedule (schedule)
Sets the run schedule of an already created job definition.

If the job was previously not enabled, this will also set the job to enabled.
Returns

BatchMonitoringJobDefinition Instance of the updated BatchMonitoringJobDefinition
with the new / updated schedule.

Examples
>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.create('...")
>>> schedule = {
"day_of_week": [
1
1,
"month": [
1,
"hour": [
1,
"minute": [
30, 59
1,
"day_of_month": [
1, 2, 6
.]
—
>>> definition.run_on_schedule(schedule)
BatchMonitoringJobDefinition(60912e09fd1f04e832a575cl)

Attributes

schedule [dict] Same as schedule in create().
Return type BatchMonitoringJobDefinition

run_once ()
Manually submits a batch monitoring job to the queue, based off of an already created job definition.

Returns

BatchMonitoringJob Instance of BatchMonitoringJob

202 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr

>>> definition = dr.BatchMonitoringJobDefinition.create('...")
>>> job = definition.run_once()

>>> job.wait_for_completion()

Return type BatchMonitoringJob
delete()

Deletes the job definition and disables any future schedules of this job if any. If a scheduled job is currently
running, this will not be cancelled.

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.get('5a8ac9ab07a57a0001be501f")
>>> definition.delete()

Return type None

2.3.7 Status Check Job

class datarobot.models.StatusCheckJob (job_id, resource_type=None)
Tracks asynchronous task status

Attributes
job_id [str] The ID of the status the job belongs to.

wait_for_completion (max_wait=600)
Waits for job to complete.

Parameters

max_wait [int, optional] How long to wait for the job to finish. If the time expires, DataRobot
returns the current status.

Returns

status [JobStatusResult] Returns the current status of the job.
Return type JobStatusResult
get_status()
Retrieve JobStatusResult object with the latest job status data from the server.

Return type JobStatusResult

get_result_when_complete (inax_wait=600)
Wait for the job to complete, then attempt to convert the resulting json into an object of type
self.resource_type Returns - A newly created resource of type self.resource_type

Return type APIObject

2.3. API Reference 203

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.JobStatusResult (status: Optional[str], status_id: Optional[str],
completed_resource_url: Optionalfstr])
This class represents a result of status check for submitted async jobs.

property status
Alias for field number 0

property status_id
Alias for field number 1

property completed_resource_url
Alias for field number 2

2.3.8 Blueprint

class datarobot.models.Blueprint (id=None, processes=None, model_type=None, project_id=None,
blueprint_category=None, monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None,
recommended_featurelist_id=None, supports_composable_ml=None)
A Blueprint which can be used to fit models

Attributes
id [str] the id of the blueprint
processes [list of str] the processes used by the blueprint
model_type [str] the model produced by the blueprint
project_id [str] the project the blueprint belongs to

blueprint_category [str] (New in version v2.6) Describes the category of the blueprint and the
kind of model it produces.

recommended_featurelist_id: str or null (New in v2.18) The ID of the feature list recom-
mended for this blueprint. If this field is not present, then there is no recommended feature
list.

supports_composable_ml [bool or None] (New in version v2.26) whether this blueprint is sup-
ported in the Composable ML.

classmethod get (project_id, blueprint_id)
Retrieve a blueprint.

Parameters
project_id [str] The project’s id.
blueprint_id [str] Id of blueprint to retrieve.
Returns

blueprint [Blueprint] The queried blueprint.
Return type Blueprint

get_json()
Get the blueprint json representation used by this model.

Returns

BlueprintJson Json representation of the blueprint stages.

204 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type Dict[str, Tuple[List[str], List[str], str]]
get_chart()
Retrieve a chart.
Returns

BlueprintChart The current blueprint chart.
Return type BlueprintChart
get_documents()
Get documentation for tasks used in the blueprint.

Returns

list of BlueprintTaskDocument All documents available for blueprint.
Return type List[BlueprintTaskDocument]
classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters

data [dict] Correctly snake_cased keys and their values.
Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

class datarobot.models.BlueprintTaskDocument (fitle=None, task=None, description=None,
parameters=None, links=None, references=None)
Document describing a task from a blueprint.

Attributes
title [str] Title of document.
task [str] Name of the task described in document.
description [str] Task description.

parameters [list of dict(name, type, description)] Parameters that task can receive in human-
readable format.

links [list of dict(name, url)] External links used in document

references [list of dict(name, url)] References used in document. When no link available url
equals None.

2.3. API Reference 205

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.BlueprintChart (nodes, edges)
A Blueprint chart that can be used to understand data flow in blueprint.

Attributes
nodes [list of dict (id, label)] Chart nodes, id unique in chart.
edges [list of tuple (id1, id2)] Directions of data flow between blueprint chart nodes.

classmethod get (project_id, blueprint_id)
Retrieve a blueprint chart.

Parameters

project_id [str] The project’s id.

blueprint_id [str] Id of blueprint to retrieve chart.
Returns

BlueprintChart The queried blueprint chart.
Return type BlueprintChart

to_graphviz()
Get blueprint chart in graphviz DOT format.

Returns

unicode String representation of chart in graphviz DOT language.
Return type str

class datarobot.models.ModelBlueprintChart (nodes, edges)

A Blueprint chart that can be used to understand data flow in model. Model blueprint chart represents reduced

repository blueprint chart with only elements that used to build this particular model.
Attributes
nodes [list of dict (id, label)] Chart nodes, id unique in chart.
edges [list of tuple (id1, id2)] Directions of data flow between blueprint chart nodes.

classmethod get(project_id, model_id)
Retrieve a model blueprint chart.

Parameters

project_id [str] The project’s id.

model_id [str] Id of model to retrieve model blueprint chart.
Returns

ModelBlueprintChart The queried model blueprint chart.
Return type ModelBlueprintChart

to_graphviz ()
Get blueprint chart in graphviz DOT format.
Returns

unicode String representation of chart in graphviz DOT language.

206 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type str

2.3.9 Calendar File

class datarobot.CalendarFile(calendar_end_date=None, calendar_start_date=None, created=None,
id=None, name=None, num_event_types=None, num_events=None,
project_ids=None, role=None, multiseries_id_columns=None)
Represents the data for a calendar file.

For more information about calendar files, see the calendar documentation.
Attributes
id [str] The id of the calendar file.
calendar_start_date [str] The earliest date in the calendar.
calendar_end_date [str] The last date in the calendar.
created [str] The date this calendar was created, i.e. uploaded to DR.
name [str] The name of the calendar.
num_event_types [int] The number of different event types.
num_events [int] The number of events this calendar has.
project_ids [list of strings] A list containing the projectlds of the projects using this calendar.

multiseries_id_columns: list of str or None A list of columns in calendar which uniquely
identify events for different series. Currently, only one column is supported. If multiseries
id columns are not provided, calendar is considered to be single series.

role [str] The access role the user has for this calendar.

classmethod create(file_path, calendar_name=None, multiseries_id_columns=None)
Creates a calendar using the given file. For information about calendar files, see the calendar documentation

The provided file must be a CSV in the format:

Date, Event, Series ID, Event Duration
<date>, <event_type>, <series id>, <event duration>
<date>, <event_type>, , <event duration>

A header row is required, and the “Series ID”” and “Event Duration” columns are optional.

Once the CalendarFile has been created, pass its ID with the DatetimePartitioningSpecification
when setting the target for a time series project in order to use it.

Parameters
file_path [string] A string representing a path to a local csv file.

calendar_name [string, optional] A name to assign to the calendar. Defaults to the name of
the file if not provided.

multiseries_id_columns [list of str or None] A list of the names of multiseries id columns
to define which series an event belongs to. Currently only one multiseries id column is
supported.

Returns

calendar_file [CalendarFile] Instance with initialized data.

2.3. API Reference 207

DataRobot Python API Documentation, Release 3.2.2

Raises

AsyncProcessUnsuccessfulError Raised if there was an error processing the provided cal-
endar file.

Examples

Creating a calendar with a specified name

cal = dr.CalendarFile.create('/home/calendars/somecalendar.csv',
calendar_name="'Some Calendar Name')

cal.id

>>> 5¢1d4904211c0a061bc93013

cal.name

>>> Some Calendar Name

Creating a calendar without specifying a name

cal = dr.CalendarFile.create('/home/calendars/somecalendar.csv')
cal.id

>>> 5¢1d4904211c0a061bc93012

cal.name

>>> somecalendar.csv

Creating a calendar with multiseries id columns

cal = dr.CalendarFile.create('/home/calendars/somemultiseriescalendar.csv',
calendar_name='Some Multiseries Calendar Name',
multiseries_id_columns=['series_id'])

cal.id

>>> 5da9bb21962d746f97e4daee

cal.name

>>> Some Multiseries Calendar Name

cal.multiseries_id_columns

>>> ['series_id']

Return type CalendarFile

classmethod create_calendar_from_dataset (dataset_id, dataset_version_id=None,

calendar_name=None, multiseries_id_columns=None,
delete_on_error=False)
Creates a calendar using the given dataset. For information about calendar files, see the calendar documen-
tation

The provided dataset have the following format:

Date, Event, Series ID, Event Duration
<date>, <event_type>, <series id>, <event duration>
<date>, <event_type>, , <event duration>

The “Series ID” and “Event Duration” columns are optional.

Once the CalendarFile has been created, pass its ID with the DatetimePartitioningSpecification
when setting the target for a time series project in order to use it.

Parameters

dataset_id [string] The identifier of the dataset from which to create the calendar.

208

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

dataset_version_id [string, optional] The identifier of the dataset version from which to cre-
ate the calendar.

calendar_name [string, optional] A name to assign to the calendar. Defaults to the name of
the dataset if not provided.

multiseries_id_columns [list of str, optional] A list of the names of multiseries id columns
to define which series an event belongs to. Currently only one multiseries id column is
supported.

delete_on_error [boolean, optional] Whether delete calendar file from Catalog if it’s not
valid.

Returns
calendar_file [CalendarFile] Instance with initialized data.
Raises

AsyncProcessUnsuccessfulError Raised if there was an error processing the provided cal-
endar file.

Examples

Creating a calendar from a dataset
dataset = dr.Dataset.create_from_file('/home/calendars/somecalendar.csv')
cal = dr.CalendarFile.create_calendar_from_dataset(

dataset.id, calendar_name='Some Calendar Name'
)
cal.id
>>> 5¢1d4904211c0a061bc93013
cal.name
>>> Some Calendar Name

Creating a calendar from a new dataset version
new_dataset_version = dr.Dataset.create_version_from_file(
dataset.id, '/home/calendars/anothercalendar.csv’

cal = dr.CalendarFile.create(
new_dataset_version.id, dataset_version_id=new_dataset_version.version_id

cal.id

>>> 5¢1d4904211c0a061bc93012
cal.name

>>> anothercalendar.csv

Return type CalendarFile

classmethod create_calendar_from_country_code (country_code, start_date, end_date)

Generates a calendar based on the provided country code and dataset start date and end dates.
The provided country code should be uppercase and 2-3 characters long. See CalendarFile.
get_allowed_country_codes for a list of allowed country codes.

Parameters

country_code [string] The country code for the country to use for generating the calendar.

23.

API Reference 209

DataRobot Python API Documentation, Release 3.2.2

start_date [datetime.datetime] The earliest date to include in the generated calendar.
end_date [datetime.datetime] The latest date to include in the generated calendar.

Returns
calendar_file [CalendarFile] Instance with initialized data.

Return type CalendarFile

classmethod get_allowed_country_codes (offset=None, limit=None)
Retrieves the list of allowed country codes that can be used for generating the preloaded calendars.

Parameters
offset [int] Optional, defaults to 0. This many results will be skipped.
limit [int] Optional, defaults to 100, maximum 1000. At most this many results are returned.

Returns

list A list dicts, each of which represents an allowed country codes. Each item has the fol-
lowing structure:

* name : (str) The name of the country.
* code : (str) The code for this country. This is the value that should be supplied to
CalendarFile.create_calendar_from_country_code.
Return type List[CountryCode]
classmethod get(calendar_id)
Gets the details of a calendar, given the id.
Parameters
calendar_id [str] The identifier of the calendar.
Returns
calendar_file [CalendarFile] The requested calendar.
Raises

DataError Raised if the calendar_id is invalid, i.e. the specified CalendarFile does not exist.

Examples

cal = dr.CalendarFile.get(some_calendar_id)
cal.id
>>> some_calendar_id

Return type CalendarFile
classmethod list(project_id=None, batch_size=None)
Gets the details of all calendars this user has view access for.
Parameters

project_id [str, optional] If provided, will filter for calendars associated only with the spec-
ified project.

210 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

batch_size [int, optional] The number of calendars to retrieve in a single API call. If speci-
fied, the client may make multiple calls to retrieve the full list of calendars. If not specified,
an appropriate default will be chosen by the server.

Returns

calendar_list [list of CalendarFile] A list of CalendarFile objects.

Examples

calendars = dr.CalendarFile.list(Q)
len(calendars)
>>> 10

Return type List[CalendarFile]
classmethod delete(calendar_id)
Deletes the calendar specified by calendar_id.
Parameters

calendar_id [str] The id of the calendar to delete. The requester must have OWNER access
for this calendar.

Raises

ClientError Raised if an invalid calendar_id is provided.

Examples

Deleting with a valid calendar_id

status_code = dr.CalendarFile.delete(some_calendar_id)
status_code

>>> 204

dr.CalendarFile.get(some_calendar_id)

>>> ClientError: Item not found

Return type None

classmethod update_name (calendar_id, new_calendar_name)
Changes the name of the specified calendar to the specified name. The requester must have at least
READ_WRITE permissions on the calendar.

Parameters

calendar_id [str] The id of the calendar to update.

new_calendar_name [str] The new name to set for the specified calendar.
Returns

status_code [int] 200 for success
Raises

ClientError Raised if an invalid calendar_id is provided.

23.

API Reference 211

DataRobot Python API Documentation, Release 3.2.2

Examples

response = dr.CalendarFile.update_name(some_calendar_id, some_new_name)
response

>>> 200

cal = dr.CalendarFile.get(some_calendar_id)

cal.name

>>> some_new_name

Return type int
classmethod share(calendar_id, access_list)
Shares the calendar with the specified users, assigning the specified roles.
Parameters
calendar_id [str] The id of the calendar to update

access_list: A list of dr.SharingAccess objects. Specify None for the role to delete a user’s
access from the specified CalendarFile. For more information on specific access levels, see
the sharing documentation.

Returns
status_code [int] 200 for success
Raises
ClientError Raised if unable to update permissions for a user.

AssertionError Raised if access_list is invalid.

Examples

assuming some_user is a valid user, share this calendar with some_user

sharing_list = [dr.SharingAccess(some_user_username,
dr.enums.SHARING_ROLE.READ_WRITE)]

response = dr.CalendarFile.share(some_calendar_id, sharing_list)

response.status_code

>>> 200

delete some_user from this calendar, assuming they have access of some kind.
—already
delete_sharing_list = [dr.SharingAccess(some_user_username,

None)]
response = dr.CalendarFile.share(some_calendar_id, delete_sharing list)
response.status_code
>>> 200

Attempt to add an invalid user to a calendar

invalid_sharing_list = [dr.SharingAccess(invalid_username,
dr.enums.SHARING_ROLE.READ_WRITE)]

dr.CalendarFile.share(some_calendar_id, invalid_sharing_ list)

>>> ClientError: Unable to update access for this calendar

Return type int

212 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get_access_list(calendar_id, batch_size=None)
Retrieve a list of users that have access to this calendar.

Parameters
calendar_id [str] The id of the calendar to retrieve the access list for.

batch_size [int, optional] The number of access records to retrieve in a single API call. If
specified, the client may make multiple calls to retrieve the full list of calendars. If not
specified, an appropriate default will be chosen by the server.

Returns
access_control_list [list of SharingAccess] A list of SharingAccess objects.
Raises

ClientError Raised if user does not have access to calendar or calendar does not exist.
Return type List[SharingAccess]

class datarobot.models.calendar_file.CountryCode() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary
initialized as if via: d = {} for k, v in iterable: d[k] =
v dict(**kwargs) -> new dictionary initialized with
the name=value pairs in the keyword argument list.
For example: dict(one=1, two=2)

2.3.10 Automated Documentation

class datarobot.models.automated_documentation.AutomatedDocument (entity_id=None,
document_type=None,
output_format=None,
locale=None,
template_id=None, id=None,
filepath=None,
created_at=None)

An automated documentation object.

New in version v2.24.
Attributes

document_type [str or None] Type of automated document. You can specify:
MODEL_COMPLIANCE, AUTOPILOT_SUMMARY depending on your account settings. Re-
quired for document generation.

entity_id [str or None] ID of the entity to generate the document for. It can be model ID or
project ID. Required for document generation.

output_format [str or None] Format of the generate document, either docx or html. Required
for document generation.

locale [str or None] Localization of the document, dependent on your account settings. Default
setting is EN_US.

2.3. API Reference 213

DataRobot Python API Documentation, Release 3.2.2

template_id [str or None] Template ID to use for the document outline. Defaults to standard
DataRobot template. See the documentation for ComplianceDocTemplate for more infor-
mation.

id [str or None] ID of the document. Required to download or delete a document.

filepath [str or None] Path to save a downloaded document to. Either include a file path and
name or the file will be saved to the directory from which the script is launched.

created_at [datetime or None] Document creation timestamp.

classmethod list_available_document_types()
Get a list of all available document types and locales.

Returns

List of dicts

Examples

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc_types = dr.AutomatedDocument.list_available_document_types()

Return type List[DocumentOption]

property is_model_compliance_initialized: Tuple[bool, str]
Check if model compliance documentation pre-processing is initialized. Model compliance documentation
pre-processing must be initialized before generating documentation for a custom model.

Returns
Tuple of (boolean, string)
* boolean flag is whether model compliance documentation pre-processing is initialized

* string value is the initialization status
Return type Tuple[bool, str]

initialize_model_compliance()
Initialize model compliance documentation pre-processing. Must be called before generating documenta-
tion for a custom model.

Returns
Tuple of (boolean, string)
* boolean flag is whether model compliance documentation pre-processing is initialized

* string value is the initialization status

214 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

NOTE: entity_id is either a model id or a model package id
doc = dr.AutomatedDocument (
document_type="MODEL_COMPLIANCE",
entity_id="6£f50cdb77cc4£8d1560c3ed5",
output_format="docx",
locale="EN_US")

doc.initialize_model_compliance()

Return type Tuple[bool, str]
generate (max_wait=600)
Request generation of an automated document.
Required attributes to request document generation: document_type, entity_id, and output_format.
Returns

requests.models.Response

Examples

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

doc = dr.AutomatedDocument (
document_type="MODEL_COMPLIANCE",
entity_id="6£50cdb77cc4£8d1560c3ed5",
output_format="docx",
locale="EN_US",
template_id="50efc9db8aff6c81a374aeec",
filepath="/Users/username/Documents/example.docx"

)

doc.generate()
doc.download()

Return type Response
download ()
Download a generated Automated Document. Document ID is required to download a file.
Returns

requests.models.Response

. API Reference 215

DataRobot Python API Documentation, Release 3.2.2

Examples

Generating and downloading the generated document:

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

doc = dr.AutomatedDocument (
document_type="AUTOPILOT_SUMMARY",
entity_id="6050d07d9da9053ebb002ef7",
output_format="docx",
filepath="/Users/username/Documents/Project_Report_1.docx"

)

doc.generate()
doc.download()

Downloading an earlier generated document when you know the document ID:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument (id="5e8b6a34d2426053ab9%9a39ed")
doc.download()

Notice that filepath was not set for this document. In this case, the file is saved to the directory from
which the script was launched.

Downloading a document chosen from a list of earlier generated documents:

import datarobot as dr
dr.Client(token=my_token, endpoint=endpoint)

model_id = "6f5ed3de855962e0a72a96fe"

docs = dr.AutomatedDocument.list_generated_documents(entity_ids=[model_id])
doc = docs[0]

doc.filepath = "/Users/me/Desktop/Recommended_model_doc.docx"
doc.download()

Return type Response

delete()

Delete a document using its ID.
Returns

requests.models.Response

216

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr

dr.Client (token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument (id="5e8b6a34d2426053ab9%a39ed")
doc.delete()

If you don’t know the document ID, you can follow the same workflow to get the ID as in the examples for
the AutomatedDocument . download method.

Return type Response

classmethod list_generated_documents (document_types=None, entity_ids=None,
output_formats=None, locales=None, offset=None,
limit=None)
Get information about all previously generated documents available for your account. The information
includes document ID and type, ID of the entity it was generated for, time of creation, and other information.

Parameters
document_types [List of str or None] Query for one or more document types.
entity_ids [List of str or None] Query generated documents by one or more entity IDs.
output_formats [List of str or None] Query for one or more output formats.
locales [List of str or None] Query generated documents by one or more locales.
offset: int or None Number of items to skip. Defaults to O if not provided.
limit: int or None Number of items to return, maximum number of items is 1000.
Returns

List of AutomatedDocument objects, where each object contains attributes described in

AutomatedDocument

Examples

To get a list of all generated documents:

import datarobot as dr

dr.Client (token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents()

To get a list of all AUTOPILOT_SUMMARY documents:

import datarobot as dr

dr.Client (token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents(document_types=["AUTOPILOT_
—SUMMARY"])

To get a list of 5 recently created automated documents in html format:

2.3. API Reference 217

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

dr.Client (token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents(output_formats=["html"],.
~1limit=5)

To get a list of automated documents created for specific entities (projects or models):

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents
entity_ids=["6051d3dbef875eb3belbe®36",
"6051d3elfbe65cd7a5f6fde6",
"6051d3e7£86c04486c2£9584"]

Note, that the list of results contains AutomatedDocument objects, which means that you can execute class-
related methods on them. Here’s how you can list, download, and then delete from the server all automated
documents related to a certain entity:

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

ids = ["6051d3dbef875eb3belbe036", "5feld3d55cd810ebdb60c517£f"]
docs = AutomatedDocument.list_generated_documents(entity_ids=ids)
for doc in docs:

doc.download()

doc.delete()

Return type List[AutomatedDocument]

class datarobot.models.automated_documentation.DocumentOption() -> new empty dictionary
dict(mapping) -> new dictionary
initialized from a mapping object's
(key, value) pairs dict(iterable) ->
new dictionary initialized as if via:
d={}fork,viniterable: d[k]=v
dict(**kwargs) -> new dictionary
initialized with the name=value
pairs in the keyword argument list.
For example: dict(one=1, two=2)

218 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.11 Class Mapping Aggregation Settings

For multiclass projects with a lot of unique values in target column you can specify the parameters for aggregation of
rare values to improve the modeling performance and decrease the runtime and resource usage of resulting models.

class datarobot.helpers.ClassMappingAggregationSettings (max_unaggregated_class_values=None,

min_class_support=None,
excluded_from_aggregation=None,
aggregation_class_name=None)

Class mapping aggregation settings. For multiclass projects allows fine control over which target values will be

preserved as classes. Classes which aren’t preserved will be - aggregated into a single “catch everything else”

class in case of multiclass - or will be ignored in case of multilabel. All attributes are optional, if not specified -

server side defaults will be used.

Attributes

max_unaggregated_class_values [int, optional] Maximum amount of unique values allowed
before aggregation kicks in.

min_class_support [int, optional] Minimum number of instances necessary for each target
value in the dataset. All values with less instances will be aggregated.

excluded_from_aggregation [list, optional] List of target values that should be guaranteed to
kept as is, regardless of other settings.

aggregation_class_name [str, optional] If some of the values will be aggregated - this is the
name of the aggregation class that will replace them.

2.3.12 Client Configuration

datarobot.client.Client (token=None, endpoint=None, config_path=None, connect_timeout=None,
user_agent_suffix=None, ssl_verify=True, max_retries=None, token_type="Token',
default_use_case=None, enable_api_consumer_tracking=None,
trace_context=None)
Configures the global API client for the Python SDK. The client will be configured in one of the following ways,
in order of priority.

1. From call args iff token and endpoint kwargs are specified;

2. From a YAML file at the path specified in the config_path kwarg;

3. From a YAML file at the path specified in the env var DATAROBOT_CONFIG_FILE;

4. From env vars, iff DATAROBOT_ENDPOINT and DATAROBOT_API_TOKEN are specified;
5. From a YAML file at the path SHOME/.config/datarobot/drconfig.yaml.

Note: All client configuration must be done via a single method; there is no fall back to lower priority methods.

This can also have the side effect of setting a default Use Case for client API requests.
Parameters
token [str, optional] API token
endpoint [str, optional] Base url of API

config_path [str, optional] Alternate location of config file

2.3. API Reference 219

DataRobot Python API Documentation, Release 3.2.2

connect_timeout [int, optional] How long the client should be willing to wait before establishing
a connection with the server.

user_agent_suffix [str, optional] Additional text that is appended to the User-Agent HTTP
header when communicating with the DataRobot REST API. This can be useful for iden-
tifying different applications that are built on top of the DataRobot Python Client, which can
aid debugging and help track usage.

ssl_verify [bool or str, optional] Whether to check SSL certificate. Could be set to path with
certificates of trusted certification authorities.

max_retries [int or datarobot.rest.Retry, optional] Either an integer number of times to retry
connection errors, or a urllib3.util.retry.Retry object to configure retries.

token_type: str, ‘“Token” by default Authentication token type: Token, Bearer. “Bearer” is for
DataRobot OAuth2 token, “Token” for token generated in Developer Tools.

default_use_case: str, optional The entity ID of the default Use Case to use with any requests
made by the client.

enable_api_consumer_tracking: bool, optional Enable and disable user metrics tracking
within the datarobot module. Default: False.

trace_context: str, optional An ID or other string for identifying which code template or Al
Accelerator was used to make a request.

Returns

——- The RESTClientObject instance created.

Return type RESTClientObject
datarobot.client.get_client()
Returns the global HTTP client for the Python SDK, instantiating it if necessary.
Return type RESTClientObject

datarobot.client.set_client (client)
Configure the global HTTP client for the Python SDK. Returns previous instance.

Return type Optional[RESTClientObject]

datarobot.client.client_configuration(*args, **kwargs)
This context manager can be used to temporarily change the global HTTP client.

In multithreaded scenarios, it is highly recommended to use a fresh manager object per thread.
DataRobot does not recommend nesting these contexts.
Parameters
args [Parameters passed to datarobot.client.Client()]

kwargs [Keyword arguments passed to datarobot.client.Client()]

220 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot.client import client_configuration
from datarobot.models import Project

with client_configuration(token="api-key-here", endpoint="https://host-name.com"):
Project.list()

from datarobot.client import Client, client_configuration
from datarobot.models import Project

Client() # Interact with DataRobot using the default configuration.
Project.list()

with client_configuration(config_path="/path/to/a/drconfig.yaml™):
Interact with DataRobot using a different configuration.
Project.list()

class datarobot.rest.RESTClientObject (auth, endpoint, connect_timeout=6.05, verify=True,
user_agent_suffix=None, max_retries=None,
authentication_type=None)

Parameters
connect_timeout timeout for http request and connection
headers headers for outgoing requests

open_in_browser ()
Opens the DataRobot app in a web browser, or logs the URL if a browser is not available.

Return type None

2.3.13 Clustering

class datarobot.models.ClusteringModel (id=None, processes=None, featurelist_name=None,
Seaturelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
is_n_clusters_dynamically_determined=None,
blueprint_id=None, metrics=None, project=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None, n_clusters=None,
has_empty_clusters=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None,
prediction_threshold_read_only=None, model_number=None,
parent_model_id=None, use_project_settings=None,
supports_composable_ml=None)

ClusteringModel extends Model class. It provides provides properties and methods specific to clustering projects.

2.3. API Reference 221

DataRobot Python API Documentation, Release 3.2.2

compute_insights (max_wait=600)
Compute and retrieve cluster insights for model. This method awaits completion of job computing clus-
ter insights and returns results after it is finished. If computation takes longer than specified max_wait
exception will be raised.

Parameters

project_id: str Project to start creation in.

model_id: str Project’s model to start creation in.

max_wait: int Maximum number of seconds to wait before giving up
Returns

List of ClusterInsight
Raises

ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the cluster insights computation has failed or was can-
celled.

AsyncTimeoutError If the cluster insights computation did not resolve in time
Return type List[ClusterInsight]
property insights: List[datarobot.models.cluster_insight.ClusterInsight]
Return actual list of cluster insights if already computed.

Returns

List of ClusterInsight
Return type List[ClusterInsight]
property clusters: List[datarobot.models.cluster.Cluster]
Return actual list of Clusters.

Returns

List of Cluster
Return type List[Cluster]
update_cluster_names (cluster_name_mappings)
Change many cluster names at once based on list of name mappings.

Parameters

cluster_name_mappings: List of tuples Cluster names mapping consisting of current clus-
ter name and old cluster name. Example:

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns

222 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

List of Cluster
Raises
datarobot.errors.ClientError Server rejected update of cluster names. Possible reasons
include: incorrect format of mapping, mapping introduces duplicates.
Return type List[Cluster]
update_cluster_name (current_name, new_name)
Change cluster name from current_name to new_name.
Parameters
current_name: str Current cluster name.
new_name: str New cluster name.
Returns
List of Cluster
Raises
datarobot.errors.ClientError Server rejected update of cluster names.
Return type List[Cluster]
class datarobot.models.cluster.Cluster (**kwargs)
Representation of a single cluster.
Attributes
name: str Current cluster name

percent: float Percent of data contained in the cluster. This value is reported after cluster in-
sights are computed for the model.

classmethod list(project_id, model_id)
Retrieve a list of clusters in the model.

Parameters
project_id: str ID of the project that the model is part of.
model_id: str ID of the model.

Returns
List of clusters

Return type List[Cluster]

classmethod update_multiple_names (project_id, model_id, cluster_name_mappings)
Update many clusters at once based on list of name mappings.

Parameters
project_id: str ID of the project that the model is part of.
model_id: str ID of the model.

cluster_name_mappings: List of tuples Cluster name mappings, consisting of current and
previous names for each cluster. Example:

2.3. API Reference 223

DataRobot Python API Documentation, Release 3.2.2

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns
List of clusters

Raises
datarobot.errors.ClientError Server rejected update of cluster names.
ValueError Invalid cluster name mapping provided.

Return type List[Cluster]

classmethod update_name (project_id, model_id, current_name, new_name)
Change cluster name from current_name to new_name

Parameters
project_id: str ID of the project that the model is part of.
model_id: str ID of the model.
current_name: str Current cluster name
new_name: str New cluster name

Returns
List of Cluster

Return type List[Cluster]

class datarobot.models.cluster_insight.ClusterInsight (**kwargs)
Holds data on all insights related to feature as well as breakdown per cluster.
Parameters
feature_name: str Name of a feature from the dataset.

feature_type: str Type of feature.

insights [List of classes (ClusterInsight)] List provides information regarding the importance
of a specific feature in relation to each cluster. Results help understand how the model is
grouping data and what each cluster represents.

feature_impact: float Impact of a feature ranging from O to 1.

classmethod compute (project_id, model_id, max_wait=600)
Starts creation of cluster insights for the model and if successful, returns computed ClusterInsights. This
method allows calculation to continue for a specified time and if not complete, cancels the request.

Parameters
project_id: str ID of the project to begin creation of cluster insights for.
model_id: str ID of the project model to begin creation of cluster insights for.
max_wait: int Maximum number of seconds to wait canceling the request.
Returns

List[ClusterInsight]

224 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises

ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError Indicates whether any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError Indicates whether the cluster insights computation failed
or was cancelled.

AsyncTimeoutError Indicates whether the cluster insights computation did not resolve

within the specified time limit (max_wait).

Return type List[ClusterInsight]

2.3.14 Compliance Documentation Templates

class datarobot.models.compliance_doc_template.ComplianceDocTemplate (id, creator_id,
creator_username, name,
org_id=None,
sections=None)
A compliance documentation template. Templates are used to customize contents of AutomatedDocument.

New in version v2.14.

Notes

Each section dictionary has the following schema:

e title: title of the section

* type : type of section. Must be one of “datarobot”, “user” or “table_of_contents”.
Each type of section has a different set of attributes described bellow.

Section of type "datarobot" represent a section owned by DataRobot. DataRobot sections have the following
additional attributes:

e content_id : The identifier of the content in this section. You can get the default template with
get_default for a complete list of possible DataRobot section content ids.

e sections : list of sub-section dicts nested under the parent section.

Section of type "user" represent a section with user-defined content. Those sections may contain text generated
by user and have the following additional fields:

* regularText : regular text of the section, optionally separated by \n to split paragraphs.
e highlightedText : highlighted text of the section, optionally separated by \n to split paragraphs.
* sections : list of sub-section dicts nested under the parent section.
Section of type "table_of_contents" represent a table of contents and has no additional attributes.
Attributes
id [str] the id of the template
name [str] the name of the template.
creator_id [str] the id of the user who created the template

creator_username [str] username of the user who created the template

2.3. API Reference 225

DataRobot Python API Documentation, Release 3.2.2

org_id [str] the id of the organization the template belongs to

sections [list of dicts] the sections of the template describing the structure of the document.
Section schema is described in Notes section above.

classmethod get_default(template_type=None)
Get a default DataRobot template. This template is used for generating compliance documentation when
no template is specified.

Parameters

template_type [str or None] Type of the template. Currently supported values are “normal”
and “time_series”

Returns
template [ComplianceDocTemplate] the default template object with sections attribute
populated with default sections.
Return type ComplianceDocTemplate
classmethod create_from_json_file(name, path)
Create a template with the specified name and sections in a JSON file.

This is useful when working with sections in a JSON file. Example:

default_template = ComplianceDocTemplate.get_default()
default_template.sections_to_json_file('path/to/example.json')
... edit example.json in your editor
my_template = ComplianceDocTemplate.create_from_json_file(
name='my template',
path="path/to/example. json'

Parameters
name [str] the name of the template. Must be unique for your user.
path [str] the path to find the JSON file at

Returns

template [ComplianceDocTemplate] the created template
Return type ComplianceDocTemplate

classmethod create(name, sections)
Create a template with the specified name and sections.
Parameters
name [str] the name of the template. Must be unique for your user.
sections [list] list of section objects

Returns

template [ComplianceDocTemplate] the created template

Return type ComplianceDocTemplate

226 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get (template_id)
Retrieve a specific template.

Parameters
template_id [str] the id of the template to retrieve
Returns

template [ComplianceDocTemplate] the retrieved template
Return type ComplianceDocTemplate
classmethod list(name_part=None, limit=None, offset=None)
Get a paginated list of compliance documentation template objects.

Parameters

name_part [str or None] Return only the templates with names matching specified string.
The matching is case-insensitive.

limit [int] The number of records to return. The server will use a (possibly finite) default if
not specified.

offset [int] The number of records to skip.
Returns
templates [list of ComplianceDocTemplate] the list of template objects
Return type List[ComplianceDocTemplate]
sections_to_json_file(path, indent=2)
Save sections of the template to a json file at the specified path
Parameters
path [str] the path to save the file to
indent [int] indentation to use in the json file.
Return type None
update (name=None, sections=None)
Update the name or sections of an existing doc template.
Note that default or non-existent templates can not be updated.
Parameters
name [str, optional] the new name for the template

sections [list of dicts] list of sections
Return type None

delete()
Delete the compliance documentation template.

Return type None

. API Reference 227

DataRobot Python API Documentation, Release 3.2.2

2.3.15 Confusion Chart

class datarobot.models.confusion_chart.ConfusionChart (source, data, source_model_id)
Confusion Chart data for model.

Notes

ClassMetrics is a dict containing the following:
* class_name (string) name of the class
e actual_count (int) number of times this class is seen in the validation data
* predicted_count (int) number of times this class has been predicted for the validation data
e f1 (float) F1 score
e recall (float) recall score
* precision (float) precision score
¢ was_actual_percentages (list of dict) one vs all actual percentages in format specified below.
— other_class_name (string) the name of the other class

— percentage (float) the percentage of the times this class was predicted when is was actually class
(fromOto 1)

* was_predicted_percentages (list of dict) one vs all predicted percentages in format specified below.

— other_class_name (string) the name of the other class
— percentage (float) the percentage of the times this class was actual predicted (from O to 1)
e confusion_matrix_one_vs_all (list of list) 2d list representing 2x2 one vs all matrix.

— This represents the True/False Negative/Positive rates as integer for each class. The data structure
looks like:

— [[True Negative, False Positive], [False Negative, True Positive]]

Attributes
source [str] Confusion Chart data source. Can be ‘validation’, ‘crossValidation’ or ‘holdout’.
raw_data [dict] All of the raw data for the Confusion Chart
confusion_matrix [list of list] The NxN confusion matrix
classes [list] The names of each of the classes
class_metrics [list of dicts] List of dicts with schema described as ClassMetrics above.

source_model_id [str] ID of the model this Confusion chart represents; in some cases, insights
from the parent of a frozen model may be used

228 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.16 Credentials

class datarobot.models.Credential (credential_id=None, name=None, credential_type=None,
creation_date=None, description=None)

classmethod list()
Returns list of available credentials.

Returns

credentials [list of Credential instances] contains a list of available credentials.

Examples

>>> import datarobot as dr
>>> data_sources = dr.Credential.list()
>>> data_sources

[
Credential ('5e429d6ecf8a5£36c5693e03', 'my_s3_cred', 's3'),

Credential ('5e42cc4dcf8a5£3256865840', 'my_jdbc_cred', 'jdbc'),

Return type List[Credential]
classmethod get(credential_id)
Gets the Credential.
Parameters

credential_id [str] the identifier of the credential.
Returns

credential [Credential] the requested credential.

Examples

>>> import datarobot as dr

>>> cred = dr.Credential.get('5a8ac9ab07a57a0001be501f")
>>> cred

Credential ('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),

Return type Credential
delete()
Deletes the Credential the store.
Parameters
credential_id [str] the identifier of the credential.
Returns

credential [Credential] the requested credential.

2.3. API Reference 229

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.get('5a8ac9ab07a57a0001be501f")
>>> cred.delete()

Return type None
classmethod create_basic(name, user, password, description=None)
Creates the credentials.

Parameters
name [str] the name to use for this set of credentials.
user [str] the username to store for this set of credentials.
password [str] the password to store for this set of credentials.
description [str, optional] the description to use for this set of credentials.

Returns

credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_basic(
name="my_basic_cred',
user="username',
. password="password',

<)
>>> cred
Credential ('5e429d6ecf8a5f36c5693e03', 'my_basic_cred', 'basic'),

Return type Credential
classmethod create_oauth(name, token, refresh_token, description=None)
Creates the OAUTH credentials.

Parameters
name [str] the name to use for this set of credentials.
token: str the OAUTH token
refresh_token: str The OAUTH token
description [str, optional] the description to use for this set of credentials.

Returns

credential [Credential] the created credential.

230 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_oauth(
name="my_oauth_cred’,
token="XXX",
. refresh_token='YYY',

<)
>>> cred
Credential ('5e429d6ecf8a5f36c5693e03', 'my_oauth_cred', 'oauth'),

Return type Credential

classmethod create_s3 (name, aws_access_key_id=None, aws_secret_access_key=None,
aws_session_token=None, description=None)
Creates the S3 credentials.

Parameters
name [str] the name to use for this set of credentials.
aws_access_key_id [str, optional] the AWS access key id.
aws_secret_access_key [str, optional] the AWS secret access key.
aws_session_token [str, optional] the AWS session token.
description [str, optional] the description to use for this set of credentials.
Returns

credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_s3(
name="my_s3_cred',
aws_access_key_id="XXX",
aws_secret_access_key="YVV"',
. aws_session_token="'ZZZ",

<)
>>> cred
Credential ('5e429d6ecf8a5f36¢c5693e03', 'my_s3_cred', 's3'),

Return type Credential
classmethod create_azure(name, azure_connection_string, description=None)
Creates the Azure storage credentials.
Parameters
name [str] the name to use for this set of credentials.
azure_connection_string [str] the Azure connection string.

description [str, optional] the description to use for this set of credentials.

23.

API Reference

231

DataRobot Python API Documentation, Release 3.2.2

Returns

credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_azure(
name='"my_azure_cred',

.. azure_connection_string="XXX",
<)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_azure_cred', 'azure'),

Return type Credential
classmethod create_gcp (name, gcp_key=None, description=None)
Creates the GCP credentials.

Parameters
name [str] the name to use for this set of credentials.
gep_key [str| dict] the GCP key in json format or parsed as dict.
description [str, optional] the description to use for this set of credentials.

Returns

credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_gcp(
name="my_gcp_cred"',
. gcp_key="XXX'",

<)
>>> cred
Credential ('5e429d6ecf8a5f36c5693e03', 'my_gcp_cred', 'gcp'),

Return type Credential
update (name=None, description=None, **kwargs)
Update the credential values of an existing credential. Updates this object in place.
New in version v3.2.
Parameters
name [str] The name to use for this set of credentials.

description [str, optional] The description to use for this set of credentials; if omitted, and
name is not omitted, then it clears any previous description for that name.

kwargs [Keyword arguments specific to the given credential_type that should be updated.]

232 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type None

2.3.17 Custom Models

class datarobot.models.custom_model_version.CustomModelFileItem(id, file_name, file_path,
file_source, created_at=None)
A file item attached to a DataRobot custom model version.

New in version v2.21.
Attributes
id: str The ID of the file item.
file_name: str The name of the file item.
file_path: str The path of the file item.
file_source: str The source of the file item.
created_at: str, optional ISO-8601 formatted timestamp of when the version was created.

class datarobot.CustomInferenceModel (**kwargs)
A custom inference model.

New in version v2.21.
Attributes
id: str The ID of the custom model.
name: str The name of the custom model.

language: str The programming language of the custom inference model. Can be “python”,

[T T

r”’, “java” or “other”.
description: str The description of the custom inference model.

target_type: datarobot. TARGET_TYPE Target type of the custom inference model. Val-
ues: [datarobot. TARGET_TYPE.BINARY, datarobot. TARGET _TYPE.REGRESSION,
datarobot. TARGET_TYPE.MULTICLASS, datarobot. TARGET _TYPE.UNSTRUCTURED,
datarobot. TARGET _TYPE.ANOMALY]

target_name: str, optional Target feature name. It is optional(ignored if provided)
for datarobot. TARGET _TYPE.UNSTRUCTURED or datarobot. TARGET_TYPE.ANOMALY
target type.

latest_version: datarobot.CustomModelVersion or None The latest version of the custom
model if the model has a latest version.

deployments_count: int Number of a deployments of the custom models.

target_name: str The custom model target name.

positive_class_label: str For binary classification projects, a label of a positive class.
negative_class_label: str For binary classification projects, a label of a negative class.
prediction_threshold: float For binary classification projects, a threshold used for predictions.

training_data_assignment_in_progress: bool Flag describing if training data assignment is in
progress.

training_dataset_id: str, optional The ID of a dataset assigned to the custom model.

2.3. API Reference 233

DataRobot Python API Documentation, Release 3.2.2

training_dataset_version_id: str, optional The ID of a dataset version assigned to the custom
model.

training_data_file_name: str, optional The name of assigned training data file.

training_data_partition_column: str, optional The name of a partition column in a training
dataset assigned to the custom model.

created_by: str The username of a user who created the custom model.
updated_at: str ISO-8601 formatted timestamp of when the custom model was updated
created_at: str ISO-8601 formatted timestamp of when the custom model was created

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY.NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

is_training_data_for_versions_permanently_enabled: bool, optional Whether training data
assignment on the version level is permanently enabled for the model.

classmethod list(is_deployed=None, search_for=None, order_by=None)
List custom inference models available to the user.

New in version v2.21.
Parameters

is_deployed: bool, optional Flag for filtering custom inference models. If set to True, only
deployed custom inference models are returned. If set to False, only not deployed custom
inference models are returned.

search_for: str, optional String for filtering custom inference models - only custom infer-
ence models that contain the string in name or description will be returned. If not specified,
all custom models will be returned

order_by: str, optional Property to sort custom inference models by. Supported properties
are “created” and “updated”. Prefix the attribute name with a dash to sort in descending
order, e.g. order_by=’-created’. By default, the order_by parameter is None which will
result in custom models being returned in order of creation time descending.

Returns

List[CustomInferenceModel] A list of custom inference models.
Raises

datarobot.errors.ClientError If the server responded with 4xx status

datarobot.errors.ServerError If the server responded with 5xx status

Return type List[CustomInferenceModel]

234 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get (custom_model_id)
Get custom inference model by id.

New in version v2.21.
Parameters
custom_model_id: str The ID of the custom inference model.
Returns
CustomInferenceModel Retrieved custom inference model.
Raises
datarobot.errors.ClientError The ID the server responded with 4xx status.
datarobot.errors.ServerError The ID the server responded with 5xx status.
Return type CustomInferenceModel
download_latest_version(file_path)
Download the latest custom inference model version.
New in version v2.21.
Parameters
file_path: str Path to create a file with custom model version content.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.
Return type None

classmethod create(name, target_type, target_name=None, language=None, description=None,
positive_class_label=None, negative_class_label=None, prediction_threshold=None,
class_labels=None, class_labels_file=None, network_egress_policy=None,
maximum_memory=None, replicas=None,
is_training_data_for_versions_permanently_enabled=None)
Create a custom inference model.

New in version v2.21.
Parameters
name: str Name of the custom inference model.

target_type: datarobot. TARGET_TYPE Target type of the cus-
tom inference model. Values: [datarobot. TARGET _TYPE.BINARY,
datarobot. TARGET_TYPE.REGRESSION, datarobot. TARGET_TYPE.MULTICLASS,
datarobot. TARGET _TYPE.UNSTRUCTURED]

target_name: str, optional Target feature name. It is optional(ignored if provided) for
datarobot. TARGET_TYPE.UNSTRUCTURED target type.

language: str, optional Programming language of the custom learning model.
description: str, optional Description of the custom learning model.

positive_class_label: str, optional Custom inference model positive class label for binary
classification.

23.

API Reference 235

DataRobot Python API Documentation, Release 3.2.2

negative_class_label: str, optional Custom inference model negative class label for binary
classification.

prediction_threshold: float, optional Custom inference model prediction threshold.

class_labels: List[str], optional Custom inference model class labels for multiclass classi-
fication. Cannot be used with class_labels_file.

class_labels_file: str, optional Path to file containing newline separated class labels for mul-
ticlass classification. Cannot be used with class_labels.

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY.NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC] Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

is_training_data_for_versions_permanently_enabled: bool, optional Permanently en-
able training data assignment on the version level for the current model, instead of training
data assignment on the model level.

Returns
CustomInferenceModel Created a custom inference model.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type CustomInferencelodel

classmethod copy_custom_model (custom_model_id)
Create a custom inference model by copying existing one.

New in version v2.21.
Parameters
custom_model_id: str The ID of the custom inference model to copy.
Returns
CustomInferenceModel Created a custom inference model.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type CustomInferenceModel

236 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

update (name=None, language=None, description=None, target_name=None, positive_class_label=None,
negative_class_label=None, prediction_threshold=None, class_labels=None,
class_labels_file=None, is_training_data_for_versions_permanently_enabled=None)
Update custom inference model properties.

New in version v2.21.
Parameters

name: str, optional New custom inference model name.
language: str, optional New custom inference model programming language.
description: str, optional New custom inference model description.
target_name: str, optional New custom inference model target name.
positive_class_label: str, optional New custom inference model positive class label.
negative_class_label: str, optional New custom inference model negative class label.
prediction_threshold: float, optional New custom inference model prediction threshold.

class_labels: List[str], optional custom inference model class labels for multiclass classifi-
cation Cannot be used with class_labels_file

class_labels_file: str, optional Path to file containing newline separated class labels for mul-
ticlass classification. Cannot be used with class_labels

is_training_data_for_versions_permanently_enabled: bool, optional Permanently en-
able training data assignment on the version level for the current model, instead of training
data assignment on the model level.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
refresh()
Update custom inference model with the latest data from server.
New in version v2.21.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
delete()
Delete custom inference model.
New in version v2.21.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

23.

API Reference 237

DataRobot Python API Documentation, Release 3.2.2

Return type None
assign_training_data(dataset_id, partition_column=None, max_wait=600)
Assign training data to the custom inference model.
New in version v2.21.
Parameters
dataset_id: str The id of the training dataset to be assigned.
partition_column: str, optional Name of a partition column in the training dataset.

max_wait: int, optional Max time to wait for a training data assignment. If set to None -
method will return without waiting. Defaults to 10 min.

Raises
datarobot.errors.ClientError If the server responded with 4xx status
datarobot.errors.ServerError If the server responded with 5xx status
Return type None
class datarobot.CustomModelTest (**kwargs)
An custom model test.
New in version v2.21.
Attributes
id: str testid
custom_model_image_id: str id of a custom model image

image_type: str the type of the image, either CUSTOM_MODEL_IMAGE_TYPE.CUSTOM_MODEL_IMAGE
if the testing attempt is using a CustomModellmage as its model or CUS-
TOM_MODEL_IMAGE_TYPE.CUSTOM_MODEL_VERSION if the testing attempt is
using a CustomModelVersion with dependency management

overall_status: str a string representing testing status. Status can be - ‘not_tested’: the check
not run - ‘failed’: the check failed - ‘succeeded’: the check succeeded - ‘warning’: the check
resulted in a warning, or in non-critical failure - ‘in_progress’: the check is in progress

detailed_status: dict detailed testing status - maps the testing types to their status and message.
The keys of the dict are one of ‘errorCheck’, ‘nullValueImputation’, ‘longRunningService’,
‘sideEffects’. The values are dict with ‘message’ and ‘status’ keys.

created_by: str a user who created a test

dataset_id: str, optional id of a dataset used for testing

dataset_version_id: str, optional id of a dataset version used for testing

completed_at: str, optional ISO-8601 formatted timestamp of when the test has completed
created_at: str, optional 1SO-8601 formatted timestamp of when the version was created

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY.NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

238 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

classmethod create(custom_model_id, custom_model_version_id, dataset_id=None, max_wait=600,
network_egress_policy=None, maximum_memory=None, replicas=None)
Create and start a custom model test.

New in version v2.21.
Parameters
custom_model_id: str the id of the custom model
custom_model_version_id: str the id of the custom model version

dataset_id: str, optional The id of the testing dataset for non-unstructured custom models.
Ignored and not required for unstructured models.

max_wait: int, optional max time to wait for a test completion. If set to None - method will
return without waiting.

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY. NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster
Returns
CustomModelTest created custom model test
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

classmethod list(custom_model_id)
List custom model tests.

New in version v2.21.
Parameters
custom_model_id: str the id of the custom model
Returns
List[CustomModelTest] a list of custom model tests
Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

23.

API Reference 239

DataRobot Python API Documentation, Release 3.2.2

classmethod get (custom_model_test_id)
Get custom model test by id.

New in version v2.21.

Parameters
custom_model_test_id: str the id of the custom model test

Returns
CustomModelTest retrieved custom model test

Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

get_log()
Get log of a custom model test.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

get_log_tail()
Get log tail of a custom model test.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

cancel O
Cancel custom model test that is in progress.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

refresh()
Update custom model test with the latest data from server.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.CustomModelVersion(**kwargs)
A version of a DataRobot custom model.

New in version v2.21.

Attributes

240 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

id: str The ID of the custom model version.

custom_model_id: str The ID of the custom model.

version_minor: int A minor version number of the custom model version.

version_major: int A major version number of the custom model version.

is_frozen: bool A flag if the custom model version is frozen.

items: List[CustomModelFileItem] A list of file items attached to the custom model version.
base_environment_id: str The ID of the environment to use with the model.
base_environment_version_id: str The ID of the environment version to use with the model.
label: str, optional A short human readable string to label the version.

description: str, optional The custom model version description.

created_at: str, optional ISO-8601 formatted timestamp of when the version was created.

dependencies: List[CustomDependency] The parsed dependencies of the custom model ver-
sion if the version has a valid requirements.txt file.

network_egress_policy: datarobot NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY.NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

required_metadata_values: List{RequiredMetadataValue] Additional parameters required
by the execution environment. The required keys are defined by the fieldNames in the base
environment’s requiredMetadataKeys.

training_data: TrainingData, optional The information about the training data assigned to the
model version.

holdout_data: HoldoutData, optional The information about the holdout data assigned to the
model version.

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type CustomModelVersion

2.3. API Reference 241

DataRobot Python API Documentation, Release 3.2.2

classmethod create_clean(custom_model_id, base_environment_id, is_major_update=True,
folder_path=None, files=None, network_egress_policy=None,
maximum_memory=None, replicas=None, required_metadata_values=None,
training_dataset_id=None, partition_column=None,
holdout_dataset_id=None, keep_training_holdout_data=None,
max_wait=600)
Create a custom model version without files from previous versions.

Create a version with training or holdout data: If training/holdout data related parameters are
provided, the training data is assigned asynchronously. In this case: * if max_wait is not None, the
function returns once the job is finished. * if max_wait is None, the function returns immediately.
Progress can be polled by the user (see examples).

If training data assignment fails, new version is still created, but it is not allowed to create a model
package for the model version and to deploy it. To check for training data assignment error, check
version.training_data.assignment_error[*“message”].

New in version v2.21.
Parameters
custom_model_id: str The ID of the custom model.

base_environment_id: str The ID of the base environment to use with the custom model
version.

is_major_update: bool The flag defining if a custom model version will be a minor or a
major version. Default to True

folder_path: str, optional The path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path.

files: list, optional The list of tuples, where values in each tuple are the local filesystem path
and the path the file should be placed in the model. If the list is of strings, then basenames
will be used for tuples. Example: [(“/home/user/Documents/myModel/filel.txt”,
“filel.txt™), (“/home/user/Documents/myModel/folder/file2.txt”,
“folder/file2.txt”)] or [“/home/user/Documents/myModel/filel.txt”,
“/home/user/Documents/myModel/folder/file2.txt”]

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY.NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

training_dataset_id: str, optional The ID of the training dataset to assign to the custom
model.

partition_column: str, optional Name of a partition column in a training dataset assigned
to the custom model. Can only be assigned for structured models.

242

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

holdout_dataset_id: str, optional The ID of the holdout dataset to assign to the custom
model. Can only be assigned for unstructured models.

keep_training_holdout_data: bool, optional If the version should inherit training and
holdout data from the previous version. Defaults to True. This field is only applicable if
the model has training data for versions enabled, otherwise the field value will be ignored.

max_wait: int, optional Max time to wait for training data assignment. If set to None -
method will return without waiting. Defaults to 10 minutes.

Returns
CustomModelVersion Created custom model version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
datarobot.errors.InvalidUsageError If wrong parameters are provided.

datarobot.errors.TrainingDataAssignmentError If training data assignment fails.

Examples

Create a version with blocking (default max_wait=600) training data assignment:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client (token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(
custom_model _id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",
)
except TrainingDataAssignmentError as e:
print(e)

Create a version with non-blocking training data assignment:

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",
max_wait=None,

)

while version.training_data.assignment_in_progress:
time.sleep(10)

(continues on next page)

2.3. API Reference 243

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

version.refresh()

if version.training_data.assignment_error:

print(version.training_data.assignment_error["message"])

Return type CustomModelVersion

classmethod create_from_previous (custom_model_id, base_environment_id, is_major_update=True,

folder_path=None, files=None, files_to_delete=None,
network_egress_policy=None, maximum_memory=None,
replicas=None, required_metadata_values=None,
training_dataset_id=None, partition_column=None,
holdout_dataset_id=None, keep_training_holdout_data=None,
max_wait=600)

Create a custom model version containing files from a previous version.

Create a version with training/holdout data: If training/holdout data related parameters are pro-
vided, the training data is assigned asynchronously. In this case: * if max_wait is not None, func-
tion returns once job is finished. * if max_wait is None, function returns immediately, progress
can be polled by the user, see examples.

If training data assignment fails, new version is still created, but it is not allowed to create a model
package for the model version and to deploy it. To check for training data assignment error, check
version.training_data.assignment_error[“message”].

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom model.

base_environment_id: str The ID of the base environment to use with the custom model
version.

is_major_update: bool, optional The flag defining if a custom model version will be a mi-
nor or a major version. Defaults to True.

folder_path: str, optional The path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path.

files: list, optional The list of tuples, where values in each tuple are the local filesystem
path and the path the file should be placed in the model. If list is of strings, then base-
names will be used for tuples Example: [(“/home/user/Documents/myModel/filel.txt”,
“filel.txt™), (“/home/user/Documents/myModel/folder/file2.txt”,
“folder/file2.txt)] or [“/home/user/Documents/myModel/filel.txt”,
“/home/user/Documents/myModel/folder/file2.txt”]

files_to_delete: list, optional The list of a file items ids to be deleted. =~ Example:
[“5ea95f7a4024030aba48e4f9, “Sea6b5da402403181895¢cc51”]

network_egress_policy: datarobot. NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the

public network. Values: [datarobot. NETWORK_EGRESS_POLICY. NONE,
datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot. NETWORK_EGRESS_POLICY.PUBLIC]. Note:

datarobot. NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

244

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

training_dataset_id: str, optional The ID of the training dataset to assign to the custom
model.

partition_column: str, optional Name of a partition column in a training dataset assigned
to the custom model. Can only be assigned for structured models.

holdout_dataset_id: str, optional The ID of the holdout dataset to assign to the custom
model. Can only be assigned for unstructured models.

keep_training_holdout_data: bool, optional If the version should inherit training and
holdout data from the previous version. Defaults to True. This field is only applicable if
the model has training data for versions enabled, otherwise the field value will be ignored.

max_wait: int, optional Max time to wait for training data assignment. If set to None -
method will return without waiting. Defaults to 10 minutes.

Returns
CustomModelVersion created custom model version

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
datarobot.errors.InvalidUsageError If wrong parameters are provided.

datarobot.errors.TrainingDataAssignmentError If training data assignment fails.

Examples

Create a version with blocking (default max_wait=600) training data assignment:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client (token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training _dataset_id="6421f2149a4f9blbecbad6dd",
)
except TrainingDataAssignmentError as e:
print(e)

Create a version with non-blocking training data assignment:

2.3. API Reference 245

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr
dr.Client (token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model _id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9blbecbad6dd",
max_wait=None,

)

while version.training_data.assignment_in_progress:
time.sleep(10)
version.refresh()

if version.training_data.assignment_error:
print(version.training_data.assignment_error["message"])

Return type CustomModelVersion
classmethod list(custom_model_id)
List custom model versions.
New in version v2.21.
Parameters
custom_model_id: str The ID of the custom model.
Returns
List[CustomModel Version] A list of custom model versions.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type List[CustomModelVersion]
classmethod get (custom_model_id, custom_model_version_id)
Get custom model version by id.
New in version v2.21.
Parameters
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The id of the custom model version to retrieve.
Returns
CustomModelVersion Retrieved custom model version.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

246

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type CustomModelVersion
download (file_path)
Download custom model version.
New in version v2.21.
Parameters
file_path: str Path to create a file with custom model version content.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
update (description=None, required_metadata_values=None)
Update custom model version properties.
New in version v2.21.
Parameters
description: str, optional New custom model version description.

required_metadata_values: List[RequiredMetadataValue], optional Additional param-
eters required by the execution environment. The required keys are defined by the field-
Names in the base environment’s requiredMetadataKeys.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
refresh()
Update custom model version with the latest data from server.
New in version v2.21.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
get_feature_impact (with_metadata=False)
Get custom model feature impact.
New in version v2.23.
Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

Returns

. API Reference 247

DataRobot Python API Documentation, Release 3.2.2

feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type List[Dict[str, Any]]
calculate_feature_impact (max_wait=600)
Calculate custom model feature impact.
New in version v2.23.

Parameters

max_wait: int, optional Max time to wait for feature impact calculation. If set to None -
method will return without waiting. Defaults to 10 min

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status
Return type None
class datarobot.models.execution_environment.RequiredMetadataKey (**kwargs)
Definition of a metadata key that custom models using this environment must define
New in version v2.25.

Attributes

field_name: str The required field key. This value will be added as an environment variable
when running custom models.

display_name: str A human readable name for the required field.

class datarobot.models.CustomModelVersionConversion(**kwargs)
A conversion of a DataRobot custom model version.

New in version v2.27.
Attributes
id: str The ID of the custom model version conversion.
custom_model_version_id: str The ID of the custom model version.
created: str ISO-8601 timestamp of when the custom model conversion created.
main_program_item_id: str or None The ID of the main program item.
log_message: str or None The conversion output log message.

generated_metadata: dict or None The dict contains two items: ‘outputDataset’ & ‘output-
Columns’.

conversion_succeeded: bool Whether the conversion succeeded or not.
conversion_in_progress: bool Whether a given conversion is in progress or not.

should_stop: bool Whether the user asked to stop a conversion.

248 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod run_conversion(custom_model_id, custom_model_version_id, main_program_item_id,
max_wait=None)
Initiate a new custom model version conversion.

Parameters
custom_model_id [str] The associated custom model ID.
custom_model_version_id [str] The associated custom model version ID.

main_program_item_id [str] The selected main program item ID. This should be one of the
SAS items in the associated custom model version.

max_wait: int or None Max wait time in seconds. If None, then don’t wait.
Returns
conversion_id [str] The ID of the newly created conversion entity.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type str
classmethod stop_conversion(custom_model_id, custom_model_version_id, conversion_id)
Stop a conversion that is in progress.
Parameters
custom_model_id [str] The ID of the associated custom model.
custom_model_version_id [str] The ID of the associated custom model version.
conversion_id THe ID of a conversion that is in-progress.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type Response
classmethod get (custom_model_id, custom_model_version_id, conversion_id)
Get custom model version conversion by id.
New in version v2.27.
Parameters
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The ID of the custom model version.
conversion_id: str The ID of the conversion to retrieve.
Returns
CustomModelVersionConversion Retrieved custom model version conversion.
Raises

datarobot.errors.ClientError If the server responded with 4xx status.

23.

API Reference 249

DataRobot Python API Documentation, Release 3.2.2

datarobot.errors.ServerError If the server responded with 5xx status.
Return type CustomlModelVersionConversion
classmethod get_latest(custom_model_id, custom_model_version_id)
Get latest custom model version conversion for a given custom model version.
New in version v2.27.
Parameters
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The ID of the custom model version.
Returns

CustomModel VersionConversion or None Retrieved latest conversion for a given custom
model version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type Optional[CustomModelVersionConversion]
classmethod list(custom_model_id, custom_model_version_id)
Get custom model version conversions list per custom model version.
New in version v2.27.
Parameters
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The ID of the custom model version.
Returns

List[CustomModel VersionConversion] Retrieved conversions for a given custom model
version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type List[CustomModelVersionConversion]
class datarobot.CustomModelVersionDependencyBuild(**kwargs)
Metadata about a DataRobot custom model version’s dependency build
New in version v2.22.
Attributes
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The ID of the custom model version.
build_status: str The status of the custom model version’s dependency build.

started_at: str ISO-8601 formatted timestamp of when the build was started.

250 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

completed_at: str, optional ISO-8601 formatted timestamp of when the build has completed.

classmethod get_build_info (custom_model_id, custom_model_version_id)
Retrieve information about a custom model version’s dependency build

New in version v2.22.
Parameters
custom_model_id: str The ID of the custom model.
custom_model_version_id: str The ID of the custom model version.
Returns
CustomModelVersionDependencyBuild The dependency build information.
Return type CustomlModelVersionDependencyBuild
classmethod start_build(custom_model_id, custom_model version_id, max_wait=600)
Start the dependency build for a custom model version dependency build
New in version v2.22.
Parameters
custom_model_id: str The ID of the custom model
custom_model_version_id: str the ID of the custom model version
max_wait: int, optional Max time to wait for a build completion. If set to None - method
will return without waiting.
Return type Optional[CustomModelVersionDependencyBuild]
get_log()
Get log of a custom model version dependency build.
New in version v2.22.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type str
cancel ()
Cancel custom model version dependency build that is in progress.
New in version v2.22.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

23.

API Reference 251

DataRobot Python API Documentation, Release 3.2.2

refresh()
Update custom model version dependency build with the latest data from server.

New in version v2.22.
Raises
datarobot.errors.ClientError If the server responded with 4xx status.
datarobot.errors.ServerError If the server responded with 5xx status.
Return type None
class datarobot.ExecutionEnvironment (**kwargs)
An execution environment entity.
New in version v2.21.
Attributes
id: str the id of the execution environment
name: str the name of the execution environment
description: str, optional the description of the execution environment

programming_language: str, optional the programming language of the execution environ-

9% G699 e

ment. Can be “python”, “r”, “java” or “other”
is_public: bool, optional public accessibility of environment, visible only for admin user

created_at: str, optional ISO-8601 formatted timestamp of when the execution environment
version was created

latest_version: ExecutionEnvironmentVersion, optional the latest version of the execution
environment

classmethod create(name, description=None, programming_language=None,
required_metadata_keys=None)
Create an execution environment.

New in version v2.21.
Parameters
name: str execution environment name
description: str, optional execution environment description

programming_language: str, optional programming language of the environment to be

ERINTSR LTS

created. Can be “python”, “r”, “java” or “other”. Default value - “other”

required_metadata_keys: List[RequiredMetadataKey] Definition of a metadata keys that
custom models using this environment must define

Returns
ExecutionEnvironment created execution environment
Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

252 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod list(search_for=None)
List execution environments available to the user.

New in version v2.21.
Parameters

search_for: str, optional the string for filtering execution environment - only execution en-
vironments that contain the string in name or description will be returned.

Returns
List[ExecutionEnvironment] a list of execution environments.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

classmethod get (execution_environment_id)
Get execution environment by it’s id.

New in version v2.21.
Parameters
execution_environment_id: str ID of the execution environment to retrieve
Returns
ExecutionEnvironment retrieved execution environment
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

delete()
Delete execution environment.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

update (name=None, description=None, required_metadata_keys=None)
Update execution environment properties.

New in version v2.21.
Parameters
name: str, optional new execution environment name
description: str, optional new execution environment description

required_metadata_keys: List[RequiredMetadataKey] Definition of a metadata keys that
custom models using this environment must define

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

23.

API Reference 253

DataRobot Python API Documentation, Release 3.2.2

refresh()
Update execution environment with the latest data from server.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.ExecutionEnvironmentVersion(**kwargs)
A version of a DataRobot execution environment.

New in version v2.21.
Attributes
id: str the id of the execution environment version
environment_id: str the id of the execution environment the version belongs to
build_status: str the status of the execution environment version build
label: str, optional the label of the execution environment version
description: str, optional the description of the execution environment version

created_at: str, optional ISO-8601 formatted timestamp of when the execution environment
version was created

docker_context_size: int, optional The size of the uploaded Docker context in bytes if available
or None if not

docker_image_size: int, optional The size of the built Docker image in bytes if available or
None if not

classmethod create(execution_environment_id, docker_context_path, label=None, description=None,
max_wait=600)
Create an execution environment version.

New in version v2.21.
Parameters
execution_environment_id: str the id of the execution environment
docker_context_path: str the path to a docker context archive or folder
label: str, optional short human readable string to label the version
description: str, optional execution environment version description

max_wait: int, optional max time to wait for a final build status (“success” or “failed”). If
set to None - method will return without waiting.

Returns
ExecutionEnvironmentVersion created execution environment version
Raises

datarobot.errors.AsyncTimeoutError if version did not reach final state during timeout
seconds

datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

254 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod list(execution_environment_id, build_status=None)
List execution environment versions available to the user.

New in version v2.21.
Parameters
execution_environment_id: str the id of the execution environment

build_status: str, optional build status of the execution environment version to filter by.
See datarobot.enums. EXECUTION_ENVIRONMENT_VERSION_BUILD_STATUS
for valid options

Returns
List[ExecutionEnvironmentVersion] a list of execution environment versions.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

classmethod get (execution_environment_id, version_id)
Get execution environment version by id.

New in version v2.21.
Parameters
execution_environment_id: str the id of the execution environment
version_id: str the id of the execution environment version to retrieve
Returns
ExecutionEnvironmentVersion retrieved execution environment version
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

download (file_path)
Download execution environment version.

New in version v2.21.
Parameters
file_path: str path to create a file with execution environment version content
Returns
ExecutionEnvironmentVersion retrieved execution environment version
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

get_build_log(
Get execution environment version build log and error.

New in version v2.21.

Returns

API Reference 255

DataRobot Python API Documentation, Release 3.2.2

Tuple[str, str] retrieved execution environment version build log and error. If there is no
build error - None is returned.

Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

refresh(
Update execution environment version with the latest data from server.

New in version v2.21.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.models.custom_model_version.HoldoutData(dataset id=None,
dataset_version_id=None,
dataset_name=None,
partition_column=None)
Holdout data assigned to a DataRobot custom model version.

New in version v3.2.
Attributes
dataset_id: str The ID of the dataset.
dataset_version_id: str The ID of the dataset version.
dataset_name: str The name of the dataset.
partition_column: str The name of the partitions column.

class datarobot.models.custom_model_version.TrainingData(dataset_id=None,
dataset_version_id=None,
dataset_name=None,
assignment_in_progress=None,
assignment_error=None)
Training data assigned to a DataRobot custom model version.

New in version v3.2.
Attributes
dataset_id: str The ID of the dataset.
dataset_version_id: str The ID of the dataset version.
dataset_name: str The name of the dataset.
assignment_in_progress: bool The status of the assignment in progress.

assignment_error: dict The assignment error message.

256 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.18 Custom Tasks

class datarobot.CustomTask(id, target_type, latest_version, created_at, updated_at, name, description,
language, created_by, calibrate_predictions=None)
A custom task. This can be in a partial state or a complete state. When the latest_version is None, the empty task
has been initialized with some metadata. It is not yet use-able for actual training. Once the first CustomTaskVer-
sion has been created, you can put the CustomTask in UserBlueprints to train Models in Projects

New in version v2.26.
Attributes
id: str id of the custom task
name: str name of the custom task

99 69 Gds

language: str programming language of the custom task. Can be “python”, “r”, “java” or
“other”

description: str description of the custom task

target_type: datarobot.enums.CUSTOM_TASK_TARGET_TYPE the target type of the
custom task. One of:

e datarobot.enums.CUSTOM _TASK TARGET TYPE.BINARY

e datarobot.enums.CUSTOM_TASK _TARGET TYPE.REGRESSION
* datarobot.enums.CUSTOM_TASK_TARGET_TYPE.MULTICLASS
e datarobot.enums.CUSTOM_TASK_TARGET _TYPE.ANOMALY

* datarobot.enums.CUSTOM_TASK_TARGET _TYPE.TRANSFORM

latest_version: datarobot.CustomTaskVersion or None latest version of the custom task if
the task has a latest version. If the latest version is None, the custom task is not ready for
use in user blueprints. You must create its first CustomTaskVersion before you can use the
CustomTask

created_by: str The username of the user who created the custom task.
updated_at: str An [SO-8601 formatted timestamp of when the custom task was updated.
created_at: str ISO-8601 formatted timestamp of when the custom task was created

calibrate_predictions: bool whether anomaly predictions should be calibrated to
be between 0 and 1 by DR. only applies to custom estimators with target type
datarobot.enums. CUSTOM_TASK_TARGET_TYPE.ANOMALY

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type CustomTask

2.3. API Reference 257

DataRobot Python API Documentation, Release 3.2.2

classmethod list(order_by=None, search_for=None)
List custom tasks available to the user.

New in version v2.26.
Parameters

search_for: str, optional string for filtering custom tasks - only tasks that contain the string
in name or description will be returned. If not specified, all custom task will be returned

order_by: str, optional property to sort custom tasks by. Supported properties are “cre-
ated” and “updated”. Prefix the attribute name with a dash to sort in descending order,
e.g. order_by="-created’. By default, the order_by parameter is None which will result in
custom tasks being returned in order of creation time descending

Returns
List[CustomTask] a list of custom tasks.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status
Return type List[CustomTask]
classmethod get (custom_task_id)
Get custom task by id.
New in version v2.26.
Parameters
custom_task_id: str id of the custom task
Returns
CustomTask retrieved custom task
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.
Return type CustomTask
classmethod copy (custom_task_id)
Create a custom task by copying existing one.
New in version v2.26.
Parameters
custom_task_id: str id of the custom task to copy
Returns
CustomTask
Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

258 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type CustomTask

classmethod create(name, target_type, language=None, description=None, calibrate_predictions=None,
**kwargs)
Creates only the metadata for a custom task. This task will not be use-able until you have created a Cus-
tomTaskVersion attached to this task.

New in version v2.26.
Parameters
name: str name of the custom task

target_type: datarobot.enums.CUSTOM_TASK_TARGET_TYPE the target typed
based on the following values. Anything else will raise an error

e datarobot.enums.CUSTOM_TASK_TARGET _TYPE.BINARY

e datarobot.enums.CUSTOM _TASK TARGET TYPE.REGRESSION
e datarobot.enums.CUSTOM_TASK _TARGET TYPE.MULTICLASS
* datarobot.enums.CUSTOM_TASK_TARGET_TYPE.ANOMALY

e datarobot.enums.CUSTOM_TASK_TARGET _TYPE.TRANSFORM

language: str, optional programming language of the custom task. Can be “python”, “r”,
“java” or “other”

description: str, optional description of the custom task

calibrate_predictions: bool, optional whether anomaly predictions should be
calibrated to be between O and 1 by DR. if None, uses default value

from DR app (True). only applies to custom estimators with target type
datarobot.enums. CUSTOM_TASK_TARGET _TYPE.ANOMALY

Returns
CustomTask
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.
Return type CustomTask
update (name=None, language=None, description=None, **kwargs)
Update custom task properties.
New in version v2.26.
Parameters
name: str, optional new custom task name
language: str, optional new custom task programming language
description: str, optional new custom task description
Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

23.

API Reference 259

DataRobot Python API Documentation, Release 3.2.2

Return type None
refresh()
Update custom task with the latest data from server.
New in version v2.26.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status
Return type None
delete()
Delete custom task.
New in version v2.26.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status
Return type None
download_latest_version(file_path)
Download the latest custom task version.
New in version v2.26.
Parameters
file_path: str the full path of the target zip file
Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.
Return type None
get_access_list()
Retrieve access control settings of this custom task.
New in version v2.27.
Returns
list of [class:SharingAccess <datarobot.SharingAccess>]
Return type List[SharingAccess]
share(access_list)
Update the access control settings of this custom task.
New in version v2.27.
Parameters

access_list [list of SharingAccess] A list of SharingAccess to update.

260 Chapter 2

. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

Examples

Transfer access to the custom task from old_user@datarobot.com to new_user@datarobot.com

import datarobot as dr
new_access = dr.SharingAccess(new_user@datarobot.com,
dr.enums.SHARING_ROLE.OWNER, can_share=True)

access_list = [dr.SharingAccess(old_user@datarobot.com, None), new_access]

dr.CustomTask.get('custom-task-id") .share(access_list)

Return type None

class datarobot.models.custom_task_version.CustomTaskFileItem(id, file_name, file_path, file_source,
created_at=None)
A file item attached to a DataRobot custom task version.

New in version v2.26.
Attributes
id: str id of the file item
file_name: str name of the file item
file_path: str path of the file item
file_source: str source of the file item
created_at: str ISO-8601 formatted timestamp of when the version was created

class datarobot.CustomTaskVersion(id, custom_task_id, version_major, version_minor, label, created_at,
is_frozen, items, description=None, base_environment_id=None,
maximum_memory=None, base_environment_version_id=None,
dependencies=None, required_metadata_values=None,
arguments=None)
A version of a DataRobot custom task.

New in version v2.26.
Attributes
id: str id of the custom task version
custom_task_id: str id of the custom task
version_minor: int a minor version number of custom task version
version_major: int a major version number of custom task version
label: str short human readable string to label the version
created_at: str ISO-8601 formatted timestamp of when the version was created

is_frozen: bool a flag if the custom task version is frozen

2.3. API Reference 261

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

items: List[CustomTaskFileltem] a list of file items attached to the custom task version
description: str, optional custom task version description

base_environment_id: str, optional id of the environment to use with the task
base_environment_version_id: str, optional id of the environment version to use with the task

dependencies: List[CustomDependency] the parsed dependencies of the custom task version
if the version has a valid requirements.txt file

required_metadata_values: List[RequiredMetadataValue] Additional parameters required
by the execution environment. The required keys are defined by the fieldNames in the base
environment’s requiredMetadataKeys.

arguments: List[UserBlueprintTaskArgument] A list of custom task version arguments.

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

classmethod create_clean(custom_task_id, base_environment_id, maximum_memory=None,
is_major_update=True, folder_path=None,
required_metadata_values=None)
Create a custom task version without files from previous versions.

New in version v2.26.
Parameters
custom_task_id: str the id of the custom task

base_environment_id: str the id of the base environment to use with the custom task ver-
sion

is_major_update: bool, optional if the current version is 2.3, True would set the new ver-
sion at 3.0. False would set the new version at 2.4. Default to True

folder_path: str, optional the path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

maximum_memory: int A number in bytes about how much memory custom tasks’ infer-
ence containers can run with.

Returns
CustomTaskVersion created custom task version
Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

262 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod create_from_previous (custom_task_id, base_environment_id, is_major_update=True,
folder_path=None, files_to_delete=None,
required_metadata_values=None, maximum_memory=None)
Create a custom task version containing files from a previous version.

New in version v2.26.
Parameters
custom_task_id: str the id of the custom task

base_environment_id: str the id of the base environment to use with the custom task ver-
sion

is_major_update: bool, optional if the current version is 2.3, True would set the new ver-
sion at 3.0. False would set the new version at 2.4. Default to True

folder_path: str, optional the path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path

files_to_delete: list, optional the list of a file items ids to be deleted Example:
[“5ea95f7a4024030aba48e4{9”, “5ea6b5da402403181895cc51”]

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

maximum_memory: int A number in bytes about how much memory custom tasks’ infer-
ence containers can run with.

Returns
CustomTaskVersion created custom task version

Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

classmethod list(custom_task_id)
List custom task versions.

New in version v2.26.

Parameters
custom_task_id: str the id of the custom task

Returns
List[CustomTaskVersion] a list of custom task versions

Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

classmethod get (custom_task_id, custom_task_version_id)
Get custom task version by id.

New in version v2.26.
Parameters

custom_task_id: str the id of the custom task

23.

API Reference 263

DataRobot Python API Documentation, Release 3.2.2

custom_task_version_id: str the id of the custom task version to retrieve
Returns
CustomTaskVersion retrieved custom task version
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

download (file_path)
Download custom task version.

New in version v2.26.
Parameters
file_path: str path to create a file with custom task version content
Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

update (description=None, required_metadata_values=None)
Update custom task version properties.

New in version v2.26.
Parameters
description: str new custom task version description

required_metadata_values: List{RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

Raises
datarobot.errors.ClientError if the server responded with 4xx status.
datarobot.errors.ServerError if the server responded with 5xx status.

refresh()
Update custom task version with the latest data from server.

New in version v2.26.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

start_dependency_build()
Start the dependency build for a custom task version and return build status. .. versionadded:: v2.27

Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.

start_dependency_build_and_wait (max_wait)
Start the dependency build for a custom task version and wait while pulling status. .. versionadded:: v2.27

Parameters

264 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait: int max time to wait for a build completion
Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.
Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

datarobot.errors.AsyncTimeoutError Raised if the dependency build is not finished after
max_wait.

cancel_dependency_build()
Cancel custom task version dependency build that is in progress. .. versionadded:: v2.27

Raises
datarobot.errors.ClientError if the server responded with 4xx status
datarobot.errors.ServerError if the server responded with 5xx status

get_dependency_build()
Retrieve information about a custom task version’s dependency build. .. versionadded:: v2.27

Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.

download_dependency_build_log/(file_directory="")
Get log of a custom task version dependency build. .. versionadded:: v2.27

Parameters

file_directory: str (optional, default is ¢“.”) Directory path where downloaded file is to
save.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

2.3.19 Database Connectivity

class datarobot.DataDriver (id=None, creator=None, base_names=None, class_name=None,
canonical_name=None)
A data driver

Attributes
id [str] the id of the driver.
class_name [str] the Java class name for the driver.
canonical_name [str] the user-friendly name of the driver.
creator [str] the id of the user who created the driver.
base_names [list of str] a list of the file name(s) of the jar files.

classmethod list()
Returns list of available drivers.

Returns

2.3. API Reference 265

DataRobot Python API Documentation, Release 3.2.2

drivers [list of DataDriver instances] contains a list of available drivers.

Examples

>>> import datarobot as dr

>>> drivers = dr.DataDriver.list()

>>> drivers

[DataDriver('mysql'), DataDriver('RedShift'), DataDriver('PostgreSQL')]

Return type List[DataDriver]
classmethod get (driver_id)
Gets the driver.
Parameters

driver_id [str] the identifier of the driver.

Returns

driver [DataDriver] the required driver.

Examples

>>> import datarobot as dr

>>> driver = dr.DataDriver.get('5ad08a1889453d0001lea7c5c")
>>> driver

DataDriver ('PostgreSQL')

Return type DataDriver
classmethod create(class_name, canonical_name, files)
Creates the driver. Only available to admin users.
Parameters
class_name [str] the Java class name for the driver.
canonical_name [str] the user-friendly name of the driver.
files [list of str] a list of the file paths on file system file_path(s) for the driver.
Returns
driver [DataDriver] the created driver.
Raises

ClientError raised if user is not granted for Can manage JDBC database drivers feature

266 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr

>>> driver = dr.DataDriver.create(

class_name="'org.postgresql.Driver',

canonical_name='PostgreSQL',

. files=["'/tmp/postgresql-42.2.2.jar"]
=)

>>> driver

DataDriver('PostgreSQL"')

Return type DataDriver
update (class_name=None, canonical_name=None)
Updates the driver. Only available to admin users.
Parameters
class_name [str] the Java class name for the driver.
canonical_name [str] the user-friendly name of the driver.
Raises

ClientError raised if user is not granted for Can manage JDBC database drivers feature

Examples

>>> import datarobot as dr

>>> driver = dr.DataDriver.get('5ad08a1889453d0001lea7c5c")
>>> driver.canonical_name

'"PostgreSQL’

>>> driver.update(canonical_name='postgres')

>>> driver.canonical_name

'postgres’

Return type None
delete()
Removes the driver. Only available to admin users.
Raises

ClientError raised if user is not granted for Can manage JDBC database drivers feature
Return type None

class datarobot.Connector (id=None, creator_id=None, configuration_id=None, base_name=None,
canonical_name=None)
A connector

Attributes
id [str] the id of the connector.

creator_id [str] the id of the user who created the connector.

2.3. API Reference

267

DataRobot Python API Documentation, Release 3.2.2

base_name [str] the file name of the jar file.
canonical_name [str] the user-friendly name of the connector.
configuration_id [str] the id of the configuration of the connector.

classmethod list()
Returns list of available connectors.

Returns

connectors [list of Connector instances] contains a list of available connectors.

Examples

>>> import datarobot as dr

>>> connectors = dr.Connector.list()

>>> connectors

[Connector ('ADLS Gen2 Connector'), Connector('S3 Connector')]

Return type List[Connector]
classmethod get(connector_id)
Gets the connector.
Parameters
connector_id [str] the identifier of the connector.
Returns

connector [Connector] the required connector.

Examples

>>> import datarobot as dr

>>> connector = dr.Connector.get('5fel063elc075e0245071446")
>>> connector

Connector('ADLS Gen2 Connector')

Return type Connector

classmethod create(file_path)
Creates the connector from a jar file. Only available to admin users.
Parameters
file_path [str] the file path on file system file_path(s) for the connector.
Returns
connector [Connector] the created connector.
Raises

ClientError raised if user is not granted for Can manage connectors feature

268 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr

>>> connector = dr.Connector.create('/tmp/connector-adls-gen2.jar")
>>> connector

Connector('ADLS Gen2 Connector')

Return type Connector
update (file_path)
Updates the connector with new jar file. Only available to admin users.
Parameters
file_path [str] the file path on file system file_path(s) for the connector.
Returns
connector [Connector] the updated connector.
Raises

ClientError raised if user is not granted for Can manage connectors feature

Examples

>>> import datarobot as dr

>>> connector = dr.Connector.get('5fel063elc075e0245071446")
>>> connector.base_name

'connector-adls-gen2. jar'

>>> connector.update('/tmp/connector-s3.jar")

>>> connector.base_name

'connector-s3.jar’

Return type Connector
delete()
Removes the connector. Only available to admin users.
Raises

ClientError raised if user is not granted for Can manage connectors feature
Return type None

class datarobot.DataStore (data_store_id=None, data_store_type=None, canonical_name=None,
creator=None, updated=None, params=None, role=None)
A data store. Represents database

Attributes
id [str] The id of the data store.
data_store_type [str] The type of data store.
canonical_name [str] The user-friendly name of the data store.

creator [str] The id of the user who created the data store.

2.3. API Reference 269

DataRobot Python API Documentation, Release 3.2.2

updated [datetime.datetime] The time of the last update
params [DataStoreParameters] A list specifying data store parameters.
role [str] Your access role for this data store.

classmethod list()
Returns list of available data stores.

Returns

data_stores [list of DataStore instances] contains a list of available data stores.

Examples

>>> import datarobot as dr

>>> data_stores = dr.DataStore.list()

>>> data_stores

[DataStore('Demo'), DataStore('Airlines')]

Return type List[DataStore]

classmethod get(data_store_id)
Gets the data store.
Parameters
data_store_id [str] the identifier of the data store.
Returns

data_store [DataStore] the required data store.

Examples

>>> import datarobot as dr

>>> data_store = dr.DataStore.get('5a8ac90b07a57a0001be501e")
>>> data_store

DataStore('Demo"')

Return type DataStore
classmethod create(data_store_type, canonical_name, driver_id, jdbc_url)
Creates the data store.

Parameters
data_store_type [str] the type of data store.
canonical_name [str] the user-friendly name of the data store.
driver_id [str] the identifier of the DataDriver.
jdbce_url [str] the full JDBC url, for example jdbc:postgresql://my.dbaddress.org:5432/my_db.

Returns

data_store [DataStore] the created data store.

270 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr

>>> data_store = dr.DataStore.create(

data_store_type="jdbc',

canonical_name='Demo DB',

driver_id="'5a6af02eb15372000117c040",

e jdbc_url="jdbc:postgresql://my.db.address.org:5432/perftest’
<)

>>> data_store

DataStore('Demo DB')

Return type DataStore
update (canonical_name=None, driver_id=None, jdbc_url=None)
Updates the data store.
Parameters
canonical_name [str] optional, the user-friendly name of the data store.
driver_id [str] optional, the identifier of the DataDriver.

jdbc_url [str] optional, the full JDBC url, for example
jdbc:postgresql://my.dbaddress.org:5432/my_db.

Examples

>>> import datarobot as dr

>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae’)
>>> data_store

DataStore('Demo DB')

>>> data_store.update(canonical_name='Demo DB updated')

>>> data_store

DataStore('Demo DB updated')

Return type None

delete()
Removes the DataStore
Return type None

test (username=None, password=None, credential_id=None, use_kerberos=None, credential_data=None)
Tests database connection.

Changed in version v3.2: Added credential_id, use_kerberos and credential_data optional params and
made username and password optional.

Parameters
username [str] optional, the username for database authentication.

password [str] optional, the password for database authentication. The password is en-
crypted at server side and never saved / stored

23.

API Reference 271

DataRobot Python API Documentation, Release 3.2.2

credential_id [str] optional, id of the set of credentials to use instead of username and pass-
word

use_kerberos [bool] optional, whether to use Kerberos for data store authentication

credential_data [dict] optional, the credentials to authenticate with the database, to use in-
stead of user/password or credential ID

Returns

message [dict] message with status.

Examples

>>> import datarobot as dr

>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae’)

>>> data_store.test(username="db_username', password='db_password")
{'message': 'Connection successful'}

Return type TestResponse
schemas (username, password)
Returns list of available schemas.
Parameters
username [str] the username for database authentication.

password [str] the password for database authentication. The password is encrypted at server
side and never saved / stored

Returns

response [dict] dict with database name and list of str - available schemas

Examples

>>> import datarobot as dr

>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae’)

>>> data_store.schemas(username="'db_username', password='db_password"')
{'catalog': 'perftest', 'schemas': ['demo', 'information_schema', 'public']}

Return type SchemasResponse
tables (username, password, schema=None)
Returns list of available tables in schema.

Parameters
username [str] optional, the username for database authentication.

password [str] optional, the password for database authentication. The password is en-
crypted at server side and never saved / stored

schema [str] optional, the schema name.

Returns

272 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

response [dict] dict with catalog name and tables info

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae’)
>>> data_store.tables(username="'db_username', password='db_password', schema=

—'demo")

{'tables': [{'type': 'TABLE', 'name': 'diagnosis', 'schema': 'demo'}, {'type':
—,"TABLE',

'name': 'kickcars', 'schema': 'demo'}, {'type': 'TABLE', 'name': 'patient',
'schema': 'demo'}, {'type': 'TABLE', 'name': 'transcript', 'schema': 'demo'}],

'catalog': 'perftest'}

Return type TablesResponse

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None
Return type DataStore
get_access_list()
Retrieve what users have access to this data store
New in version v2.14.
Returns

list of [class:SharingAccess <datarobot.SharingAccess>|
Return type List[SharingAccess]
get_shared_roles()
Retrieve what users have access to this data store
New in version v3.2.

Returns

list of [class:SharingRole <datarobot.models.sharing.SharingRole>]
Return type List[SharingRole]

share (access_list)
Modify the ability of users to access this data store

New in version v2.14.

Parameters

23.

API Reference 273

DataRobot Python API Documentation, Release 3.2.2

access_list [list of SharingRole] the modifications to make.
Raises

datarobot.ClientError [] if you do not have permission to share this data store, if the user
you’re sharing with doesn’t exist, if the same user appears multiple times in the access_list,
or if these changes would leave the data store without an owner.

Examples

The SharingRole class is needed in order to share a Data Store with one or more users.

For example, suppose you had a list of user IDs you wanted to share this DataStore with. You could use a
loop to generate a list of SharingRole objects for them, and bulk share this Data Store.

>>> import datarobot as dr
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_ids = ["60912e09fd1f04e832a575cl", "639ce542862e9b1blbfa8flb",
—"63e185e7cd3a5£f8e190c6393"]
>>> sharing_roles = []
>>> for user_id in user_ids:
new_sharing_role = SharingRole(
role=SHARING_ROLE.CONSUMER,
share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
id=user_id,
can_share=True,
)
sharing_roles.append(new_sharing_role)
>>> dr.DataStore.get('my-data-store-id').share(access_list)

Similarly, a SharingRole instance can be used to remove a user’s access if the role is set to
SHARING_ROLE.NO_ROLE, like in this example:

>>> import datarobot as dr
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_to_remove = "foo.bar@datarobot.com"
. remove_sharing_role = SharingRole(
role=SHARING_ROLE.NO_ROLE,
share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
username=user_to_remove,
.. can_share=False,
=)

>>> dr.DataStore.get('my-data-store-id').share(roles=[remove_sharing_role])

Return type None

class datarobot.DataSource (data_source_id=None, data_source_type=None, canonical_name=None,

creator=None, updated=None, params=None, role=None)

A data source. Represents data request

Attributes

274

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

id [str] the id of the data source.

type [str] the type of data source.

canonical_name [str] the user-friendly name of the data source.

creator [str] the id of the user who created the data source.

updated [datetime.datetime] the time of the last update.

params [DataSourceParameters] a list specifying data source parameters.

role [str or None] if a string, represents a particular level of access and should be one of
datarobot.enums.SHARING_ROLE. For more information on the specific access levels, see
the sharing documentation. If None, can be passed to a share function to revoke access for
a specific user.

classmethod list()
Returns list of available data sources.

Returns

data_sources [list of DataSource instances] contains a list of available data sources.

Examples

>>> import datarobot as dr

>>> data_sources = dr.DataSource.list()

>>> data_sources

[DataSource('Diagnostics'), DataSource('Airlines 100mb'), DataSource('Airlines.
—10mb')]

Return type List[DataSource]
classmethod get(data_source_id)
Gets the data source.
Parameters
data_source_id [str] the identifier of the data source.
Returns

data_source [DataSource] the requested data source.

Examples

>>> import datarobot as dr

>>> data_source = dr.DataSource.get('5a8ac9ab07a57a0001be501f")
>>> data_source

DataSource('Diagnostics"')

Return type TypeVar(TDataSource, bound= DataSource)

classmethod create(data_source_type, canonical_name, params)
Creates the data source.

Parameters

. API Reference 275

DataRobot Python API Documentation, Release 3.2.2

data_source_type [str] the type of data source.

canonical_name [str] the user-friendly name of the data source.

params [DataSourceParameters] a list specifying data source parameters.

Returns

data_source [DataSource] the created data source.

Examples

>>> import datarobot as dr
>>> params = dr.DataSourceParameters(
data_store_id="'5a8ac90b07a57a0001be501e",

<)
>>> data_source = dr.DataSource.create(
data_source_type="jdbc',
canonical_name='airlines stats after 1995',
.. params=params

<)
>>> data_source
DataSource('airlines stats after 1995')

query="SELECT * FROM airlinesl1®mb WHERE "Year"

>= 1995;"

Return type TypeVar(TDataSource, bound= DataSource)

update (canonical_name=None, params=None)
Creates the data source.

Parameters

canonical_name [str] optional, the user-friendly name of the data source.

params [DataSourceParameters] optional, the identifier of the DataDriver.

Examples

>>> import datarobot as dr

>>> data_source
DataSource('airlines stats after 1995')
>>> params = dr.DataSourceParameters(

=)
>>> data_source.update(
canonical_name='airlines stats after 1990°',
. params=params

<)
>>> data_source
DataSource('airlines stats after 1990')

>>> data_source = dr.DataSource.get('5ad840cc613b480001570953")

query="SELECT * FROM airlinesl®Omb WHERE "Year" >= 1990;'

Return type None

276

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

delete()
Removes the DataSource

Return type None

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None
Return type TypeVar(TDataSource, bound= DataSource)
get_access_list()
Retrieve what users have access to this data source
New in version v2.14.
Returns

list of [class:SharingAccess <datarobot.SharingAccess>]
Return type List[SharingAccess]
share(access_list)
Modify the ability of users to access this data source
New in version v2.14.

Parameters

access_list: list of [class:SharingAccess <datarobot.SharingAccess>] The modifications to
make.

Raises

datarobot.ClientError: If you do not have permission to share this data source, if the user
you’re sharing with doesn’t exist, if the same user appears multiple times in the access_list,
or if these changes would leave the data source without an owner.

Examples

Transfer access to the data source from old_user@datarobot.com to new_user@datarobot.com

from datarobot.enums import SHARING_ROLE
from datarobot.models.data_source import DataSource
from datarobot.models.sharing import SharingAccess

new_access = SharingAccess(
"new_user@datarobot.com",
SHARING_ROLE.OWNER,
can_share=True,

(continues on next page)

23.

API Reference 277

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

access_list = [
SharingAccess("old_user@datarobot.com", SHARING_ROLE.OWNER, can_share=True),
new_access,

DataSource.get('my-data-source-id').share(access_list)

Return type None

create_dataset (username=None, password=None, do_snapshot=None,
persist_data_after_ingestion=None, categories=None, credential_id=None,
use_kerberos=None)
Create a Dataset from this data source.

New in version v2.22.
Parameters
username: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
requires an additional permission, Enable Create Snapshot Data Source.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still
will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION".

credential_id: string, optional The ID of the set of credentials to use instead of user and
password. Note that with this change, username and password will become optional.

use_kerberos: bool, optional If unset, uses the server default: False. If true, use kerberos
authentication for database authentication.

Returns

response: Dataset The Dataset created from the uploaded data

Return type Dataset

class datarobot.DataSourceParameters (data_store_id=None, table=None, schema=None,

partition_column=None, query=None, fetch_size=None)
Data request configuration

Attributes
data_store_id [str] the id of the DataStore.

table [str] optional, the name of specified database table.

278

Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

schema [str] optional, the name of the schema associated with the table.
partition_column [str] optional, the name of the partition column.
query [str] optional, the user specified SQL query.

fetch_size [int] optional, a user specified fetch size in the range [1, 20000]. By default a fetchSize
will be assigned to balance throughput and memory usage

2.3.20 Datasets

class datarobot.models.Dataset (dataset_id, version_id, name, categories, created_at,
is_data_engine_eligible, is_latest_version, is_snapshot, processing_state,
created_by=None, data_persisted=None, size=None, row_count=None,
recipe_id=None)
Represents a Dataset returned from the api/v2/datasets/ endpoints.

Attributes
id: string The ID of this dataset
name: string The name of this dataset in the catalog
is_latest_version: bool Whether this dataset version is the latest version of this dataset
version_id: string The object ID of the catalog_version the dataset belongs to

categories: list(string) An array of strings describing the intended use of the dataset. The sup-
ported options are “TRAINING” and “PREDICTION".

created_at: string The date when the dataset was created
created_by: string, optional Username of the user who created the dataset

is_snapshot: bool Whether the dataset version is an immutable snapshot of data which has pre-
viously been retrieved and saved to Data_robot

data_persisted: bool, optional If true, user is allowed to view extended data profile (which
includes data statistics like min/max/median/mean, histogram, etc.) and download data. If
false, download is not allowed and only the data schema (feature names and types) will be
available.

is_data_engine_eligible: bool Whether this dataset can be a data source of a data engine query.
processing_state: string Current ingestion process state of the dataset

row_count: int, optional The number of rows in the dataset.

size: int, optional The size of the dataset as a CSV in bytes.

get_uri()
Returns
url [str] Permanent static hyperlink to this dataset in Al Catalog.
Return type str

classmethod upload(source)
This method covers Dataset creation from local materials (file & DataFrame) and a URL.

Parameters

2.3. API Reference 279

DataRobot Python API Documentation, Release 3.2.2

source: str, pd.DataFrame or file object Pass a URL, filepath, file or DataFrame to create
and return a Dataset.

Returns
response: Dataset The Dataset created from the uploaded data source.
Raises

InvalidUsageError If the source parameter cannot be determined to be a URL, filepath, file
or DataFrame.

Examples

Upload a local file
dataset_one = Dataset.upload("./data/examples.csv")

Create a dataset via URL

dataset_two = Dataset.upload(
"https://raw.githubusercontent.com/curran/data/gh-pages/dbpedia/cities/data.

—csv"

)

Create dataset with a pandas Dataframe
dataset_three = Dataset.upload(my_df)

Create dataset using a local file
with open("./data/examples.csv", "rb") as file_pointer:
dataset_four = Dataset.create_from_file(filelike=file_pointer)

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_file(cls, file_path=None, filelike=None, categories=None,
read_timeout=600, max_wait=600, *, use_cases=None)
A blocking call that creates a new Dataset from a file. Returns when the dataset has been successfully
uploaded and processed.

Warning: This function does not clean up it’s open files. If you pass a filelike, you are responsible for
closing it. If you pass a file_path, this will create a file object from the file_path but will not close it.

Parameters

file_path: string, optional The path to the file. This will create a file object pointing to that
file but will not close it.

filelike: file, optional An open and readable file object.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case ids or a single Use Case id to add this new Dataset
to. Must be a kwarg.

280 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns

response: Dataset A fully armed and operational Dataset
Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_in_memory_data(cls, data_frame=None, records=None, categories=None,
read_timeout=600, max_wait=600, fname=None, *,
use_cases=None)
A blocking call that creates a new Dataset from in-memory data. Returns when the dataset has been suc-
cessfully uploaded and processed.

The data can be either a pandas DataFrame or a list of dictionaries with identical keys.
Parameters
data_frame: DataFrame, optional The data frame to upload
records: list[dict], optional A list of dictionaries with identical keys to upload

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION".

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful

fname: string, optional The file name, “data.csv” by default

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns
response: Dataset The Dataset created from the uploaded data.
Raises

InvalidUsageError If neither a DataFrame or list of records is passed.
Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_url (cls, url, do_snapshot=None, persist_data_after_ingestion=None,
categories=None, max_wait=600, *, use_cases=None)
A blocking call that creates a new Dataset from data stored at a url. Returns when the dataset has been
successfully uploaded and processed.

Parameters
url: string The URL to use as the source of data for the dataset being created.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
may be disabled by the permission, Disable AI Catalog Snapshots.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still

23.

API Reference 281

DataRobot Python API Documentation, Release 3.2.2

will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION".

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns

response: Dataset The Dataset created from the uploaded data
Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_data_source(cls, data_source_id, username=None, password=None,
do_snapshot=None, persist_data_after_ingestion=None,
categories=None, credential_id=None, use_kerberos=None,
credential_data=None, max_wait=600, *, use_cases=None)
A blocking call that creates a new Dataset from data stored at a DataSource. Returns when the dataset has
been successfully uploaded and processed.

New in version v2.22.
Parameters
data_source_id: string The ID of the DataSource to use as the source of data.
username: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
requires may be disabled by the permission, Disable Al Catalog Snapshots.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still
will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION".

credential_id: string, optional The ID of the set of credentials to use instead of user and
password. Note that with this change, username and password will become optional.

use_kerberos: bool, optional If unset, uses the server default: False. If true, use kerberos
authentication for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

282 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns

response: Dataset The Dataset created from the uploaded data
Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_query_generator (cls, generator_id, dataset_id=None,
dataset_version_id=None, max_wait=600, *,
use_cases=None)
A blocking call that creates a new Dataset from the query generator. Returns when the dataset has
been successfully processed. If optional parameters are not specified the query is applied to the
dataset_id and dataset_version_id stored in the query generator. If specified they will override the stored
dataset_id/dataset_version_id, e.g