
DataRobot Python API Documentation
Release 3.2.2

DataRobot, Inc.

Dec 19, 2023

CONTENTS

1 Getting started 3

2 Table of contents 5
2.1 Getting started . 5
2.2 User Guide . 5
2.3 API Reference . 168
2.4 Examples . 663
2.5 Changelog . 664

Python Module Index 727

Index 729

i

ii

DataRobot Python API Documentation, Release 3.2.2

The DataRobot Python package is a client library for working with the DataRobot platform API. To access other clients
and additional information about DataRobot’s APIs, visit the API documentation home.

CONTENTS 1

https://docs.datarobot.com/en/docs/api/index.html

DataRobot Python API Documentation, Release 3.2.2

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

To get started with the Python client, reference DataRobot’s API Quickstart guide.

3

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html

DataRobot Python API Documentation, Release 3.2.2

4 Chapter 1. Getting started

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Getting started

To get started with the Python client, reference DataRobot’s API Quickstart guide. This guide outlines how to configure
your environment to use the API.

Additionally, try a sample problem that contains Python code examples.

2.2 User Guide

2.2.1 Data

Data integrity and quality are cornerstones for creating highly accurate predictive models. These sections describe the
tools and visualizations DataRobot provides to ensure that your project doesn’t suffer the “garbage in, garbage out”
outcome.

Datasets

To create a DataRobot project and begin modeling, you first need to upload your data and prepare a dataset.

Create a dataset

There are several ways to create a dataset. Dataset.upload takes either a path to a local file, a streamable file object
via external URL, or a pandas DataFrame.

>>> import datarobot as dr
>>> # Upload a local file
>>> dataset_one = dr.Dataset.upload("./data/examples.csv")

>>> # Create a dataset with a URL
>>> dataset_two = dr.Dataset.upload("https://raw.githubusercontent.com/curran/data/gh-
→˓pages/dbpedia/cities/data.csv")

>>> # Create a dataset using a pandas DataFrame
>>> dataset_three = dr.Dataset.upload(my_df)

>>> # Create a dataset using a local file
(continues on next page)

5

https://docs.datarobot.com/en/docs/api/api-quickstart/api-qs.html
https://docs.datarobot.com/en/docs/api/api-quickstart/tryit.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> with open("./data/examples.csv", "rb") as file_pointer:
... dataset_four = dr.Dataset.create_from_file(filelike=file_pointer)

Dataset.create_from_file can take either a path to a local file or any streamable file object.

>>> import datarobot as dr
>>> dataset = dr.Dataset.create_from_file(file_path='data_dir/my_data.csv')
>>> with open('data_dir/my_data.csv', 'rb') as f:
... other_dataset = dr.Dataset.create_from_file(filelike=f)

Dataset.create_from_in_memory_data takes either a pandas.Dataframe or a list of dictionaries representing
rows of data. Note that the dictionaries representing the rows of data must contain the same keys.

>>> import pandas as pd
>>> data_frame = pd.read_csv('data_dir/my_data.csv')

>>> pandas_dataset = dr.Dataset.create_from_in_memory_data(data_frame=data_frame)

>>> in_memory_data = [{'key1': 'value', 'key2': 'other_value', ...},
... {'key1': 'new_value', 'key2': 'other_new_value', ...}, ...]
>>> in_memory_dataset = dr.Dataset.create_from_in_memory_data(records=other_data)

Dataset.create_from_url takes .csv data from a URL. If you have set
DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> url_dataset = dr.Dataset.create_from_url('https://s3.amazonaws.com/my_data/my_
→˓dataset.csv',
... do_snapshot=False)

Dataset.create_from_data_source takes data from a data source. If you have set
DISABLE_CREATE_SNAPSHOT_DATASOURCE, you must set do_snapshot=False.

>>> data_source_dataset = dr.Dataset.create_from_data_source(data_source.id, do_
→˓snapshot=False)

or

>>> data_source_dataset = data_source.create_dataset(do_snapshot=False)

Use datasets

After creating a dataset, you can create Projects from it and begin training models. You can also combine project
creation and a dataset upload in one method using Project.create. However, using this method means the data is
only accessible to the project which created it.

>>> project = dataset.create_project(project_name='New Project')
>>> project.analyze_and_model('some target')
Project(New Project)

6 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get information from a dataset

The dataset object contains some basic information that you can query, as shown in the snippet below.

>>> dataset.id
u'5e31cdac39782d0f65842518'
>>> dataset.name
u'my_data.csv'
>>> dataset.categories
["TRAINING", "PREDICTION"]
>>> dataset.created_at
datetime.datetime(2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())

The snippet below outlines several methods available to retrieve details from a dataset.

Details
>>> details = dataset.get_details()
>>> details.last_modification_date
datetime.datetime(2020, 2, 7, 16, 51, 10, 311000, tzinfo=tzutc())
>>> details.feature_count_by_type
[FeatureTypeCount(count=1, feature_type=u'Text'),
FeatureTypeCount(count=1, feature_type=u'Boolean'),
FeatureTypeCount(count=16, feature_type=u'Numeric'),
FeatureTypeCount(count=3, feature_type=u'Categorical')]
>>> details.to_dataset().id == details.dataset_id
True

Projects
>>> dr.Project.create_from_dataset(dataset.id, project_name='Project One')
Project(Project One)
>>> dr.Project.create_from_dataset(dataset.id, project_name='Project Two')
Project(Project Two)
>>> dataset.get_projects()
[ProjectLocation(url=u'https://app.datarobot.com/api/v2/projects/
→˓5e3c94aff86f2d10692497b5/', id=u'5e3c94aff86f2d10692497b5'),
ProjectLocation(url=u'https://app.datarobot.com/api/v2/projects/
→˓5e3c94eb9525d010a9918ec1/', id=u'5e3c94eb9525d010a9918ec1')]
>>> first_id = dataset.get_projects()[0].id
>>> dr.Project.get(first_id).project_name
'Project One'

Features
>>> all_features = dataset.get_all_features()
>>> feature = next(dataset.iterate_all_features(offset=2, limit=1))
>>> feature.name == all_features[2].name
True
>>> print(feature.name, feature.feature_type, feature.dataset_id)
(u'Partition', u'Numeric', u'5e31cdac39782d0f65842518')
>>> feature.get_histogram().plot
[{'count': 3522, 'target': None, 'label': u'0.0'},
{'count': 3521, 'target': None, 'label': u'1.0'}, ...]

The raw data
(continues on next page)

2.2. User Guide 7

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> with open('myfile.csv', 'wb') as f:
... dataset.get_file(filelike=f)

Retrieve datasets

You can retrieve specific datasets, a list of all datasets, or an iterator that retrieves all or some datasets.

>>> dataset_id = '5e387c501a438646ed7bf0f2'
>>> dataset = dr.Dataset.get(dataset_id)
>>> dataset.id == dataset_id
True
A blocking call that returns all datasets
>>> dr.Dataset.list()
[Dataset(name=u'Untitled Dataset', id=u'5e3c51e0f86f2d1087249728'),
Dataset(name=u'my_data.csv', id=u'5e3c2028162e6a5fe9a0d678'), ...]

Avoid listing datasets that fail to properly upload
>>> dr.Dataset.list(filter_failed=True)
[Dataset(name=u'my_data.csv', id=u'5e3c2028162e6a5fe9a0d678'),
Dataset(name=u'my_other_data.csv', id=u'3efc2428g62eaa5f39a6dg7a'), ...]

An iterator that lazily retrieves from the server page-by-page
>>> from itertools import islice
>>> iterator = dr.Dataset.iterate(offset=2)
>>> for element in islice(iterator, 3):
... print(element)
Dataset(name='some_data.csv', id='5e8df2f21a438656e7a23d12')
Dataset(name='other_data.csv', id='5e8df2e31a438656e7a23d0b')
Dataset(name='Untitled Dataset', id='5e6127681a438666cc73c2b0')

Manage datasets

You can modify, delete and restore datasets. Note that you need the dataset’s ID in order to restore it from deletion.
If you do not keep track of the ID, you will be unable to restore a dataset. If your deleted dataset was used to create a
project, that project can still access it, but you will not be able to create new projects using that dataset.

>>> dataset.modify(name='A Better Name')
>>> dataset.name
'A Better Name'

>>> new_project = dr.Project.create_from_dataset(dataset.id)
>>> stored_id = dataset.id
>>> dr.Dataset.delete(dataset.id)

new_project is still ok
>>> dr.Project.create_from_dataset(stored_id)
Traceback (most recent call last):
...
datarobot.errors.ClientError: 410 client error: {u'message': u'Requested Dataset␣
→˓5e31cdac39782d0f65842518 was previously deleted.'}

(continues on next page)

8 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> dr.Dataset.un_delete(stored_id)
>>> dr.Project.create_from_dataset(stored_id, project_name='Successful')
Project(Successful)

You can share a dataset as demonstrated in the following code snippet.

>>> from datarobot.enums import SHARING_ROLE
>>> from datarobot.models.dataset import Dataset
>>> from datarobot.models.sharing import SharingAccess
>>>
>>> new_access = SharingAccess(
>>> "new_user@datarobot.com",
>>> SHARING_ROLE.OWNER,
>>> can_share=True,
>>>)
>>> access_list = [
>>> SharingAccess("old_user@datarobot.com", SHARING_ROLE.OWNER, can_share=True),
>>> new_access,
>>>]
>>>
>>> Dataset.get('my-dataset-id').share(access_list)

Manage dataset feature lists

You can create, modify, and delete custom feature lists on a given dataset. Some feature lists are automatically created
by DataRobot and cannot be modified or deleted. Note that you cannot restore a deleted feature list.

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features)]

>>> dataset_features = [feature.name for feature in dataset.get_all_features()]
>>> custom_featurelist = dataset.create_featurelist('Custom Features', dataset_features[:
→˓5])
>>> custom_featurelist
DatasetFeaturelist(Custom Features)

>>> dataset.get_featurelists()
[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features),
DatasetFeaturelist(Custom Features)]

>>> custom_featurelist.update('New Name')
>>> custom_featurelist.name
'New Name'

>>> custom_featurelist.delete()
>>> dataset.get_featurelists()

(continues on next page)

2.2. User Guide 9

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

[DatasetFeaturelist(Raw Features),
DatasetFeaturelist(universe),
DatasetFeaturelist(Informative Features)]

Use credential data

For methods that accept credential data instead of username and password or a credential ID, see Credential Data.

Database Connectivity

Databases are a widely used tool for carrying valuable business data. To enable integration with a variety of enterprise
databases, DataRobot provides a “self-service” JDBC product for database connectivity setup. Once configured, you
can read data from production databases for model building and predictions. This allows you to quickly train and
retrain models on that data, and avoids the unnecessary step of exporting data from your enterprise database to a CSV
for ingest to DataRobot. It allows access to more diverse data, which results in more accurate models.

The steps describing how to set up your database connections use the following terminology:

• DataStore: A configured connection to a database. It has a name, a specified driver, and a JDBC URL. You
can register data stores with DataRobot for ease of re-use. A data store has one connector but can have many
data sources.

• DataSource: A configured connection to the backing data store (the location of data within a given endpoint).
A data source specifies, via SQL query or selected table and schema data, which data to extract from the data
store to use for modeling or predictions. A data source has one data store and one connector but can have many
datasets.

• DataDriver: The software that allows the DataRobot application to interact with a database; each data store is
associated with either a driver or a connector (created by the admin). The driver configuration saves the storage
location in DataRobot of the JAR file and any additional dependency files associated with the driver.

• Connector: Similarly to data drivers, a connector allows the DataRobot application to interact with a database;
each data store is associated with either a driver or a connector (created by the admin). The connector configura-
tion saves the storage location in DataRobot of the JAR file and any additional dependency files associated with
the connector.

• Dataset: Data, a file or the content of a data source, at a particular point in time. A data source can produce
multiple datasets; a dataset has exactly one data source.

The expected workflow when setting up projects or prediction datasets is:

1. The administrator sets up a datarobot.DataDriver for accessing a particular database. For any particular
driver, this setup is done once for the entire system and then the resulting driver is used by all users.

2. Users create a datarobot.DataStore which represents an interface to a particular database, using that driver.

3. Users create a datarobot.DataSource representing a particular set of data to be extracted from the DataStore.

4. Users create projects and prediction datasets from a DataSource.

Besides the described workflow for creating projects and prediction datasets, users can manage their DataStores and
DataSources and admins can manage Drivers by listing, retrieving, updating and deleting existing instances.

Cloud users: This feature is turned off by default. To enable the feature, contact your CFDS or DataRobot Support.

10 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Creating Drivers

The admin should specify class_name, the name of the Java class in the Java archive which implements the java.
sql.Driver interface; canonical_name, a user-friendly name for resulting driver to display in the API and the GUI;
and files, a list of local files which contain the driver.

>>> import datarobot as dr
>>> driver = dr.DataDriver.create(
... class_name='org.postgresql.Driver',
... canonical_name='PostgreSQL',
... files=['/tmp/postgresql-42.2.2.jar']
...)
>>> driver
DataDriver('PostgreSQL')

To retrieve information about existing drivers, such as the driver ID for data store creation, you can use dr.
DataDriver.list().

Creating DataStores

After the admin has created drivers, any user can use them for DataStore creation. A DataStore represents a JDBC
database. When creating them, users should specify type, which currently must be jdbc; canonical_name, a user-
friendly name to display in the API and GUI for the DataStore; driver_id, the id of the driver to use to connect to the
database; and jdbc_url, the full URL specifying the database connection settings like database type, server address,
port, and database name.

Note that you can only create data stores with drivers when using the Python client. Drivers and connectors are not
interchangeable for this method. To create a data store with a connector, instead use the REST API.

>>> import datarobot as dr
>>> data_store = dr.DataStore.create(
... data_store_type='jdbc',
... canonical_name='Demo DB',
... driver_id='5a6af02eb15372000117c040',
... jdbc_url='jdbc:postgresql://my.db.address.org:5432/perftest'
...)
>>> data_store
DataStore('Demo DB')
>>> data_store.test(username='username', password='password')
{'message': 'Connection successful'}

Creating DataSources

Once users have a DataStore, they can can query datasets via the DataSource entity, which represents a query. When
creating a DataSource, users first create a datarobot.DataSourceParameters object from a DataStore’s id and a
query, and then create the DataSource with a type, currently always jdbc; a canonical_name, the user-friendly name
to display in the API and GUI, and params, the DataSourceParameters object.

>>> import datarobot as dr
>>> params = dr.DataSourceParameters(
... data_store_id='5a8ac90b07a57a0001be501e',

(continues on next page)

2.2. User Guide 11

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

... query='SELECT * FROM airlines10mb WHERE "Year" >= 1995;'

...)
>>> data_source = dr.DataSource.create(
... data_source_type='jdbc',
... canonical_name='airlines stats after 1995',
... params=params
...)
>>> data_source
DataSource('airlines stats after 1995')

Creating Projects

Given a DataSource, users can create new projects from it.

>>> import datarobot as dr
>>> project = dr.Project.create_from_data_source(
... data_source_id='5ae6eee9962d740dd7b86886',
... username='username',
... password='password'
...)

As of v3.0, you can alternatively pass in the credential_id of an existing Dataset.Credential object.

>>> import datarobot as dr
>>> project = dr.Project.create_from_data_source(
... data_source_id='5ae6eee9962d740dd7b86886',
... credential_id='9963d544d5ce3se783r12190'
...)

or, pass in credential_data which conforms to CredentialDataSchema.

>>> import datarobot as dr
>>> s3_credential_data = {"credentialType": "s3", "awsAccessKeyId": "key123",
→˓"awsSecretAccessKey": "secret123"}
>>> project = dr.Project.create_from_data_source(
... data_source_id='5ae6eee9962d740dd7b86886',
... credential_data=s3_credential_data
...)

Creating Predictions

Given a DataSource, new prediction datasets can be created for any project.

>>> import datarobot as dr
>>> project = dr.Project.get('5ae6f296962d740dd7b86887')
>>> prediction_dataset = project.upload_dataset_from_data_source(
... data_source_id='5ae6eee9962d740dd7b86886',
... username='username',
... password='password'
...)

12 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Feature Discovery

Feature Discovery allows you to generate features automatically from secondary datasets connected to a primary dataset
(training data). You can create this type of connection using DataRobot’s Relationships Configuration.

Register a primary dataset to start a project

To start a Feature Discovery Project, upload the primary (training) dataset: Projects

import datarobot as dr
primary_dataset = dr.Dataset.create_from_file(file_path='your-training_file.csv')
project = dr.Project.create_from_dataset(primary_dataset.id, project_name='Lending Club')

Next, register all the secondary datasets which you want to connect with primary dataset.

Register secondary datasets in the AI Catalog

You can register the dataset using Dataset.create_from_file, which can take either a path to a local file or any
streamable file object.

profile_dataset = dr.Dataset.create_from_file(file_path='your_profile_file.csv')
transaction_dataset = dr.Dataset.create_from_file(file_path='your_transaction_file.csv')

Create dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction datasets created above using helper func-
tions.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

profile_dataset_definition = dr.DatasetDefinition(
identifier='profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id

)

transaction_dataset_definition = dr.DatasetDefinition(
identifier='transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
primary_temporal_key='Date'

)

profile_transaction_relationship = dr.Relationship(
dataset1_identifier='profile',
dataset2_identifier='transaction',

(continues on next page)

2.2. User Guide 13

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID']

)

primary_profile_relationship = dr.Relationship(
dataset2_identifier='profile',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit='DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

)

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Create a relationship configuration

Create a relationship configuration using the dataset definitions and relationships created above.

Create the relationships configuration to define connection between the datasets
relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_
→˓definitions, relationships=relationships)

Create a Feature Discovery project

Once you have configured relationships for your datasets, you can start a Feature Discovery project.

Set the datetime partitionining column (`date` in this example)
partitioning_spec = dr.DatetimePartitioningSpecification('date')

As of v3.0, use ``Project.set_datetime_partitioning`` instead of passing the spec to␣
→˓``Project.analyze_and_model`` via ``partitioning_method``.
project.set_datetime_partitioning(datetime_partition_spec=partitioning_spec)

Set the target for the project and start Feature discovery (if ``Project.set_datetime_
→˓partitioning`` was used there is no need to pass ``partitioning_method``)
project.analyze_and_model(target='BadLoan', relationships_configuration_id=relationship_
→˓config.id, mode='manual', partitioning_method=partitioning_spec)
Project(train.csv)

To start training a model, reference the ref:modeling <model> documentation.

14 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Create secondary dataset configuration for predictions

Create configurations for your secondary datasets with Secondary Dataset:

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
project_id=project.id,
name='My config',
secondary_datasets=secondary_datasets

)

For more details, reference the Secondary Dataset configuration documentation.

Make predictions with a trained model

To make predictions with a trained model, reference the Predictions documentation.

dataset_from_path = project.upload_dataset(
'./data_to_predict.csv',
secondary_datasets_config_id=new_secondary_dataset_config.id

)

predict_job_1 = model.request_predictions(dataset_from_path.id)

Common Errors

Dataset registration Failed

datasetdr.Dataset.create_from_file(file_path='file.csv')
datarobot.errors.AsyncProcessUnsuccessfulError: The job did not complete successfully.

Solution

• Check the internet connectivity sometimes network flakiness cause upload error

• Is the dataset file too big then you might want to upload using URL rather than file

Relationship configuration errors

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'1': {u'identifier': u'value cannot contain␣
→˓characters: $ - " . { } / \\'},
u'0': {u'identifier': u'value cannot contain characters: $ - " . { } / \\'}}}}

Solution:

• Check the identifier name passed in datasets_definitions and relationships.

• Tip: Do not use the name of the dataset if you did not specify it when registering the dataset to the AI Catalog.

2.2. User Guide 15

https://docs.datarobot.com/en/docs/predictions/index.html

DataRobot Python API Documentation, Release 3.2.2

datarobot.errors.ClientError: 422 client error: {u'message': u'Invalid field data',
u'errors': {u'datasetDefinitions': {u'1': {u'primaryTemporalKey': u'date column doesnt␣
→˓exist'},
}}}

Solution:

• Check if the name of the column passed as primaryTemporalKey is correct, as it is case-sensitive.

Configure relationships

A relationship’s configuration specifies additional datasets to be included to a project, how these datasets are related
to each other, and the primary dataset. When a relationships configuration is specified for a project, Feature Discovery
will create features automatically from these datasets.

You can create a relationship configuration from uploaded AI Catalog items. After uploading all the secondary datasets
in the AI Catalog:

• Create the dataset’s definition to specify which datasets to be used as secondary datasets along with its details

• Configure relationships among the above datasets.

relationship_config = dr.RelationshipsConfiguration.create(dataset_definitions=dataset_
→˓definitions, relationships=relationships)
>>> relationship_config.id
u'5506fcd38bd88f5953219da0'

Dataset definitions and relationships using helper functions

Create the DatasetDefinition and Relationship for the profile and transaction dataset using helper functions.

profile_catalog_id = '5ec4aec1f072bc028e3471ae'
profile_catalog_version_id = '5ec4aec2f072bc028e3471b1'

transac_catalog_id = '5ec4aec268f0f30289a03901'
transac_catalog_version_id = '5ec4aec268f0f30289a03900'

profile_dataset_definition = dr.DatasetDefinition(
identifier='profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id

)

transaction_dataset_definition = dr.DatasetDefinition(
identifier='transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
primary_temporal_key='Date'

)

profile_transaction_relationship = dr.Relationship(
dataset1_identifier='profile',

(continues on next page)

16 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dataset2_identifier='transaction',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID']

)

primary_profile_relationship = dr.Relationship(
dataset2_identifier='profile',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit='DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

)

dataset_definitions = [profile_dataset_definition, transaction_dataset_definition]
relationships = [primary_profile_relationship, profile_transaction_relationship]

Dataset definition and relationship using a dictionary

Create the dataset definitions and relationships for the profile and transaction dataset using dict directly.

profile_catalog_id = profile_dataset.id
profile_catalog_version_id = profile_dataset.version_id

transac_catalog_id = transaction_dataset.id
transac_catalog_version_id = transaction_dataset.version_id

dataset_definitions = [
{

'identifier': 'transaction',
'catalogVersionId': transac_catalog_version_id,
'catalogId': transac_catalog_id,
'primaryTemporalKey': 'Date',
'snapshotPolicy': 'latest',

},
{

'identifier': 'profile',
'catalogId': profile_catalog_id,
'catalogVersionId': profile_catalog_version_id,
'snapshotPolicy': 'latest',

},
]

relationships = [
{

'dataset2Identifier': 'profile',
'dataset1Keys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],
'featureDerivationWindowStart': -14,

(continues on next page)

2.2. User Guide 17

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'featureDerivationWindowEnd': -1,
'featureDerivationWindowTimeUnit': 'DAY',
'predictionPointRounding': 1,
'predictionPointRoundingTimeUnit': 'DAY',

},
{

'dataset1Identifier': 'profile',
'dataset2Identifier': 'transaction',
'dataset1Keys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],

},
]

Retrieving relationship configuration

You can retrieve a specific relationship’s configuration using the ID of the relationship configuration.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id).get()
>>> relationship_config.id == relationship_config_id
True
Get all the datasets used in this relationship's configuration
>> len(relationship_config.dataset_definitions) == 2
True
>> relationship_config.dataset_definitions[0]
{

'feature_list_id': '5ec4af93603f596525d382d3',
'snapshot_policy': 'latest',
'catalog_id': '5ec4aec268f0f30289a03900',
'catalog_version_id': '5ec4aec268f0f30289a03901',
'primary_temporal_key': 'Date',
'is_deleted': False,
'identifier': 'transaction',
'feature_lists':

[
{

'name': 'Raw Features',
'description': 'System created featurelist',
'created_by': 'User1',
'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 150000,␣

→˓tzinfo=tzutc()),
'user_created': False,
'dataset_id': '5ec4aec268f0f30289a03900',
'id': '5ec4af93603f596525d382d1',
'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u

→˓'Description']
},
{

'name': 'universe',
'description': 'System created featurelist',
'created_by': 'User1',

(continues on next page)

18 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 172000,␣
→˓tzinfo=tzutc()),

'user_created': False,
'dataset_id': '5ec4aec268f0f30289a03900',
'id': '5ec4af93603f596525d382d2',
'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u

→˓'Description']
},
{

'features': [u'CustomerID', u'AccountID', u'Date', u'Amount', u
→˓'Description'],

'description': 'System created featurelist',
'created_by': u'Garvit Bansal',
'creation_date': datetime.datetime(2020, 5, 20, 4, 18, 27, 179000,␣

→˓tzinfo=tzutc()),
'dataset_version_id': '5ec4aec268f0f30289a03901',
'user_created': False,
'dataset_id': '5ec4aec268f0f30289a03900',
'id': u'5ec4af93603f596525d382d3',
'name': 'Informative Features'

}
]

}
Get information regarding how the datasets are connected among themselves as well as ␣
→˓theprimary dataset
>> relationship_config.relationships
[

{
'dataset2Identifier': 'profile',
'dataset1Keys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],
'featureDerivationWindowStart': -14,
'featureDerivationWindowEnd': -1,
'featureDerivationWindowTimeUnit': 'DAY',
'predictionPointRounding': 1,
'predictionPointRoundingTimeUnit': 'DAY',

},
{

'dataset1Identifier': 'profile',
'dataset2Identifier': 'transaction',
'dataset1Keys': ['CustomerID'],
'dataset2Keys': ['CustomerID'],

},
]

2.2. User Guide 19

DataRobot Python API Documentation, Release 3.2.2

Update details of a relationship configuration

Use the snippet below as an example of how to update the details of the existing relationship configuration.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
Remove obsolete dataset definitions and its relationships
new_datasets_definiton =
[

{
'identifier': 'user',
'catalogVersionId': '5c88a37770fc42a2fcc62759',
'catalogId': '5c88a37770fc42a2fcc62759',
'snapshotPolicy': 'latest',

},
]

Get information regarding how the datasets are connected among themselves as well as␣
→˓the primary dataset
new_relationships =
[

{
'dataset2Identifier': 'user',
'dataset1Keys': ['user_id', 'dept_id'],
'dataset2Keys': ['user_id', 'dept_id'],

},
]
new_config = relationship_config.replace(new_datasets_definiton, new_relationships)
>>> new_config.id == relationship_config_id
True
>>> new_config.datasets_definition
[

{
'identifier': 'user',
'catalogVersionId': '5c88a37770fc42a2fcc62759',
'catalogId': '5c88a37770fc42a2fcc62759',
'snapshotPolicy': 'latest',

},
]
>>> new_config.relationships
[

{
'dataset2Identifier': 'user',
'dataset1Keys': ['user_id', 'dept_id'],
'dataset2Keys': ['user_id', 'dept_id'],

},
]

20 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Delete relationships configuration

You can delete a relationship configuration that is not used by any project.

relationship_config_id = '5506fcd38bd88f5953219da0'
relationship_config = dr.RelationshipsConfiguration(id=relationship_config_id)
result = relationship_config.get()
>>> result.id == relationship_config_id
True
Delete the relationships configuration
>>> relationship_config.delete()
>>> relationship_config.get()
ClientError: Relationships Configuration 5506fcd38bd88f5953219da0 not found

Secondary dataset configuration

Secondary dataset configuration allows you to use the different secondary datasets for a Feature Discovery project when
making predictions.

Secondary datasets using helper functions

Create the Secondary Dataset using helper functions.

>>> profile_catalog_id = '5ec4aec1f072bc028e3471ae'
>>> profile_catalog_version_id = '5ec4aec2f072bc028e3471b1'

>>> transac_catalog_id = '5ec4aec268f0f30289a03901'
>>> transac_catalog_version_id = '5ec4aec268f0f30289a03900'

profile_secondary_dataset = dr.SecondaryDataset(
identifier='profile',
catalog_id=profile_catalog_id,
catalog_version_id=profile_catalog_version_id,
snapshot_policy='latest'

)

transaction_secondary_dataset = dr.SecondaryDataset(
identifier='transaction',
catalog_id=transac_catalog_id,
catalog_version_id=transac_catalog_version_id,
snapshot_policy='latest'

)

secondary_datasets = [profile_secondary_dataset, transaction_secondary_dataset]

2.2. User Guide 21

DataRobot Python API Documentation, Release 3.2.2

Create secondary datasets with dict

You can create secondary datasets using raw dict structure.

secondary_datasets = [
{

'snapshot_policy': u'latest',
'identifier': u'profile',
'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
'catalog_id': u'5fd06b4af24c641b68e4d88e'

},
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e',
'catalog_id': u'5fd1e86c589238a4e635e98d'

}
]

Create a secondary dataset configuration

Create a secondary dataset configuration for a Feature Discovery Project which uses two secondary datasets: profile
and transaction.

import datarobot as dr
project = dr.Project.get(project_id='54e639a18bd88f08078ca831')

new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(
project_id=project.id,
name='My config',
secondary_datasets=secondary_datasets

)

>>> new_secondary_dataset_config.id
'5fd1e86c589238a4e635e93d'

Retrieve a secondary dataset configuration

You can retrieve specific secondary dataset configurations using the configuration ID.

>>> config_id = '5fd1e86c589238a4e635e93d'

secondary_dataset_config = dr.SecondaryDatasetConfigurations(id=config_id).get()
>>> secondary_dataset_config.id == config_id
True
>>> secondary_dataset_config

{
'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',

(continues on next page)

22 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
'credential_ids': None,
'featurelist_id': None,
'id': u'5fd1e86c589238a4e635e93d',
'is_default': True,
'name': u'My config',
'project_id': u'5fd06afce2456ec1e9d20457',
'project_version': None,
'secondary_datasets': [

{
'snapshot_policy': u'latest',
'identifier': u'profile',
'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
'catalog_id': u'5fd06b4af24c641b68e4d88e'

},
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e',
'catalog_id': u'5fd1e86c589238a4e635e98d'

}
]

}

List all secondary dataset configurations

You can list all secondary dataset configurations created in the project.

>>> secondary_dataset_configs = dr.SecondaryDatasetConfigurations.list(project.id)
>>> secondary_dataset_configs[0]

{
'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',
'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
'credential_ids': None,
'featurelist_id': None,
'id': u'5fd1e86c589238a4e635e93d',
'is_default': True,
'name': u'My config',
'project_id': u'5fd06afce2456ec1e9d20457',
'project_version': None,
'secondary_datasets': [

{
'snapshot_policy': u'latest',
'identifier': u'profile',
'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
'catalog_id': u'5fd06b4af24c641b68e4d88e'

},
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',

(continues on next page)

2.2. User Guide 23

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'catalog_version_id': u'5fd1e86c589238a4e635e98e',
'catalog_id': u'5fd1e86c589238a4e635e98d'

}
]

}

2.2.2 Modeling

The Modeling section provides information to help you easily navigate the process of building, understanding, and
analyzing models.

Projects

All of the modeling within DataRobot happens within a project. Each project has one dataset that is used as the source
from which to train models.

Create a Project

You can create a project from previously created Datasets or directly from a data source.

import datarobot as dr
dataset = Dataset.create_from_file(file_path='/home/user/data/last_week_data.csv')
project = dr.Project.create_from_dataset(dataset.id, project_name='New Project')

The following command creates a new project directly from a data source. You must specify a path to data file, file
object URL (starting with http://, https://, file://, or s3://), raw file contents, or a pandas.DataFrame
object when creating a new project. Path to file can be either a path to a local file or a publicly accessible URL.

import datarobot as dr
project = dr.Project.create('/home/user/data/last_week_data.csv',

project_name='New Project')

You can use the following commands to view the project ID and name:

project.id
>>> u'5506fcd38bd88f5953219da0'
project.project_name
>>> u'New Project'

Select Modeling Parameters

The final information needed to begin modeling includes the target feature, the queue mode, the metric for comparing
models, and the optional parameters such as weights, offset, exposure and downsampling.

24 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Target

The target must be the name of one of the columns of data uploaded to the project.

Metric

The optimization metric used to compare models is an important factor in building accurate models. If a metric is not
specified, the default metric recommended by DataRobot will be used. You can use the following code to view a list of
valid metrics for a specified target:

target_name = 'ItemsPurchased'
project.get_metrics(target_name)
>>> {'available_metrics': [

'Gini Norm',
'Weighted Gini Norm',
'Weighted R Squared',
'Weighted RMSLE',
'Weighted MAPE',
'Weighted Gamma Deviance',
'Gamma Deviance',
'RMSE',
'Weighted MAD',
'Tweedie Deviance',
'MAD',
'RMSLE',
'Weighted Tweedie Deviance',
'Weighted RMSE',
'MAPE',
'Weighted Poisson Deviance',
'R Squared',
'Poisson Deviance'],

'feature_name': 'SalePrice'}

Partitioning Method

DataRobot projects always have a holdout set used for final model validation. We use two different approaches for
testing prior to the holdout set:

• split the remaining data into training and validation sets

• cross-validation, in which the remaining data is split into a number of folds (partitions); each fold serves as a
validation set, with models trained on the other folds and evaluated on that fold.

There are several other options you can control. To specify a partition method, create an instance of one of the Par-
tition Classes, and pass it as the partitioning_method argument in your call to project.analyze_and_model
or project.start. As of v3.0 you can alternately use project.set_partitioning_method. See here for more
information on using datetime partitioning.

Several partitioning methods include parameters for validation_pct and holdout_pct, specifying desired percent-
ages for the validation and holdout sets. Note that there may be constraints that prevent the actual percentages used
from exactly (or some cases, even closely) matching the requested percentages.

2.2. User Guide 25

DataRobot Python API Documentation, Release 3.2.2

Queue Mode

You can use the API to set the DataRobot modeling process to run in either automatic or manual mode.

Autopilot mode means that the modeling process will proceed completely automatically, including running recom-
mended models, running at different sample sizes, and blending.

Manual mode means that DataRobot will populate a list of recommended models, but will not insert any of them into
the queue. Manual mode lets you select which models to execute before starting the modeling process.

Quick mode means that a smaller set of Blueprints is used, so autopilot finishes faster.

Weights

DataRobot also supports using a weight parameter. A full discussion of the use of weights in data science is not within
the scope of this document, but weights are often used to help compensate for rare events in data. You can specify a
column name in the project dataset to be used as a weight column.

Offsets

Starting with version v2.6 DataRobot also supports using an offset parameter. Offsets are commonly used in insurance
modeling to include effects that are outside of the training data due to regulatory compliance or constraints. You can
specify the names of several columns in the project dataset to be used as the offset columns.

Exposure

Starting with version v2.6 DataRobot also supports using an exposure parameter. Exposure is often used to model
insurance premiums where strict proportionality of premiums to duration is required. You can specify the name of the
column in the project dataset to be used as an exposure column.

Start Modeling

Once you have selected modeling parameters, you can use the following code structure to specify parameters and start
the modeling process.

import datarobot as dr
project.analyze_and_model(target='ItemsPurchased',

metric='Tweedie Deviance',
mode=dr.AUTOPILOT_MODE.FULL_AUTO)

You can also pass additional optional parameters to project.analyze_and_model to change parameters of the mod-
eling process. Some of those parameters include:

• worker_count – int, sets number of workers used for modeling.

• partitioning_method – PartitioningMethod object.

• positive_class – str, float, or int; Specifies a level of the target column that should be treated as the positive
class for binary classification. May only be specified for binary classification targets.

• advanced_options – AdvancedOptions object, used to set advanced options of modeling process. Can alter-
natively call set_options on a project instance which will be used automatically if nothing is passed here.

26 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• target_type – str, override the automatically selected target_type. An example usage would be setting the tar-
get_type=TARGET_TYPE.MULTICLASS when you want to perform a multiclass classification task on a numeric
column that has a low cardinality.

For a full reference of available parameters, see Project.analyze_and_model.

You can run with different autopilot modes with the mode parameter. AUTOPILOT_MODE.FULL_AUTO is the default,
which will trigger modeling with no further actions necessary. Other accepted modes include AUTOPILOT_MODE.
MANUAL for manual mode (choose your own models to run rather than use the DataRobot autopilot) and
AUTOPILOT_MODE.QUICK (run on a more limited set of models to get insights more quickly).

Clone a Project

Once a project has been successfully created, you may clone it using the following code structure:

new_project = project.clone_project(new_project_name='This is my new project')
new_project.project_name
>> 'This is my new project'
new_project.id != project.id
>> True

The new_project_name attribute is optional. If it is omitted, the default new project name will be ‘Copy of
<project.name>’.

Interact with a Project

The following commands can be used to manage DataRobot projects.

List Projects

Returns a list of projects associated with current API user.

import datarobot as dr
dr.Project.list()
>>> [Project(Project One), Project(Two)]

dr.Project.list(search_params={'project_name': 'One'})
>>> [Project(One)]

You can pass following parameters to change result:

• search_params – dict, used to filter returned projects. Currently you can query projects only by project_name

2.2. User Guide 27

DataRobot Python API Documentation, Release 3.2.2

Get an existing project

Rather than querying the full list of projects every time you need to interact with a project, you can retrieve its id value
and use that to reference the project.

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')
project.id
>>> '5506fcd38bd88f5953219da0'
project.project_name
>>> 'Churn Projection'

Get feature association statistics for an existing project

Get either feature association or correlation statistics and metadata on informative features for a given project

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')
association_data = project.get_associations(assoc_type='association', metric='mutualInfo
→˓')
association_data.keys()
>>> ['strengths', 'features']

Get whether your featurelists have association statistics

Get whether an association matrix job has been run on each of your featurelists

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')
featurelists = project.get_association_featurelists()
featurelists['featurelists'][0]
>>> {"featurelistId": "54e510ef8bd88f5aeb02a3ed", "hasFam": True, "title": "Informative␣
→˓Features"}

Get a Project’s featurelist by name

Get a featurelist by name

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')
featurelist = project.get_featurelist_by_name("Raw Features")
featurelist
>>> Featurelist(Raw Features)

Trying to get featurelist that does not exist
featurelist = project.get_featurelist_by_name("Flying Circus")
featurelist is None
>>> True

28 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Create Project featurelists

Using the project’s create_featurelist() method, you can create feature lists in multiple ways:

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')

featurelist_one = project.create_featurelist(
name="Testing featurelist creation",
features=["age", "weight", "number_diagnoses"],

)
featurelist_one
>>> Featurelist(Testing featurelist creation)
featurelist_one.features
>>> ['age', 'weight', 'number_diagnoses']

Create a feature list using another feature list as a starting point (`starting_
→˓featurelist`)
To Note: this example passes the `featurelist` object but you can also pass the
id (`starting_featurelist_id`) or the name (`starting_featurelist_name`)
featurelist_two = project.create_featurelist(

starting_featurelist=featurelist_one,
features_to_exclude=["number_diagnoses"], # Please see docs for use of `features_to_

→˓include`
)
featurelist_two # Note below we have an auto-generated name because we did not pass␣
→˓`name`
>>> Featurelist(Testing featurelist creation - 2022-07-12)
>>> # Note below we have a new feature list which has `"number_diagnoses"` excluded
featurelist_two.features
>>> ['age', 'weight']

Get values for a pair of features in an existing project

Get a sample of the exact values used in the feature association matrix plotting

import datarobot as dr
project = dr.Project.get(project_id='5506fcd38bd88f5953219da0')
feature_values = project.get_association_matrix_details(feature1='foo', feature2='bar')
feature_values.keys()
>>> ['features', 'types', 'values']

2.2. User Guide 29

DataRobot Python API Documentation, Release 3.2.2

Update a project

You can update various attributes of a project.

To update the name of the project:

project.rename(new_name)

To update the number of workers used by your project (this will fail if you request more workers than you have available;
the special value -1 will request your maximum number):

project.set_worker_count(num_workers)

To unlock the holdout set, allowing holdout scores to be shown and models to be trained on more data:

project.unlock_holdout()

To add or change the project description:

project.set_project_description(project_description)

To add or change the project’s advanced_options:

Using kwargs
project.set_options(blend_best_models=False)

Using an ``AdvancedOptions`` instance
project.set_options(AdvancedOptions(blend_best_models=False))

Delete a project

Use the following command to delete a project:

project.delete()

Wait for Autopilot to Finish

Once the modeling autopilot is started, in some cases you will want to wait for autopilot to finish:

project.wait_for_autopilot()

Play/Pause the autopilot

If your project is running in autopilot mode, it will continually use available workers, subject to the number of workers
allocated to the project and the total number of simultaneous workers allowed according to the user permissions.

To pause a project running in autopilot mode:

project.pause_autopilot()

To resume running a paused project:

30 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

project.unpause_autopilot()

Start autopilot on another Featurelist

You can start autopilot on an existing featurelist.

import datarobot as dr

featurelist = project.create_featurelist('test', ['feature 1', 'feature 2'])
project.start_autopilot(featurelist.id)
>>> True

Starting autopilot that is already running on the provided featurelist
project.start_autopilot(featurelist.id)
>>> dr.errors.AppPlatformError

Note: This method should be used on a project where the target has already been set. An error will be raised if
autopilot is currently running on or has already finished running on the provided featurelist.

Start preparing a specific model for deployment

You can start preparing a specific model for deployment. The model will then go through the various recommendation
stages including retraining on a reduced feature list and retraining the model on a higher sample size (recent data for
datetime partitioned).

prepare a specific model for deployment and wait for the process to complete
project.start_prepare_model_for_deployment(model_id=model.id)
project.wait_for_autopilot(check_interval=5, timeout=600)
get the prepared model
prepared_for_deployment_model = dr.models.ModelRecommendation.get(

project.id, recommendation_type=RECOMMENDED_MODEL_TYPE.PREPARED_FOR_DEPLOYMENT
)
prepared_for_deployment_model_id = prepared_for_deployment_model.model_id

Note: This method should be used on a project where the target has already been set. An error will be raised if
autopilot is currently running on the project or another model in the project is being prepared for deployment.

Further reading

The Blueprints and Models sections of this document will describe how to create new models based on the Blueprints
recommended by DataRobot.

2.2. User Guide 31

DataRobot Python API Documentation, Release 3.2.2

Using Credential Data

For methods that accept credential data instead of user/password or credential ID, please see Credential Data.

Models

When a blueprint has been trained on a specific dataset at a specified sample size, the result is a model. Models can be
inspected to analyze their accuracy.

Start Training a Model

To start training a model, use the Project.train method with a blueprint object:

import datarobot as dr
project = dr.Project.get('5506fcd38bd88f5953219da0')
blueprints = project.get_blueprints()
model_job_id = project.train(blueprints[0].id)

For a Datetime Partitioned Project (see Specialized Workflows section), use Project.train_datetime:

import datarobot as dr
project = dr.Project.get('5506fcd38bd88f5953219da0')
blueprints = project.get_blueprints()
model_job_id = project.train_datetime(blueprints[0].id)

List Finished Models

You can use the Project.get_models method to return a list of the project models that have finished training:

import datarobot as dr
project = dr.Project.get('5506fcd38bd88f5953219da0')
models = project.get_models()
print(models[:5])
>>> [Model(Decision Tree Classifier (Gini)),

Model(Auto-tuned K-Nearest Neighbors Classifier (Minkowski Distance)),
Model(Gradient Boosted Trees Classifier (R)),
Model(Gradient Boosted Trees Classifier),
Model(Logistic Regression)]

model = models[0]

project.id
>>> u'5506fcd38bd88f5953219da0'
model.id
>>> u'5506fcd98bd88f1641a720a3'

You can pass following parameters to change result:

• search_params – dict, used to filter returned projects. Currently you can query models by

– name

– sample_pct

32 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

– is_starred

• order_by – str or list, if passed returned models are ordered by this attribute(s). Allowed attributes to sort by
are:

– metric

– sample_pct

If the sort attribute is preceded by a hyphen, models will be sorted in descending order, otherwise in
ascending order. Multiple sort attributes can be included as a comma-delimited string or in a list e.g.
order_by='sample_pct,-metric' or order_by=['sample_pct', '-metric']. Using metric to sort by
will result in models being sorted according to their validation score by how well they did according to the project
metric.

• with_metric – str, If not None, the returned models will only have scores for this metric. Otherwise all the
metrics are returned.

List Models Example:

import datarobot as dr

dr.Project('5506fcd38bd88f5953219da0').get_models(order_by=['sample_pct', '-metric'])

Getting models that contain "Ridge" in name
and with sample_pct more than 64
dr.Project('5506fcd38bd88f5953219da0').get_models(

search_params={
'sample_pct__gt': 64,
'name': "Ridge"

})

Getting models marked as starred
dr.Project('5506fcd38bd88f5953219da0').get_models(

search_params={
'is_starred': True

})

Retrieve a Known Model

If you know the model_id and project_id values of a model, you can retrieve it directly:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id,

model_id=model_id)

You can also use an instance of Project as the parameter for Model.get

model = dr.Model.get(project=project,
model_id=model_id)

2.2. User Guide 33

DataRobot Python API Documentation, Release 3.2.2

Retrieve the highest scoring model for a given metric

You can retrieve the highest scoring model for a project based on a metric of your choice.

If you decide not to pass a metric to this method or if you pass the default project metric (the value of the metric
attribute of your project instance), the result of Project.recommended_model is returned.

import datarobot as dr
project = dr.Project.get('5506fcd38bd88f5953219da0')
top_model_r_squared = project.get_top_model(metric="R Squared")

Train a Model on a Different Sample Size

One of the key insights into a model and the data behind it is how its performance varies with more training data. In
Autopilot mode, DataRobot will run at several sample sizes by default, but you can also create a job that will run at a
specific sample size. You can also specify a featurelist that should be used for training the new model. The Model.
train method of a Model instance will put a new modeling job into the queue and return the id of the created ModelJob.
You can pass the ModelJob id to the wait_for_async_model_creation function, which polls the async model creation
status and returns the newly created model when it’s finished.

import datarobot as dr

model_job_id = model.train(sample_pct=33)

Retrain a model on a custom featurelist using cross validation.
Note that you can specify a custom value for `sample_pct`.
model_job_id = model.train(

sample_pct=55,
featurelist_id=custom_featurelist.id,
scoring_type=dr.SCORING_TYPE.cross_validation,

)

Cross-Validating a Model

By default, models are evaluated on the first validation partition. To start cross-validation, use the Model.
cross_validate method:

import datarobot as dr

model_job_id = model.cross_validate()

For a :doc:Datetime Partitioned Project , backtesting is the only cross-validation method supported. To run backtesting
for a datetime model, use the DatetimeModel.score_backtests method:

import datarobot as dr

`model` here must be an instance of `dr.DatetimeModel`.
model_job_id = model.score_backtests()

34 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Find the Features Used

Because each project can have many associated featurelists, it is important to know which features a model requires in
order to run. This helps ensure that the necessary features are provided when generating predictions.

feature_names = model.get_features_used()
print(feature_names)
>>> ['MonthlyIncome',

'VisitsLast8Weeks',
'Age']

Feature Impact

Feature Impact measures how much worse a model’s error score would be if DataRobot made predictions after randomly
shuffling a particular column (a technique sometimes called Permutation Importance).

The following example code snippet shows how a featurelist with just the features with the highest feature impact could
be created.

import datarobot as dr

max_num_features = 10
time_to_wait_for_impact = 4 * 60 # seconds

feature_impacts = model.get_or_request_feature_impact(time_to_wait_for_impact)

feature_impacts.sort(key=lambda x: x['impactNormalized'], reverse=True)
final_names = [f['featureName'] for f in feature_impacts[:max_num_features]]

project.create_featurelist('highest_impact', final_names)

For datetime aware models Feature Impact can be calculated for any backtest and holdout.

import datarobot as dr

datetime_model = dr.Model.get(project=project_id, model_id=model_id)
feature_impacts = datetime_model.get_or_request_feature_impact(backtest=1, with_
→˓metadata=True)

Feature Effects

Feature Effects helps to understand how changing a single feature affects the target while holding all other features
constant. Feature Effects provides partial dependence plot and prediction vs accuracy plot data.

import datarobot as dr

feature_effects = model.get_or_request_feature_effect(source='validation')

For multiclass models use request_feature_effect_multiclass and get_feature_effects_multiclass or
get_or_request_feature_effect_multiclass methods.

2.2. User Guide 35

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

feature_effects = model.get_feature_effect(source='validation')

Predict new data

After creating models, you can use them to generate predictions on new data. See the Predictions documentation for
further information on how to request predictions from a model.

Model IDs vs. Blueprint IDs

Each model has both a model_id and a blueprint_id.

A model is the result of training a blueprint on a dataset at a specified sample percentage. The blueprint_id is used
to keep track of which blueprint was used to train the model, while the model_id is used to locate the trained model
in the system.

Model parameters

Some models can have parameters that provide data needed to reproduce their predictions.

For additional usage information see DataRobot documentation, section “Coefficients tab and pre-processing details”

import datarobot as dr

model = dr.Model.get(project=project, model_id=model_id)
mp = model.get_parameters()
print(mp.derived_features)
>>> [{

'coefficient': -0.015,
'originalFeature': u'A1Cresult',
'derivedFeature': u'A1Cresult->7',
'type': u'CAT',
'transformations': [{'name': u'One-hot', 'value': u"'>7'"}]

}]

Create a Blender

You can blend multiple models; in many cases, the resulting blender model is more accurate than the parent models.
To do so you need to select parent models and a blender method from datarobot.enums.BLENDER_METHOD. If this
is a time series project, only methods in datarobot.enums.TS_BLENDER_METHOD are allowed.

Be aware that the tradeoff for better prediction accuracy is bigger resource consumption and slower predictions.

import datarobot as dr

pr = dr.Project.get(pid)
models = pr.get_models()
parent_models = [model.id for model in models[:2]]
pr.blend(parent_models, dr.enums.BLENDER_METHOD.AVERAGE)

36 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Lift chart retrieval

You can use the Modelmethods get_lift_chart and get_all_lift_charts to retrieve lift chart data. The first will
get it from specific source (validation data, cross validation or unlocked holdout) and the second will list all available
data.

For multiclass models, you can get a list of per-class lift charts using the Model method
get_multiclass_lift_chart.

ROC curve retrieval

Same as with the lift chart, you can use Model methods get_roc_curve and get_all_roc_curves to retrieve ROC
curve data. More information about working with ROC curves can be found in DataRobot web application documen-
tation section “ROC Curve tab details”.

Residuals chart retrieval

Just as with the lift and ROC charts, you can use Model methods get_residuals_chart and
get_all_residuals_charts to retrieve residuals chart data. The first will get it from a specific source (vali-
dation data, cross-validation data, or unlocked holdout). The second will retrieve all available data.

Word Cloud

If your dataset contains text columns, DataRobot can create text processing models that will contain word cloud insight
data. An example of such a model is any “Auto-Tuned Word N-Gram Text Modeler” model. You can use the Model.
get_word_cloud method to retrieve those insights - it will provide up to the 200 most important ngrams in the model
and coefficients corresponding to their influence.

Scoring Code

Subset of models in DataRobot supports code generation. For each of those models you can download a JAR file with
scoring code to make predictions locally using the method Model.download_scoring_code. For details on how to
do that see “Code Generation” section in DataRobot web application documentation. Optionally you can download
source code in Java to see what calculations those models do internally.

Be aware that the source code JAR isn’t compiled so it cannot be used for making predictions.

Get a model blueprint chart

For any model, you can retrieve its blueprint chart. You can also get its representation in graphviz DOT format to
render it into the format you need.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id,

model_id=model_id)
bp_chart = model.get_model_blueprint_chart()
print(bp_chart.to_graphviz())

2.2. User Guide 37

DataRobot Python API Documentation, Release 3.2.2

Get a model missing values report

For the majority of models, you can retrieve their missing values reports on training data per each numeric and categor-
ical feature. Model needs to have at least one of the supported tasks in the blueprint in order to have a missing values
report (blenders are not supported). Report is gathered for Numerical Imputation tasks and Categorical converters like
Ordinal Encoding, One-Hot Encoding, etc. Missing values report is available to users with access to full blueprint
docs.

A report is collected for those features which are considered eligible by a given blueprint task. For instance, a categorical
feature with a lot of unique values may not be considered as eligible in the One-Hot encoding task.

Please refer to Missing report attributes description for report interpretation.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id, model_id=model_id)
missing_reports_per_feature = model.get_missing_report_info()
for report_per_feature in missing_reports_per_feature:

print(report_per_feature)

Consider the following example. Given Decision Tree Classifier (Gini) blueprint chart representation:

print(blueprint_chart.to_graphviz())
>>> digraph "Blueprint Chart" {

graph [rankdir=LR]
0 [label="Data"]
-2 [label="Numeric Variables"]
2 [label="Missing Values Imputed"]
3 [label="Decision Tree Classifier (Gini)"]
4 [label="Prediction"]
-1 [label="Categorical Variables"]
1 [label="Ordinal encoding of categorical variables"]
0 -> -2
-2 -> 2
2 -> 3
3 -> 4
0 -> -1
-1 -> 1
1 -> 3

}

and missing report:

print(report_per_feature1)
>>> {'feature': 'Veh Year',

'type': 'Numeric',
'missing_count': 150,
'missing_percentage': 50.00,
'tasks': [

{'id': u'2',
'name': u'Missing Values Imputed',
'descriptions': [u'Imputed value: 2006']
}

(continues on next page)

38 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

]
}

print(report_per_feature2)
>>> {'feature': 'Model',

'type': 'Categorical',
'missing_count': 100,
'missing_percentage': 33.33,
'tasks': [

{'id': u'1',
'name': u'Ordinal encoding of categorical variables',
'descriptions': [u'Imputed value: -2']
}

]
}

results can be interpreted in the following way:

Numeric feature “Veh Year” has 150 missing values and respectively 50% in training data. It was transformed by
“Missing Values Imputed” task with imputed value 2006. Task has id 2, and its output goes into Decision Tree Classifier
(Gini) - it can be inferred from the chart.

Categorical feature “Model” was transformed by “Ordinal encoding of categorical variables” task with imputed value
-2.

Get a blueprint’s documentation

You can retrieve documentation on tasks used to build a model. It will contain information about the task,
its parameters and (when available) links and references to additional sources. All documents are instances of
BlueprintTaskDocument class.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id,

model_id=model_id)
docs = model.get_model_blueprint_documents()
print(docs[0].task)
>>> Average Blend
print(docs[0].links[0]['url'])
>>> https://en.wikipedia.org/wiki/Ensemble_learning

Request training predictions

You can request a model’s predictions for a particular subset of its training data. See datarobot.models.Model.
request_training_predictions() reference for all the valid subsets.

See training predictions reference for more details.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'

(continues on next page)

2.2. User Guide 39

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

model = dr.Model.get(project=project_id,
model_id=model_id)

training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.
→˓HOLDOUT)
training_predictions = training_predictions_job.get_result_when_complete()
for row in training_predictions.iterate_rows():

print(row.row_id, row.prediction)

Advanced Tuning

You can perform advanced tuning on a model – generate a new model by taking an existing model and rerunning it
with modified tuning parameters.

The AdvancedTuningSession class exists to track the creation of an Advanced Tuning model on the client. It enables
browsing and setting advanced-tuning parameters one at a time, and using human-readable parameter names rather
than requiring opaque parameter IDs in all cases. No information is sent to the server until the run() method is called
on the AdvancedTuningSession.

See datarobot.models.Model.get_advanced_tuning_parameters() reference for a description of the types of
parameters that can be passed in.

As of v2.17, all models other than blenders, open source, and user-created models support Advanced Tuning. The use
of Advanced Tuning via API for non-Eureqa models is in beta, but is enabled by default for all users.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id,

model_id=model_id)
tune = model.start_advanced_tuning_session()

Get available task names,
and available parameter names for a task name that exists on this model
tune.get_task_names()
tune.get_parameter_names('Eureqa Generalized Additive Model Classifier (3000 Generations)
→˓')

tune.set_parameter(
task_name='Eureqa Generalized Additive Model Classifier (3000 Generations)',
parameter_name='EUREQA_building_block__sine',
value=1)

job = tune.run()

40 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

SHAP Impact

You can retrieve SHAP impact scores for features in a model. SHAP impact is computed by calculating the shap values
on a sample of training data and then taking the mean absolute value for each column. The larger value of impact
indicates a more important feature.

See datarobot.models.ShapImpact.create() reference for a description of the types of parameters that can be
passed in.

import datarobot as dr

project_id = '5ec3d6884cfad17cd8c0ed62'
model_id = '5ec3d6f44cfad17cd8c0ed78'
shap_impact_job = dr.ShapImpact.create(project_id=project_id, model_id=model_id)
shap_impact = shap_impact_job.get_result_when_complete()
print(shap_impact)
>>> [ShapImpact(count=36)]
print(shap_impact.shap_impacts[:1])
>>> [{'feature_name': 'number_inpatient', 'impact_normalized': 1.0, 'impact_unnormalized
→˓': 0.07670175497683789}]

shap_impact = dr.ShapImpact.get(project_id=project_id, model_id=model_id)
print(shap_impact.shap_impacts[:1])
>>> [{'feature_name': 'number_inpatient', 'impact_normalized': 1.0, 'impact_unnormalized
→˓': 0.07670175497683789}]

Number of Iterations Trained

Early-stopping models will train a subset of max estimators/iterations that are defined in advanced tuning. This method
allows the user to retrieve the actual number of estimators that were trained by an early-stopping tree-based model (cur-
rently the only model type supported). The method returns the projectId, modelId, and a list of dictionaries containing
the number of iterations trained for each model stage. In the case of single-stage models, this dictionary will contain
only one entry.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
model = dr.Model.get(project=project_id,

model_id=model_id)
num_iterations = model.get_num_iterations_trained()
print(num_iterations)
>>> {"projectId": "5506fcd38bd88f5953219da0", "modelId": "5506fcd98bd88f1641a720a3",
→˓"data" [{"stage": "FREQ", "numIterations":250}, {"stage":"SEV", "numIterations":50}]}

2.2. User Guide 41

DataRobot Python API Documentation, Release 3.2.2

Blueprints

The set of computation paths that a dataset passes through before producing predictions from data is called a blueprint.
A blueprint can be trained on a dataset to generate a model.

To modify blueprints using python, please refer to the documentation for the Blueprint Workshop.

Quick Reference

The following code block summarizes the interactions available for blueprints.

Get the set of blueprints recommended by datarobot
import datarobot as dr
my_projects = dr.Project.list()
project = my_projects[0]
menu = project.get_blueprints()

first_blueprint = menu[0]
project.train(first_blueprint)

List Blueprints

When a file is uploaded to a project and the target is set, DataRobot recommends a set of blueprints that are appropriate
for the task at hand. You can use the get_blueprints method to get the list of blueprints recommended for a project:

project = dr.Project.get('5506fcd38bd88f5953219da0')
menu = project.get_blueprints()
blueprint = menu[0]

Get a blueprint

If you already have a blueprint_id from a model you can retrieve the blueprint directly.

project_id = '5506fcd38bd88f5953219da0'
project = dr.Project.get(project_id)
models = project.get_models()
model = models[0]
blueprint = Blueprint.get(project_id, model.blueprint_id)

Get a blueprint chart

For all blueprints - either from blueprint menu or already used in model - you can retrieve its chart. You can also get
its representation in graphviz DOT format to render it into the format you need.

project_id = '5506fcd38bd88f5953219da0'
blueprint_id = '4321fcd38bd88f595321554223'
bp_chart = BlueprintChart.get(project_id, blueprint_id)
print(bp_chart.to_graphviz())

42 Chapter 2. Table of contents

https://blueprint-workshop.datarobot.com/

DataRobot Python API Documentation, Release 3.2.2

Get a blueprint’s documentation

You can retrieve documentation on tasks used in the blueprint. It will contain information about task, its parameters and
(when available) links and references to additional sources. All documents are instances of BlueprintTaskDocument
class.

project_id = '5506fcd38bd88f5953219da0'
blueprint_id = '4321fcd38bd88f595321554223'
bp = Blueprint.get(project_id, blueprint_id)
docs = bp.get_documents()
print(docs[0].task)
>>> Average Blend
print(docs[0].links[0]['url'])
>>> https://en.wikipedia.org/wiki/Ensemble_learning

Blueprint Attributes

The Blueprint class holds the data required to use the blueprint for modeling. This includes the blueprint_id and
project_id. There are also two attributes that help distinguish blueprints: model_type and processes.

print(blueprint.id)
>>> u'8956e1aeecffa0fa6db2b84640fb3848'
print(blueprint.project_id)
>>> u5506fcd38bd88f5953219da0'
print(blueprint.model_type)
>>> Logistic Regression
print(blueprint.processes)
>>> [u'One-Hot Encoding',

u'Missing Values Imputed',
u'Standardize',
u'Logistic Regression']

Create a Model from a Blueprint

You can use a blueprint instance to train a model. The default dataset for the project is used. Note that Project.train
is used for non-datetime-partitioned projects. Project.train_datetime should be used for datetime partitioned
projects.

model_job_id = project.train(blueprint)

For datetime partitioned projects
model_job = project.train_datetime(blueprint.id)

Both Project.train and Project.train_datetime will put a new modeling job into the queue. However, note
that Project.train returns the id of the created ModelJob, while Project.train_datetime returns the ModelJob
object itself. You can pass a ModelJob id to wait_for_async_model_creation function, which polls the async model
creation status and returns the newly created model when it’s finished.

2.2. User Guide 43

DataRobot Python API Documentation, Release 3.2.2

Specialized workflows

The following sections describe alternative workflows for a variety of specialized data types.

Datetime Partitioned Projects

If your dataset is modeling events taking place over time, datetime partitioning may be appropriate. Datetime parti-
tioning ensures that when partitioning the dataset for training and validation, rows are ordered according to the value
of the date partition feature.

Setting Up a Datetime Partitioned Project

After creating a project and before setting the target, create a DatetimePartitioningSpecification to define how the project
should be partitioned. By passing the specification into DatetimePartitioning.generate, the full partitioning can
be previewed before finalizing the partitioning. After verifying that the partitioning is correct for the project dataset,
pass the specification into Project.analyze_and_model via the partitioning_method argument. Alternatively,
as of v3.0, by using Project.set_datetime_partitioning(), the partitioning (and individual options of the par-
titioning specification) can be updated (with repeated method calls) up until calling Project.analyze_and_model.
Once modeling begins, the project can be used as normal.

The following code block shows the basic workflow for creating datetime partitioned projects.

import datarobot as dr

project = dr.Project.create('some_data.csv')
spec = dr.DatetimePartitioningSpecification('my_date_column')
can customize the spec as needed

partitioning_preview = dr.DatetimePartitioning.generate(project.id, spec)
the preview generated is based on the project's data

print(partitioning_preview.to_dataframe())
hmm ... I want more backtests
spec.number_of_backtests = 5
partitioning_preview = dr.DatetimePartitioning.generate(project.id, spec)
print(partitioning_preview.to_dataframe())
looks good
project.analyze_and_model('target_column')

As of v3.0, ``Project.set_datetime_partitioning()`` and ``Project.list_datetime_
→˓partition_spec()``
are available as an alternative:

view settings
project.list_datetime_partition_spec()
maybe I want to also disable holdout before starting modeling
project.set_datetime_partitioning(disable_holdout=True)
view settings
project.list_datetime_partition_spec()
all of the settings look good
don't need to pass the spec into ``analyze_and_model`` because it's already been set
project.analyze_and_model('target_column')

(continues on next page)

44 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

I can retrieve the partitioning settings after the target has been set too
partitioning = dr.DatetimePartitioning.get(project.id)

Configuring Backtests

Backtests are configurable using one of two methods:

Method 1:

• index (int): The index from zero of this backtest.

• gap_duration (str): A duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. This represents the gap between training and validation
scoring data for this backtest.

• validation_start_date (datetime.datetime): Represents the start date of the validation scoring data for this backtest.

• validation_duration (str): A duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. This represents the desired duration of the validation scoring
data for this backtest.

import datarobot as dr
from datetime import datetime

partitioning_spec = dr.DatetimePartitioningSpecification(
backtests=[

modify the first backtest using option 1
dr.BacktestSpecification(

index=0,
gap_duration=dr.partitioning_methods.construct_duration_string(),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_duration=dr.partitioning_methods.construct_duration_

→˓string(years=1),
)

],
other partitioning settings...

)

Method 2 (New in version v2.20):

• validation_start_date (datetime.datetime): Represents the start date of the validation scoring data for this backtest.

• validation_end_date (datetime.datetime): Represents the end date of the validation scoring data for this backtest.

• primary_training_start_date (datetime.datetime): Represents the desired start date of the training partition for
this backtest.

• primary_training_end_date (datetime.datetime): Represents the desired end date of the training partition for this
backtest.

import datarobot as dr
from datetime import datetime

partitioning_spec = dr.DatetimePartitioningSpecification(
(continues on next page)

2.2. User Guide 45

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

backtests=[
modify the first backtest using option 2
dr.BacktestSpecification(

index=0,
primary_training_start_date=datetime(year=2005, month=1, day=1),
primary_training_end_date=datetime(year=2010, month=1, day=1),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_end_date=datetime(year=2011, month=1, day=1),

)
],
other partitioning settings...

)

Note that Method 2 allows you to directly configure the start and end dates of each partition, including
the training partition. The gap partition is calculated as the time between primary_training_end_date
and validation_start_date. Using the same date for both primary_training_end_date and
validation_start_date will result in no gap being created.

After configuring backtests, you can set use_project_settings to True in calls to Model.train_datetime. This
will create models that are trained and validated using your custom backtest training partition start and end dates.

Modeling with a Datetime Partitioned Project

While Model objects can still be used to interact with the project, DatetimeModel objects, which are only retrievable
from datetime partitioned projects, provide more information including which date ranges and how many rows are used
in training and scoring the model as well as scores and statuses for individual backtests.

The autopilot workflow is the same as for other projects, but to manually train a model, Project.train_datetime
and Model.train_datetime should be used in the place of Project.train and Model.train. To cre-
ate frozen models, Model.request_frozen_datetime_model should be used in place of DatetimeModel.
request_frozen_datetime_model. Unlike other projects, to trigger computation of scores for all backtests use
DatetimeModel.score_backtests instead of using the scoring_type argument in the train methods.

Accuracy Over Time Plots

For datetime partitioned model you can retrieve the Accuracy over Time plot. To do so use
DatetimeModel.get_accuracy_over_time_plot. You can also retrieve the detailed metadata using
DatetimeModel.get_accuracy_over_time_plots_metadata, and the preview plot using DatetimeModel.
get_accuracy_over_time_plot_preview.

Dates, Datetimes, and Durations

When specifying a date or datetime for datetime partitioning, the client expects to receive and will return a datetime.
Timezones may be specified, and will be assumed to be UTC if left unspecified. All dates returned from DataRobot
are in UTC with a timezone specified.

Datetimes may include a time, or specify only a date; however, they may have a non-zero time component only if
the partition column included a time component in its date format. If the partition column included only dates like
“24/03/2015”, then the time component of any datetimes, if present, must be zero.

46 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

When date ranges are specified with a start and an end date, the end date is exclusive, so only dates earlier than the end
date are included, but the start date is inclusive, so dates equal to or later than the start date are included. If the start
and end date are the same, then no dates are included in the range.

Durations are specified using a subset of ISO8601. Durations will be of the form PnYnMnDTnHnMnS where each “n”
may be replaced with an integer value. Within the duration string,

• nY represents the number of years

• the nM following the “P” represents the number of months

• nD represents the number of days

• nH represents the number of hours

• the nM following the “T” represents the number of minutes

• nS represents the number of seconds

and “P” is used to indicate that the string represents a period and “T” indicates the beginning of the time component of
the string. Any section with a value of 0 may be excluded. As with datetimes, if the partition column did not include
a time component in its date format, the time component of any duration must be either unspecified or consist only of
zeros.

Example Durations:

• “P3Y6M” (three years, six months)

• “P1Y0M0DT0H0M0S” (one year)

• “P1Y5DT10H” (one year, 5 days, 10 hours)

datarobot.helpers.partitioning_methods.construct_duration_string is a helper method that can be used to construct
appropriate duration strings.

Time Series Projects

Time series projects, like OTV projects, use datetime partitioning, and all the workflow changes that apply to other
datetime partitioned projects also apply to them. Unlike other projects, time series projects produce different types of
models which forecast multiple future predictions instead of an individual prediction for each row.

DataRobot uses a general time series framework to configure how time series features are created and what future values
the models will output. This framework consists of a Forecast Point (defining a time a prediction is being made), a
Feature Derivation Window (a rolling window used to create features), and a Forecast Window (a rolling window of
future values to predict). These components are described in more detail below.

Time series projects will automatically transform the dataset provided in order to apply this framework. During the
transformation, DataRobot uses the Feature Derivation Window to derive time series features (such as lags and rolling
statistics), and uses the Forecast Window to provide examples of forecasting different distances in the future (such as
time shifts). After project creation, a new dataset and a new feature list are generated and used to train the models.
This process is reapplied automatically at prediction time as well in order to generate future predictions based on the
original data features.

The time_unit and time_step used to define the Feature Derivation and Forecast Windows are taken from the
datetime partition column, and can be retrieved for a given column in the input data by looking at the corresponding at-
tributes on the datarobot.models.Feature object. If windows_basis_unit is set to ROW, then Feature Derivation
and Forecast Windows will be defined using number of the rows.

2.2. User Guide 47

DataRobot Python API Documentation, Release 3.2.2

Setting Up A Time Series Project

To set up a time series project, follow the standard datetime partitioning workflow and use the six new time series
specific parameters on the datarobot.DatetimePartitioningSpecification object:

use_time_series bool, set this to True to enable time series for the project.

default_to_known_in_advance bool, set this to True to default to treating all features as known in advance, or a priori,
features. Otherwise, they will not be handled as known in advance features. Individual features can be set to
a value different than the default by using the featureSettings parameter. See the prediction documentation for
more information.

default_to_do_not_derive bool, set this to True to default to excluding all features from feature derivation. Otherwise,
they will not be excluded and will be included in the feature derivation process. Individual features can be set to
a value different than the default by using the featureSettings parameter.

feature_derivation_window_start int, specifies how many units of the windows_basis_unit from the forecast point
into the past is the start of the feature derivation window

feature_derivation_window_end int, specifies how many units of the windows_basis_unit from the forecast point
into the past is the end of the feature derivation window

forecast_window_start int, specifies how many units of the windows_basis_unit from the forecast point into the
future is the start of the forecast window

forecast_window_end int, specifies how many units of the windows_basis_unit from the forecast point into the
future is the end of the forecast window

windows_basis_unit string, set this to ROW to define feature derivation and forecast windows in terms of the rows,
rather than time units. If omitted, will default to the detected time unit (one of the datarobot.enums.
TIME_UNITS).

feature_settings list of FeatureSettings specifying per feature settings, can be left unspecified

Feature Derivation Window

The Feature Derivation window represents the rolling window that is used to derive time series features and
lags, relative to the Forecast Point. It is defined in terms of feature_derivation_window_start and
feature_derivation_window_endwhich are integer values representing datetime offsets in terms of the time_unit
(e.g. hours or days).

The Feature Derivation Window start and end must be less than or equal to zero, indicating they are positioned before
the forecast point. Additionally, the window must be specified as an integer multiple of the time_step which defines
the expected difference in time units between rows in the data.

The window is closed, meaning the edges are considered to be inside the window.

Forecast Window

The Forecast Window represents the rolling window of future values to predict, relative to the Forecast Point. It is
defined in terms of the forecast_window_start and forecast_window_end, which are positive integer values
indicating datetime offsets in terms of the time_unit (e.g. hours or days).

The Forecast Window start and end must be positive integers, indicating they are positioned after the forecast point. Ad-
ditionally, the window must be specified as an integer multiple of the time_step which defines the expected difference
in time units between rows in the data.

The window is closed, meaning the edges are considered to be inside the window.

48 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Multiseries Projects

Certain time series problems represent multiple separate series of data, e.g. “I have five different stores that all have
different customer bases. I want to predict how many units of a particular item will sell, and account for the different
behavior of each store”. When setting up the project, a column specifying series ids must be identified, so that each
row from the same series has the same value in the multiseries id column.

Using a multiseries id column changes which partition columns are eligible for time series, as each series is required
to be unique and regular, instead of the entire partition column being required to have those properties. In order to
use a multiseries id column for partitioning, a detection job must first be run to analyze the relationship between the
partition and multiseries id columns. If needed, it will be automatically triggered by calling datarobot.models.
Feature.get_multiseries_properties() on the desired partition column. The previously computed multiseries
properties for a particular partition column can then be accessed via that method. The computation will also be
automatically triggered when calling datarobot.DatetimePartitioning.generate() or datarobot.models.
Project.analyze_and_model() with a multiseries id column specified.

Note that currently only one multiseries id column is supported, but all interfaces accept lists of id columns to ensure
multiple id columns will be able to be supported in the future.

In order to create a multiseries project:

1. Set up a datetime partitioning specification with the desired partition column and multiseries id columns.

2. (Optionally) Use datarobot.models.Feature.get_multiseries_properties() to confirm the inferred
time step and time unit of the partition column when used with the specified multiseries id column.

3. (Optionally) Specify the multiseries id column in order to preview the full datetime partitioning settings using
datarobot.DatetimePartitioning.generate().

4. Specify the multiseries id column when sending the target and partitioning settings via datarobot.models.
Project.analyze_and_model().

project = dr.Project.create('path/to/multiseries.csv', project_name='my multiseries␣
→˓project')
partitioning_spec = dr.DatetimePartitioningSpecification(

'timestamp', use_time_series=True, multiseries_id_columns=['multiseries_id']
)

manually confirm time step and time unit are as expected
datetime_feature = dr.Feature.get(project.id, 'timestamp')
multiseries_props = datetime_feature.get_multiseries_properties(['multiseries_id'])
print(multiseries_props)

manually check out the partitioning settings like feature derivation window and␣
→˓backtests
to make sure they make sense before moving on
full_part = dr.DatetimePartitioning.generate(project.id, partitioning_spec)
print(full_part.feature_derivation_window_start, full_part.feature_derivation_window_end)
print(full_part.to_dataframe())

As of v3.0, can use ``Project.set_datetime_partitioning`` instead of passing the spec␣
→˓into ``Project.analyze_and_model`` via ``partitioning_method``.
The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date
→˓', multiseries_id_columns=['series_id'])
Or the whole spec object can be passed:

(continues on next page)

2.2. User Guide 49

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

project.set_datetime_partitioning(datetime_spec=datetime_spec)

finalize the project and start the autopilot
project.analyze_and_model('target', partitioning_method=partitioning_spec)

You can also access optimized partitioning in the API where the target over time is inspected to ensure that the
default backtests cover regions of interest and adjust backtests avoid common problems with missing target val-
ues or partitions with single values (e.g. zero-inflated datasets). In this case you need to pass the target column
when generating the partitioning specification (either by calling DatetimePartitioning.generate or Project.
set_datetime_partitioning) and then pass the full partitioning specification when starting autopilot (if Project.
set_datetime_partitioning is not used).

project = dr.Project.create('path/to/multiseries.csv', project_name='my multiseries␣
→˓project')
partitioning_spec = dr.DatetimePartitioningSpecification(

'timestamp', use_time_series=True, multiseries_id_columns=['multiseries_id']
)

Pass the target column to generate optimized partitions
full_part = dr.DatetimePartitioning.generate(project.id, partitioning_spec, 'target')

Or, as of v3.0, call ``Project.set_datetime_partitioning`` after specifying the project␣
→˓target
to generate optimized partitions.
project.target = 'target'
project.set_datetime_partitioning(datetime_partition_spec=partitioning_spec)

finalize the project and start the autopilot, passing in the full partitioning spec
(if ``Project.set_datetime_partitioning`` was used there is no need to pass␣
→˓``partitioning_method``)
project.analyze_and_model('target', partitioning_method=full_part.to_specification())

Feature Settings

datarobot.FeatureSettings constructor receives feature_name and settings. For now settings known_in_advance
and do_not_derive are supported.

I have 10 features, 8 of them are known in advance and two are not
Also, I do not want to derive new features from previous_day_sales
not_known_in_advance_features = ['previous_day_sales', 'amount_in_stock']
do_not_derive_features = ['previous_day_sales']
feature_settings = [dr.FeatureSettings(feat_name, known_in_advance=False) for feat_name␣
→˓in not_known_in_advance_features]
feature_settings += [dr.FeatureSettings(feat_name, do_not_derive=True) for feat_name in␣
→˓do_not_derive_features]
spec = dr.DatetimePartitioningSpecification(

...
default_to_known_in_advance=True,
feature_settings=feature_settings

)

50 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Modeling Data and Time Series Features

In time series projects, a new set of modeling features is created after setting the partitioning options. If a featurelist
is specified with the partitioning options, it will be used to select which features should be used to derived modeling
features; if a featurelist is not specified, the default featurelist will be used.

These features are automatically derived from those in the project’s dataset and are the features used for modeling - note
that the Project methods get_featurelists and get_modeling_featurelists will return different data in time
series projects. Modeling featurelists are the ones that can be used for modeling and will be accepted by the backend,
while regular featurelists will continue to exist but cannot be used. Modeling features are only accessible once the
target and partitioning options have been set. In projects that don’t use time series modeling, once the target has been
set, modeling and regular features and featurelists will behave the same.

Restoring Discarded Features

datarobot.models.restore_discarded_features.DiscardedFeaturesInfo can be used to get and restore
features that have been removed by the time series feature generation and reduction functionality.

project = Project(project_id)
discarded_feature_info = project.get_discarded_features()
restored_features_info = project.restore_discarded_features(discarded_features_info.
→˓features)

Making Predictions

Prediction datasets are uploaded as normal. However, when uploading a prediction dataset, a new parameter
forecast_point can be specified. The forecast point of a prediction dataset identifies the point in time relative
which predictions should be generated, and if one is not specified when uploading a dataset, the server will choose the
most recent possible forecast point. The forecast window specified when setting the partitioning options for the project
determines how far into the future from the forecast point predictions should be calculated.

To simplify the predictions process, starting in version v2.20 a forecast point or prediction start and end dates can
be specified when requesting predictions, instead of being specified at dataset upload. Upon uploading a dataset,
DataRobot will calculate the range of dates available for use as a forecast point or for batch predictions. To that end,
Predictions objects now also contain the following new fields:

• forecast_point: The default point relative to which predictions will be generated

• predictions_start_date: The start date for bulk historical predictions.

• predictions_end_date: The end date for bulk historical predictions.

Similar settings are provided as part of the batch prediction API and the real-time prediction API to make predictions
using deployed time series models.

datarobot.models.BatchPredictionJob.score

When setting up a time series project, input features could be identified as known-in-advance features. These features
are not used to generate lags, and are expected to be known for the rows in the forecast window at predict time (e.g.
“how much money will have been spent on marketing”, “is this a holiday”).

Enough rows of historical data must be provided to cover the span of the effective Feature Deriva-
tion Window (which may be longer than the project’s Feature Derivation Window depending on the dif-
ferencing settings chosen). The effective Feature Derivation Window of any model can be checked via
the effective_feature_derivation_window_start and effective_feature_derivation_window_end at-
tributes of a DatetimeModel.

2.2. User Guide 51

https://docs.datarobot.com/en/docs/predictions/api/dr-predapi.html#making-predictions-with-time-series

DataRobot Python API Documentation, Release 3.2.2

When uploading datasets to a time series project, the dataset might look something like the following, where “Time”
is the datetime partition column, “Target” is the target column, and “Temp.” is an input feature. If the dataset was
uploaded with a forecast point of “2017-01-08” and the effective feature derivation window start and end for the model
are -5 and -3 and the forecast window start and end were set to 1 and 3, then rows 1 through 3 are historical data, row 6
is the forecast point, and rows 7 though 9 are forecast rows that will have predictions when predictions are computed.

Row, Time, Target, Temp.
1, 2017-01-03, 16443, 72
2, 2017-01-04, 3013, 72
3, 2017-01-05, 1643, 68
4, 2017-01-06, ,
5, 2017-01-07, ,
6, 2017-01-08, ,
7, 2017-01-09, ,
8, 2017-01-10, ,
9, 2017-01-11, ,

On the other hand, if the project instead used “Holiday” as an a priori input feature, the uploaded dataset might look
like the following:

Row, Time, Target, Holiday
1, 2017-01-03, 16443, TRUE
2, 2017-01-04, 3013, FALSE
3, 2017-01-05, 1643, FALSE
4, 2017-01-06, , FALSE
5, 2017-01-07, , FALSE
6, 2017-01-08, , FALSE
7, 2017-01-09, , TRUE
8, 2017-01-10, , FALSE
9, 2017-01-11, , FALSE

Calendars

You can upload a calendar file containing a list of events relevant to your dataset. When provided, DataRobot
automatically derives and creates time series features based on the calendar events (e.g., time until the next event,
labeling the most recent event).

The calendar file:

• Should span the entire training data date range, as well as all future dates in which model will be forecasting.

• Must be in csv or xlsx format with a header row.

• Must have one date column which has values in the date-only format YYY-MM-DD (i.e., no hour, month, or
second).

• Can optionally include a second column that provides the event name or type.

• Can optionally include a series ID column which specifies which series an event is applicable to. This column
name must match the name of the column set as the series ID.

– Multiseries ID columns are used to add an ability to specify different sets of events for different series, e.g.
holidays for different regions.

– Values of the series ID may be absent for specific events. This means that the event is valid for all series in
project dataset (e.g. New Year’s Day is a holiday in all series in the example below).

52 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

– If a multiseries ID column is not provided, all listed events will be applicable to all series in the project
dataset.

• Cannot be updated in an active project. You must specify all future calendar events at project start. To update
the calendar file, you will have to train a new project.

An example of a valid calendar file:

Date, Name
2019-01-01, New Year's Day
2019-02-14, Valentine's Day
2019-04-01, April Fools
2019-05-05, Cinco de Mayo
2019-07-04, July 4th

An example of a valid multiseries calendar file:

Date, Name, Country
2019-01-01, New Year's Day,
2019-05-27, Memorial Day, USA
2019-07-04, July 4th, USA
2019-11-28, Thanksgiving, USA
2019-02-04, Constitution Day, Mexico
2019-03-18, Benito Juárez's birth, Mexico
2019-12-25, Christmas Day,

Once created, a calendar can be used with a time series project by specifying the calendar_id field in the datarobot.
DatetimePartitioningSpecification object for the project:

import datarobot as dr

create the project
project = dr.Project.create('input_data.csv')
create the calendar
calendar = dr.CalendarFile.create('calendar_file.csv')

specify the calendar_id in the partitioning specification
datetime_spec = dr.DatetimePartitioningSpecification(

use_time_series=True,
datetime_partition_column='date'
calendar_id=calendar.id

)

As of v3.0, can use ``Project.set_datetime_partitioning`` instead of passing the spec␣
→˓into ``Project.analyze_and_model`` via ``partitioning_method``.
The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
→˓ calendar_id=calendar.id)
Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

start the project, specifying the partitioning method (if ``Project.set_datetime_
→˓partitioning`` was used there is no need to pass ``partitioning_method``)
project.analyze_and_model(

target='project target',
(continues on next page)

2.2. User Guide 53

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

partitioning_method=datetime_spec
)

As of version v2.23 it is possible to ask DataRobot to generate a calendar file for you using CalendarFile.
create_calendar_from_country_code. This method allows you to provide a country code specifying which coun-
try’s holidays to use in generating the calendar, along with a start and end date indicating the bounds of the calendar.
Allowed country codes can be retrieved using CalendarFile.get_allowed_country_codes. See the following
code block for example usage:

import datarobot as dr
from datetime import datetime

create the project
project = dr.Project.create('input_data.csv')
retrieve the allowed country codes and use the first one
country_code = dr.CalendarFile.get_allowed_country_codes()[0]['code']
calendar = dr.CalendarFile.create_calendar_from_country_code(

country_code, datetime(2018, 1, 1), datetime(2018, 7, 4)
)
specify the calendar_id in the partitioning specification
datetime_spec = dr.DatetimePartitioningSpecification(

use_time_series=True,
datetime_partition_column='date'
calendar_id=calendar.id

)

As of v3.0, can use ``Project.set_datetime_partitioning`` instead of passing the spec␣
→˓into ``Project.analyze_and_model`` via ``partitioning_method``.
The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
→˓ calendar_id=calendar.id)
Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

start the project, specifying the partitioning method (if ``Project.set_datetime_
→˓partitioning`` was used there is no need to pass ``partitioning_method``)
project.analyze_and_model(

target='project target',
partitioning_method=datetime_spec

)

Datetime Trend Plots

As a version v2.25, it is possible to retrieve Datetime Trend Plots for time series models to estimate the accuracy of the
model. This includes Accuracy over Time and Forecast vs Actual for supervised projects, and Anomaly over Time for
unsupervised projects. You can retrieve respective plots using following methods:

• DatetimeModel.get_accuracy_over_time_plot

• DatetimeModel.get_forecast_vs_actual_plot

• DatetimeModel.get_anomaly_over_time_plot

54 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

By default, the plots would be automatically computed when accessed via retrieval methods. You can compute Datetime
Trend Plots separately using a common method DatetimeModel.compute_datetime_trend_plots.

In addition, you can retrieve the respective detailed metadata for each plot type:

• DatetimeModel.get_accuracy_over_time_plots_metadata

• DatetimeModel.get_forecast_vs_actual_plots_metadata

• DatetimeModel.get_anomaly_over_time_plots_metadata

And the preview plots:

• DatetimeModel.get_accuracy_over_time_plot_preview

• DatetimeModel.get_forecast_vs_actual_plot_preview

• DatetimeModel.get_anomaly_over_time_plot_preview

Prediction Intervals

For each model, prediction intervals estimate the range of values DataRobot expects actual values of the target to fall
within. They are similar to a confidence interval of a prediction, but are based on the residual errors measured during
the backtesting for the selected model.

Note that because calculation depends on the backtesting values, prediction intervals are not available for predictions on
models that have not had all backtests completed. To that end, note that creating a prediction with prediction intervals
through the API will automatically complete all backtests if they were not already completed. For start-end retrained
models, the parent model will be used for backtesting. Additionally, prediction intervals are not available when the
number of points per forecast distance is less than 10, due to insufficient data.

In a prediction request, users can specify a prediction interval’s size, which specifies the desired probability of actual
values falling within the interval range. Larger values are less precise, but more conservative. For example, speci-
fying a size of 80 will result in a lower bound of 10% and an upper bound of 90%. More generally, for a specific
prediction_intervals_size, the upper and lower bounds will be calculated as follows:

• prediction_interval_upper_bound = 50% + (prediction_intervals_size / 2)

• prediction_interval_lower_bound = 50% - (prediction_intervals_size / 2)

Prediction intervals can be calculated for a DatetimeModel using the DatetimeModel.
calculate_prediction_intervals method. Users can also retrieve which intervals have already been calculated
for the model using the DatetimeModel.get_calculated_prediction_intervals method.

To view prediction intervals data for a prediction, the prediction needs to have been created using the DatetimeModel.
request_predictions method and specifying include_prediction_intervals = True. The size for the pre-
diction interval can be specified with the prediction_intervals_size parameter for the same function, and will
default to 80 if left unspecified. Specifying either of these fields will result in prediction interval bounds being in-
cluded in the retrieved prediction data for that request (see the Predictions class for retrieval methods). Note that if
the specified interval size has not already been calculated, this request will automatically calculate the specified size.

Prediction intervals are also supported for time series model deployments, and should be specified in deployment set-
tings if desired. Use Deployment.get_prediction_intervals_settings to retrieve current prediction intervals
settings for a deployment, and Deployment.update_prediction_intervals_settings to update prediction in-
tervals settings for a deployment.

Prediction intervals are also supported for time series model export. See the optional prediction_intervals_size
parameter in Model.request_transferable_export for usage.

2.2. User Guide 55

DataRobot Python API Documentation, Release 3.2.2

Partial History Predictions

As of version v2.24 it is possible to ask DataRobot to allow to make predictions with incomplete historical data mul-
tiseries regression projects. To make predictions in regular project user has to provide enough data for the feature
derivation. By setting the datetime partitioning attribute allow_partial_history_time_series_predictions
to true (datarobot.DatetimePartitioningSpecification object), the project would be created that allow to
make such predictions. The number of models are significantly smaller compared to regular multiseries model, but
they are designed to make predictions on unseen series with reasonable accuracy.

External Baseline Predictions

As of version v2.26 it is possible to ask DataRobot to scale accuracy metric by external predictions. Users can upload
data into a Dataset (see Dataset documentation) and compare the external time series predictions with DataRobot
models’ accuracy performance. To use the external predictions dataset in the autopilot, the dataset must be validated first
(see Project.validate_external_time_series_baseline). Once the dataset is validated, it can be used with a
time series project by specifying external_time_series_baseline_dataset_id field in AdvancedOptions and
passes the advanced options to the project. See the following code block for example usage:

import datarobot as dr
from datarobot.helpers import AdvancedOptions
from datarobot.models import Dataset

create the project
project = dr.Project.create('input_data.csv')

prepare datetime partitioning for external baseline validation
datetime_spec = dr.DatetimePartitioningSpecification(

use_time_series=True,
datetime_partition_column='date',
multiseries_id_columns=['series_id'],

)
datetime_partitioning = dr.DatetimePartitioning.generate(

project_id=project.id,
spec=datetime_spec,
target='target',

)

create external baseline prediction dataset from local file
external_baseline_dataset = Dataset.create_from_file(file_path='external_predictions.csv
→˓')

validate the external baseline prediction dataset
validation_info = project.validate_external_time_series_baseline(

catalog_version_id=external_baseline_dataset.version_id,
target='target',
datetime_partitioning=datetime_partitioning,

)
print(

'External baseline predictions passes validation check:',
validation_info.is_external_baseline_dataset_valid

)

(continues on next page)

56 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

As of v3.0, can use ``Project.set_datetime_partitioning`` instead of passing the spec␣
→˓into ``Project.analyze_and_model`` via ``partitioning_method``.
The spec options can be passed individually:
project.set_datetime_partitioning(use_time_series=True, datetime_partition_column='date',
→˓ multiseries_id_columns=['series_id'])
Or the whole spec object can be passed:
project.set_datetime_partitioning(datetime_spec=datetime_spec)

As of v3.0, add the validated dataset version id into advanced options
project.set_options(

external_time_series_baseline_dataset_id=external_baseline_dataset.version_id
)

start the project, specifying the partitioning method (if ``Project.set_datetime_
→˓partitioning`` and ``Project.set_options`` were not used)
project.analyze_and_model(

target='target',
partitioning_method=datetime_spec
advanced_options=AdvancedOptions(external_time_series_baseline_dataset_id)

)

Time Series Data Prep

As of version v2.27 it is possible to prepare a dataset for time series modeling in the AI catalog using the API client.
Users can upload unprepped modeling data into a Dataset (see Dataset documentation) and the prep the data set for
time series modeling by aggregating data to a regular time step and filling gaps via a generated Spark SQL query
in the AI catalog. Once the dataset is uploaded, the time series data prep query generator can be created using
DataEngineQueryGenerator.create. As of version v3.1 convenience methods have been added to streamline the
process of applying time series data prep for predictions. See the following code block for example usage:

import datarobot as dr
from datarobot.models.data_engine_query_generator import (

QueryGeneratorDataset,
QueryGeneratorSettings,

)
from datetime import datetime

upload the dataset to the AI Catalog
dataset = dr.Dataset.create_from_file('input_data.csv')

create a time series data prep query generator
query_generator_dataset = QueryGeneratorDataset(

alias='input_data_csv',
dataset_id=dataset.id,
dataset_version_id=dataset.version_id,

)
query_generator_settings = QueryGeneratorSettings(

datetime_partition_column="date",
time_unit="DAY",
time_step=1,
default_numeric_aggregation_method="sum",

(continues on next page)

2.2. User Guide 57

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

default_categorical_aggregation_method="mostFrequent",
target="y",
multiseries_id_columns=["id"],
default_text_aggregation_method="concat",
start_from_series_min_datetime=True,
end_to_series_max_datetime=True,

)
query_generator = dr.DataEngineQueryGenerator.create(

generator_type='TimeSeries',
datasets = [query_generator_dataset],
generator_settings=query_generator_settings,

)

prep the training dataset
training_dataset = query_generator.create_dataset()

create a project
project = dr.Project.create_from_dataset(training_dataset.id, project_name='prepped_
→˓dataset')

set up datetime partitioning, target, and train model(s)
partitioning_spec = dr.DatetimePartitioningSpecification(

datetime_partition_column='date', use_time_series=True
)
project.analyze_and_model(target='y', mode='manual', partitioning_method=partitioning_
→˓spec)
blueprints = project.get_blueprints()
model_job = project.train_datetime(blueprints[0].id)
model = model_job.get_result_when_complete()

query generator can be retrieved from the project if necessary
query_generator = dr.DataEngineQueryGenerator.get(project.query_generator_id)

prep and upload a prediction dataset to the project
prediction_dataset = query_generator.prepare_prediction_dataset(

'prediction_data.csv', project.id
)

make predictions within the project
Either forecast point or predictions start/end dates must be specified
model.request_predictions(prediction_dataset.id, forecast_point=datetime(2023, 1, 1))

query generator can be retrieved from a deployed model via project if necessary
deployment = dr.Deployment.get(deployment_id)
project = dr.Project.get(deployment.model['project_id'])
query_generator = dr.DataEngineQueryGenerator.get(project.query_generator_id)

Deploy the model
prediction_servers = dr.PredictionServer.list()
deployment = dr.Deployment.create_from_learning_model(

model.id, 'prepped_deployment', default_prediction_server_id=prediction_servers[0].id
)

(continues on next page)

58 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Make batch predictions from batch prediction job, supports localFile or dataset for␣
→˓intake
and all types for output
timeseries_settings = {'type': 'forecast', 'forecast_point': datetime(2023, 1, 1)}
intake_settings = {'type': 'localFile', 'file': 'prediction_data.csv'}
output_settings = {'type': 'localFile', 'path': 'predictions_out.csv'}
batch_predictions_job = dr.BatchPredictionJob.apply_time_series_data_prep_and_score(

deployment, intake_settings, timeseries_settings, output_settings=output_settings
)

Visual AI Projects

With Visual AI, DataRobot allows you to use image data for modeling. You can create projects with one or multiple
image features and also mix them with other DataRobot-supported feature types. You can find more information about
Visual AI in the Platform documentation.

Create a Visual AI Project

DataRobot offers you different ways to prepare your dataset and to start a Visual AI project. The various ways to do
this are covered in detail in the documentation, Preparing the dataset.

For the examples given here the images are partitioned into named directories. In the following, images are partitioned
into named directories, which serve as labels for the project. For example, to predict on images of cat and dog breeds,
labels could be abyssinian, american_bulldog, etc.

/home/user/data/imagedataset
abyssinian

abyssinian01.jpg
abyssinian02.jpg
...

american_bulldog
american_bulldog01.jpg
american_bulldog02.jpg
...

You then compress the directory containing the named directories into a ZIP file, creating the dataset used for the
project.

from datarobot.models import Project, Dataset
dataset = Dataset.create_from_file(file_path='/home/user/data/imagedataset.zip')
project = Project.create_from_dataset(dataset.id, project_name='My Image Project')

2.2. User Guide 59

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/index.html
https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-model.html#prepare-the-dataset

DataRobot Python API Documentation, Release 3.2.2

Target

Since this example uses named directories the target name must be class, which will contain the name of each directory
in the ZIP file.

Other Parameters

Setting modeling parameters, such as partitioning method, queue mode, etc, functions in the same way as starting a
non-image project.

Start Modeling

Once you have set modeling parameters, use the following code snippet to specify parameters and start the modeling
process.

from datarobot import AUTOPILOT_MODE
project.analyze_and_model(target='class', mode=AUTOPILOT_MODE.QUICK)

You can also pass optional parameters to project.analyze_and_model to change aspects of the modeling process.
Some of those parameters include:

• worker_count – int, sets the number of workers used for modeling.

• partitioning_method – PartitioningMethod object.

For a full reference of available parameters, see Project.analyze_and_model.

You can use the mode parameter to set the Autopilot mode. AUTOPILOT_MODE.FULL_AUTO, is the default, triggers
modeling with no further actions necessary. Other accepted modes include AUTOPILOT_MODE.MANUAL for manual
mode (choose your own models to run rather than running the full Autopilot) and AUTOPILOT_MODE.QUICK to run on
a more limited set of models and get insights more quickly (“quick run”).

Interact with a Visual AI Project

The following code snippets may be used to access Visual AI images and insights.

List Sample Images

Sample images allow you to see a subset of images, chosen by DataRobot, in the dataset. The returned SampleImage
objects have an associated target_value that will allow you to categorize the images (abyssinian, american_bulldog,
etc). Until you set the target and EDA2 has finished, the target_value will be None.

import io
import PIL.Image

from datarobot.models.visualai import SampleImage

column_name = "image"
number_of_images_to_show = 5

for sample in SampleImage.list(project.id, column_name)[:number_of_images_to_show]:
(continues on next page)

60 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Display the image in the GUI
bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)
img.show()

The results would be images such as:

List Duplicate Images

Duplicate images, images with different names but are determined by DataRobot to be the same, may exist in a dataset.
If this happens, the code returns one of the images and the number of times it occurs in the dataset.

from datarobot.models.visualai import DuplicateImage

column_name = "image"

for duplicate in DuplicateImage.list(project.id, column_name):
(continues on next page)

2.2. User Guide 61

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

To show an image see the previous sample image example
print(f"Image id = {duplicate.image.id} has {duplicate.count} duplicates")

Activation Maps

Activation maps are overlaid on the images to show which image areas are driving model prediction decisions.

Detailed explanations are available in DataRobot Platform documentation, Model insights.

Compute Activation Maps

To begin, you must first compute activation maps. The following snippet is an example of starting the computation for
a Keras model in a Visual AI project. The compute method returns a URL that can be used to determine when the
computation completes.

from datarobot.models.visualai import ImageActivationMap

keras_model = project.get_models(search_params={'name': 'Keras'})[0]

status_url = ImageActivationMap.compute(project.id, keras_model.id)
print(status_url)

List Activation Maps

After activation maps are computed, you can download them from the DataRobot server. The following snippet is an
example of how to get the activation maps and how to plot them.

import PIL.Image
from datarobot.models.visualai import ImageActivationMap

column_name = "image"
max_activation_maps = 5
keras_model = project.get_models(search_params={'name': 'Keras'})[0]

for activation_map in ImageActivationMap.list(project.id, keras_model.id, column_name)[:
→˓max_activation_maps]:

bio = io.BytesIO(activation_map.overlay_image.image_bytes)
img = PIL.Image.open(bio)
img.show()

62 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-insights.html

DataRobot Python API Documentation, Release 3.2.2

Image Embeddings

Image embeddings allow you to get an impression on how similar two images look to a featurizer network. The em-
beddings project images from their high-dimensional feature space onto a 2D plane. The closer the images appear in
this plane, the more similar they look to the featurizer.

Detailed explanations are available in the DataRobot Platform documentation, Model insights.

Compute Image Embeddings

You must compute image embeddings before retrieving. The following snippet is an example of starting the compu-
tation for a Keras model in our Visual AI project. The compute method returns a URL that can be used to determine
when the computation is complete.

from datarobot.models.visualai import ImageEmbedding

keras_model = project.get_models(search_params={'name': 'Keras'})[0]

(continues on next page)

2.2. User Guide 63

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-insights.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

status_url = ImageEmbedding.compute(project.id, keras_model.id)
print(status_url)

List Image Embeddings

After image embeddings are computed, you can download them from the DataRobot server. The following snippet is
an example of how to get the embeddings for a model and plot them.

from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image

from datarobot.models.visualai import ImageEmbedding

column_name = "image"
keras_model = project.get_models(search_params={'name': 'Keras'})[0]
zoom = 0.15

fig, ax = plt.subplots(figsize=(15,10))
for image_embedding in ImageEmbedding.list(project.id, keras_model.id, column_name):

image_bytes = image_embedding.image.image_bytes
x_position = image_embedding.position_x
y_position = image_embedding.position_y
image = PIL.Image.open(io.BytesIO(image_bytes))
offset_image = OffsetImage(np.array(image), zoom=zoom)
annotation_box = AnnotationBbox(offset_image, (x_position, y_position), xycoords=

→˓'data', frameon=False)
ax.add_artist(annotation_box)
ax.update_datalim([(x_position, y_position)])

ax.autoscale()
ax.grid(True)
fig.show()

64 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Image Augmentation

Image Augmentation is a processing step in the DataRobot blueprint that creates new images for training by randomly
transforming existing images, thereby increasing the size of (i.e., “augmenting”) the training data.

Detailed explanations are available in the DataRobot Platform documentation, Creating augmented models.

Create Image Augmentation List

To create image augmentation samples, you need to provide an image augmentation list. This list holds all information
required to compute image augmentation samples. The following snippet shows how to create an image augmentation
list. It is then used to compute image augmentation samples.

from datarobot.models.visualai import ImageAugmentationList

blur_param = {"name": "maximum_filter_size", "currentValue": 10}
blur = {"name": "blur", "params": [blur_param]}
flip = {"name": "horizontal_flip", "params": []}

image_augmentation_list = ImageAugmentationList.create(
name="my blur and flip augmentation list",
project_id=project.id,
feature_name="image",
transformation_probability=0.5,
number_of_new_images=5,

(continues on next page)

2.2. User Guide 65

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/tti-augment/ttia-introduction.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

transformations=[blur, flip],
)

print(image_augmentation_list)

List Image Augmentation Lists

You can retrieve all available augmentation lists for a project by project_id.

from datarobot.models.visualai import ImageAugmentationList

image_augmentation_lists = ImageAugmentationList.list(
project_id=project.id

)
print(image_augmentation_lists)

Compute and Retrieve Image Augmentation Samples

You must compute image augmentation samples before retrieving. To compute image augmentation sample, you will
need an image augmentation list. This list holds all parameters and transformation information needed to compute
samples. You can either create a new one or retrieve an existing one.

The following snippet is an example of computing and retrieving image augmentation samples. It uses the previous
snippet that creates an image augmentation list, but instead uses it to compute and retrieve image augmentation samples
using the compute_samples method.

from datarobot.models.visualai import ImageAugmentationList, ImageAugmentationSample

image_augmentation_list = ImageAugmentationList.get('<image_augmentation_list_id>')

for sample in image_augmentation_list.compute_samples():
Display the image in popup widows
bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)
img.show()

List Image Augmentation Samples

If image augmentation samples were already computed instead of recomputing them we can retrieve the last sample
that was computed for image augmentation list from DataRobot server. The following snippet is an example of how to
get the image augmentation samples.

import io
import PIL.Image
from datarobot.models.visualai import ImageAugmentationList

image_augmentation_list = ImageAugmentationList.get('<image_augmentation_list_id>')

for sample in image_augmentation_list.retrieve_samples():
(continues on next page)

66 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Display the image in popup widows
bio = io.BytesIO(sample.image.image_bytes)
img = PIL.Image.open(bio)
img.show()

Configure Augmentations to Use During Training

In order to automatically augment a dataset during training the DataRobot server will look for an augmentation list
associated with the project that has the key initial_list set to True. An augmentation list like this can be created with
the following code snippet. If it is created for the project before autopilot is started. it will be used to automatically
augment the images in the training dataset.

from datarobot.models.visualai import ImageAugmentationList

blur_param = {"name": "maximum_filter_size", "currentValue": 10}
blur = {"name": "blur", "params": [blur_param]}
flip = {"name": "horizontal_flip", "params": []}
transforms_to_apply = ImageAugmentationList.create(name="blur and scale", project_
→˓id=project.id,

feature_name='image', transformation_probability=0.5, number_of_new_images=5,
transformations=[blur, flip], initial_list=True)

Determine Available Transformations for Augmentations

The Augmentation List in the example above supports horizontal flip and blur transformations, but DataRobot supports
several other transformations. To retrieve the list of supported transformations use the ImageAugmentationOptions
object as the example below shows.

from datarobot.models.visualai import ImageAugmentationOptions
options = ImageAugmentationOptions.get(project.id)

Converting images to base64-encoded strings for predictions

If your training dataset contained images, images in the prediction dataset need to be converted to a base64-encoded
strings so it can be fully contained in the prediction request (for example, in a CSV file or JSON). For more detail, see:
working with binary data

License

For the examples here we used the The Oxford-IIIT Pet Dataset licensed under Creative Commons Attribution-
ShareAlike 4.0 International License

2.2. User Guide 67

https://www.robots.ox.ac.uk/~vgg/data/pets/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

DataRobot Python API Documentation, Release 3.2.2

Unsupervised Projects (Anomaly Detection)

When the data is not labelled and the problem can be interpreted either as anomaly detection or time series anomaly
detection, projects in unsupervised mode become useful.

Creating Unsupervised Projects

In order to create an unsupervised project set unsupervised_mode to True when setting the target.

>>> import datarobot as dr
>>> project = Project.create('dataset.csv', project_name='unsupervised')
>>> project.analyze_and_model(unsupervised_mode=True)

Creating Time Series Unsupervised Projects

To create a time series unsupervised project pass unsupervised_mode=True to datetime partitioning creation and to
project aim. The forecast window will be automatically set to nowcasting, i.e. forecast distance zero (FW = 0, 0).

>>> import datarobot as dr
>>> project = Project.create('dataset.csv', project_name='unsupervised')
>>> spec = DatetimePartitioningSpecification('date',
... use_time_series=True, unsupervised_mode=True,
... feature_derivation_window_start=-4, feature_derivation_window_end=0)

this step is optional - preview the default partitioning which will be applied
>>> partitioning_preview = DatetimePartitioning.generate(project.id, spec)
>>> full_spec = partitioning_preview.to_specification()

As of v3.0, can use ``Project.set_datetime_partitioning`` and ``Project.list_datetime_
→˓partitioning_spec`` instead
>>> project.set_datetime_partitioning(datetime_partition_spec=spec)
>>> project.list_datetime_partitioning_spec()

If ``Project.set_datetime_partitioning`` was used there is no need to pass␣
→˓``partitioning_method`` in ``Project.analyze_and_model``
>>> project.analyze_and_model(unsupervised_mode=True, partitioning_method=full_spec)

Unsupervised Project Metrics

In unsupervised projects, metrics are not used for the model optimization. Instead, they are used for the purpose of
model ranking. There are two available unsupervised metrics – Synthetic AUC and synthetic LogLoss – both of which
are calculated on artificially-labelled validation samples.

68 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Estimating Accuracy of Unsupervised Anomaly Detection Datetime Partitioned Models

For datetime partitioned unsupervised model you can retrieve the Anomaly over Time plot. To do so
use DatetimeModel.get_anomaly_over_time_plot. You can also retrieve the detailed metadata using
DatetimeModel.get_anomaly_over_time_plots_metadata, and the preview plot using DatetimeModel.
get_anomaly_over_time_plot_preview.

Explaining Unsupervised Time Series Anomaly Detection Models Predictions

Within a timeseries unsupervised project for models supporting calculation of Shapley values, Anomaly Assessment
insight can be computed to explain anomalies.

Example 1: computation, retrieval and deletion of the anomaly assessment insight.

>>> import datarobot as dr
Initialize Anomaly Assessment for the backtest 0, training subset and series "series1"
>>> model = dr.DatetimeModel.get(project_id, model_id)
>>> anomaly_assessment_record = model.initialize_anomaly_assessment(0, "training",
→˓"series1")
Get available Anomaly Assessment for the project and model
>>> all_records = model.get_anomaly_assessment_records()
Get most recent anomaly assessment explanations
>>> all_records[0].get_latest_explanations()
Get anomaly assessment explanations in the range
>>> all_records[0].get_explanations(start_date="2020-01-01", points_count=500)
Get anomaly assessment predictions preview
>>> all_records[0].get_predictions_preview()
Delete record
>>> all_records[0].delete()

Example 2: Find explanations for the anomalous regions (regions with maximum anomaly score >=0.6) for the multi-
series project. Leave only explanations for the rows with anomaly score >= 0.5.

>>> def collect_explanations(model, backtest, source, series_ids):
... for series in series_ids:
... try:
... model.initialize_anomaly_assessment(backtest, source, series)
... except ClientError:
... # when insight was already computed
... pass
... records_for_series = model.get_anomaly_assessment_records(source=source,␣
→˓backtest=backtest, with_data_only=True, limit=0)
... result = {}
... for record in records_for_series:
... preview = record.get_predictions_preview()
... anomalous_regions = preview.find_anomalous_regions(max_prediction_threshold=0.6)
... if anomalous_regions:
... result[record.series_id] = record.get_explanations_data_in_regions(anomalous_
→˓regions, prediction_threshold=0.5)
... return result
>>> import datarobot as dr
>>> model = dr.DatetimeModel.get(project_id, model_id)
>>> collect_explanations(model, 0, "validation", series_ids)

2.2. User Guide 69

DataRobot Python API Documentation, Release 3.2.2

Assessing Unsupervised Anomaly Detection Models on External Test Set

In unsupervised projects, if there is some labelled data, it may be used to assess anomaly detection models by checking
computed classification metrics such as AUC and LogLoss, etc. and insights such as ROC and Lift. Such data is
uploaded as a prediction dataset with a specified actual value column name, and, if it is a time series project, a prediction
date range. The actual value column can contain only zeros and ones or True/False, and it should not have been seen
during training time.

Requesting External Scores and Insights (Time Series)

There are two ways to specify an actual value column and compute scores and insights:

1. Upload a prediction dataset, specifying predictions_start_date, predictions_end_date, and
actual_value_column, and request predictions on that dataset using a specific model.

>>> import datarobot as dr
Upload dataset
>>> project = dr.Project(project_id)
>>> dataset = project.upload_dataset(
... './data_to_predict.csv',
... predictions_start_date=datetime(2000, 1, 1),
... predictions_end_date=datetime(2015, 1, 1),
... actual_value_column='actuals'
...)
run prediction job which also will calculate requested scores and insights.
>>> predict_job = model.request_predictions(dataset.id)
prediction output will have column with actuals
>>> result = pred_job.get_result_when_complete()

2. Upload a prediction dataset without specifying any options, and request predictions for a specific model with
predictions_start_date, predictions_end_date, and actual_value_column specified. Note, these settings
cannot be changed for the dataset after making predictions.

>>> import datarobot as dr
Upload dataset
>>> project = dr.Project(project_id)
>>> dataset = project.upload_dataset('./data_to_predict.csv')
Check which columns are candidates for actual value columns
>>> dataset.detected_actual_value_columns
[{'missing_count': 25, 'name': 'label_column'}]

run prediction job which also will calculate requested scores and insights.
>>> predict_job = model.request_predictions(
... dataset.id,
... predictions_start_date=datetime(2000, 1, 1),
... predictions_end_date=datetime(2015, 1, 1),
... actual_value_column='label_column'
...)
>>> result = pred_job.get_result_when_complete()

70 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Requesting External Scores and Insights for AutoML models

To compute scores and insights on an external dataset for unsupervised AutoML models (Non Time series)

Upload a prediction dataset that contains label column(s), request compute external test on one of
PredictionDataset.detected_actual_value_columns

import datarobot as dr
Upload dataset
project = dr.Project(project_id)
dataset = project.upload_dataset('./test_set.csv')
dataset.detected_actual_value_columns
>>>['label_column_1', 'label_column_2']
request external test to compute metric scores and insights on dataset
external_test_job = model.request_external_test(dataset.id, actual_value_column='label_
→˓column_1')
once job is complete, scores and insights are ready for retrieving
external_test_job.wait_for_completion()

Retrieving External Scores and Insights

Upon completion of prediction, external scores and insights can be retrieved to assess model performance. For unsu-
pervised projects Lift Chart and ROC Curve are computed. If the dataset is too small insights will not be computed. If
the actual value column contained only one class, the ROC Curve will not be computed. Information about the dataset
can be retrieved using PredictionDataset.get.

>>> import datarobot as dr
Check which columns are candidates for actual value columns
>>> scores_list = ExternalScores.list(project_id)
>>> scores = ExternalScores.get(project_id, dataset_id=dataset_id, model_id=model_id)
>>> lift_list = ExternalLiftChart.list(project_id, model_id)
>>> roc = ExternalRocCurve.get(project_id, model, dataset_id)
check dataset warnings, need to be called after predictions are computed.
>>> dataset = PredictionDataset.get(project_id, dataset_id)
>>> dataset.data_quality_warnings
{'single_class_actual_value_column': True,
'insufficient_rows_for_evaluating_models': False,
'has_kia_missing_values_in_forecast_window': False}

Unsupervised Projects (Clustering)

Use clustering when data is not labelled and the problem can be interpreted as grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar to each other than to those in other groups (clusters).
It is a common task in data exploration when finding groups and similarities is needed.

2.2. User Guide 71

DataRobot Python API Documentation, Release 3.2.2

Creating Unsupervised Projects

To create an unsupervised project, set unsupervised_mode to True when setting the target. To specify cluster-
ing, set unsupervised_type to CLUSTERING. When setting the modeling mode is required, clustering supports
either``AUTOPILOT_MODE.COMPREHENSIVE`` for DataRobot-run Autopilot or AUTOPILOT_MODE.MANUAL for
user control of which models/parameters to use.

Example:

from datarobot import Project
from datarobot.enums import UnsupervisedTypeEnum
from datarobot.enums import AUTOPILOT_MODE

project = Project.create("dataset.csv", project_name="unsupervised clustering")
project.analyze_and_model(

unsupervised_mode=True,
mode=AUTOPILOT_MODE.COMPREHENSIVE,
unsupervised_type=UnsupervisedTypeEnum.CLUSTERING,

)

You can optionally specify list of explicit cluster numbers. To do this, pass a list of integer values to optional
autopilot_cluster_list parameter using the analyze_and_model() method.

project.analyze_and_model(
unsupervised_mode=True,
mode=AUTOPILOT_MODE.COMPREHENSIVE,
unsupervised_type=UnsupervisedTypeEnum.CLUSTERING,
autopilot_cluster_list=[7, 9, 11, 15, 19],

)

You can also do both in one step using the Project.start() method. This method by default will use
AUTOPILOT_MODE.COMPREHENSIVE mode.

from datarobot import Project
from datarobot.enums import UnsupervisedTypeEnum

project = Project.start(
"dataset.csv",
unsupervised_mode=True,
project_name="unsupervised clustering project",
unsupervised_type=UnsupervisedTypeEnum.CLUSTERING,

)

Unsupervised Clustering Project Metric

Unsupervised clustering projects use the Silhouette Score metric for model ranking (instead of using it for model
optimization). It measures the average similarity of objects within a cluster and their distance to the other objects in
the other clusters.

72 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieving information about Clusters

In a trained model, you can retrieve information about clusters in along with standard model information. To do this,
when training completes, retrieve a model and view basic clustering information:

• n_clusters : number of clusters for model

• is_n_clusters_dynamically_determined : how clustering model picks number of clusters

Here is a code snippet to retrieve information about the number of clusters for model:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
print("{} clusters found".format(model.n_clusters))

You can retrieve more details about clusters and their data using cluster insights.

Working with Clusters Insights

You can compute insights to gain deep insights into clusters and their characteristics. This process will perform calcula-
tions and return detailed information about each feature and its importance, as well as a detailed per-cluster breakdown.

To compute and retrieve cluster insights, use the ClusteringModel and its compute_insights method. The method
starts the cluster insights compute job, waits for its completion for the number of seconds specified in the optional
parameter max_wait (default: 600), and returns results when insights are ready.

If clusters are already computed, access them using the insights property of the ClusteringModel method.

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
insights = model.compute_insights()

This call, with the specified wait_time, will run and wait for specified time:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
insights = model.compute_insights(max_wait=60)

If computation fails to finish before max_wait expires, the method will raise an AsyncTimeoutError. You can retrieve
cluster insights after jobs computation finishes.

To retrieve cluster insights already computed:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)
for insight in model.insights:

print(insight)

2.2. User Guide 73

DataRobot Python API Documentation, Release 3.2.2

Working with Clusters

By default, DataRobot names clusters “Cluster 1”, “Cluster 2”, . . . , “Cluster N” . You can retrieve these names and
alter them according to preference. When retrieving clusters before computing insights, clusters will contain only
names. After insight computation completes, each cluster will also hold information about the percentage of data that
is represented by the Cluster.

For example:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)

helper function
def print_summary(name, percent):

if not percent:
percent = "?"

print("'{}' holds {} % of data".format(name, percent))

for cluster in model.clusters:
print_summary(cluster.name, cluster.percent)

model.compute_insights()
for cluster in model.clusters:

print_summary(cluster.name, cluster.percent)

For a model with three clusters, the code snippet will output:

'Cluster 1' holds ? % of data
'Cluster 2' holds ? % of data
'Cluster 3' holds ? % of data
-- Cluster insights computation finished --
'Cluster 1' holds 27.1704180064 % of data
'Cluster 2' holds 36.9131832797 % of data
'Cluster 3' holds 35.9163987138 % of data

Use the following methods of ClusteringModel class to alter cluster names:
• update_cluster_names - changes multiple cluster names using mapping in dictionary

• update_cluster_name - changes one cluster name

After update, each method will return a list of clusters with changed names.

For example:

from datarobot import ClusteringModel
model = ClusteringModel.get(project_id, model_id)

update multiple
cluster_name_mappings = [

("Cluster 1", "AAA"),
("Cluster 2", "BBB"),
("Cluster 3", "CCC")

]
clusters = model.update_cluster_names(cluster_name_mappings)

(continues on next page)

74 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

update single
clusters = model.update_cluster_name("CCC", "DDD")

Clustering Classes Reference

ClusteringModel

class datarobot.models.model.ClusteringModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None,
sample_pct=None, training_row_count=None,
training_duration=None, training_start_date=None,
training_end_date=None, model_type=None,
model_category=None, is_frozen=None,
is_n_clusters_dynamically_determined=None,
blueprint_id=None, metrics=None, project=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
n_clusters=None, has_empty_clusters=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None,
prediction_threshold_read_only=None,
model_number=None, parent_model_id=None,
use_project_settings=None,
supports_composable_ml=None)

ClusteringModel extends Model class. It provides provides properties and methods specific to clustering projects.

compute_insights(max_wait=600)
Compute and retrieve cluster insights for model. This method awaits completion of job computing clus-
ter insights and returns results after it is finished. If computation takes longer than specified max_wait
exception will be raised.

Parameters
project_id: str Project to start creation in.

model_id: str Project’s model to start creation in.

max_wait: int Maximum number of seconds to wait before giving up

Returns
List of ClusterInsight

Raises
ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the cluster insights computation has failed or was can-
celled.

AsyncTimeoutError If the cluster insights computation did not resolve in time

Return type List[ClusterInsight]

2.2. User Guide 75

DataRobot Python API Documentation, Release 3.2.2

property insights: List[datarobot.models.cluster_insight.ClusterInsight]
Return actual list of cluster insights if already computed.

Returns
List of ClusterInsight

Return type List[ClusterInsight]

property clusters: List[datarobot.models.cluster.Cluster]
Return actual list of Clusters.

Returns
List of Cluster

Return type List[Cluster]

update_cluster_names(cluster_name_mappings)
Change many cluster names at once based on list of name mappings.

Parameters
cluster_name_mappings: List of tuples Cluster names mapping consisting of current clus-

ter name and old cluster name. Example:

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns
List of Cluster

Raises
datarobot.errors.ClientError Server rejected update of cluster names. Possible reasons

include: incorrect format of mapping, mapping introduces duplicates.

Return type List[Cluster]

update_cluster_name(current_name, new_name)
Change cluster name from current_name to new_name.

Parameters
current_name: str Current cluster name.

new_name: str New cluster name.

Returns
List of Cluster

Raises
datarobot.errors.ClientError Server rejected update of cluster names.

Return type List[Cluster]

76 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Cluster

class datarobot.models.model.Cluster(**kwargs)
Representation of a single cluster.

Attributes
name: str Current cluster name

percent: float Percent of data contained in the cluster. This value is reported after cluster in-
sights are computed for the model.

classmethod list(project_id, model_id)
Retrieve a list of clusters in the model.

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

Returns
List of clusters

Return type List[Cluster]

classmethod update_multiple_names(project_id, model_id, cluster_name_mappings)
Update many clusters at once based on list of name mappings.

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

cluster_name_mappings: List of tuples Cluster name mappings, consisting of current and
previous names for each cluster. Example:

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns
List of clusters

Raises
datarobot.errors.ClientError Server rejected update of cluster names.

ValueError Invalid cluster name mapping provided.

Return type List[Cluster]

classmethod update_name(project_id, model_id, current_name, new_name)
Change cluster name from current_name to new_name

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

2.2. User Guide 77

DataRobot Python API Documentation, Release 3.2.2

current_name: str Current cluster name

new_name: str New cluster name

Returns
List of Cluster

Return type List[Cluster]

ClusterInsight

class datarobot.models.model.ClusterInsight(**kwargs)
Holds data on all insights related to feature as well as breakdown per cluster.

Parameters
feature_name: str Name of a feature from the dataset.

feature_type: str Type of feature.

insights [List of classes (ClusterInsight)] List provides information regarding the importance
of a specific feature in relation to each cluster. Results help understand how the model is
grouping data and what each cluster represents.

feature_impact: float Impact of a feature ranging from 0 to 1.

classmethod compute(project_id, model_id, max_wait=600)
Starts creation of cluster insights for the model and if successful, returns computed ClusterInsights. This
method allows calculation to continue for a specified time and if not complete, cancels the request.

Parameters
project_id: str ID of the project to begin creation of cluster insights for.

model_id: str ID of the project model to begin creation of cluster insights for.

max_wait: int Maximum number of seconds to wait canceling the request.

Returns
List[ClusterInsight]

Raises
ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError Indicates whether any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError Indicates whether the cluster insights computation failed
or was cancelled.

AsyncTimeoutError Indicates whether the cluster insights computation did not resolve
within the specified time limit (max_wait).

Return type List[ClusterInsight]

78 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Segmented Modeling Projects

Many time series multiseries projects introduce complex forecasting use cases that require using different models for
subsets of series (i.e., sales of groceries and clothing can be very different). Within the segmented modeling framework,
DataRobot runs multiple time series projects (one per segment / group of series), selects the best models for each
segment, and then combines those models to make predictions.

Segment

A segment is a group of series in a multiseries project. For example, given store and country columns in dataset,
you can use the former as the series identifier and the latter as the segment identifier. For the best results, group series
with similar patterns into segments (instead of random selection).

Segmentation Task

A segmentation task is an entity that defines how input dataset is partitioned. Currently only user-defined segmentation
is supported. That is, the dataset must have a separate column that is used to identify segment (and the user must select
it). All records within a series must have the same segment identifier.

Combined Model

A combined model in a segmented modeling project can be thought of as a meta-model made of references to the best
model within each segment. While being quite different from a standard DataRobot model in its creation, its use is
very much the same after the model is complete (for example, deploying or making predictions).

The following examples illustrate how to set up, run, and manage a segmented modeling project using the Python public
API client. For details please refer to Segmented Modeling API Reference.

Starting a Segmentation Project with a User Defined Segment ID

Time series modeling must be enabled for your account to run segmented modeling projects.

Use the standard method to create a DataRobot project:

from datarobot import DatetimePartitioningSpecification
from datarobot import enums
from datarobot import Project
from datarobot import SegmentationTask

project_name = "Segmentation Demo with Segmentation ID"
project_dataset = "multiseries_segmentation.csv"
project = Project.create(project_dataset, project_name=project_name)

datetime_partition_column = "timestamp"
multiseries_id_column = "series_id"
user_defined_segment_id_column = "segment_id"
target = "target"

Create a simple datetime specification for a time series project:

2.2. User Guide 79

DataRobot Python API Documentation, Release 3.2.2

spec = DatetimePartitioningSpecification(
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],

)

Create a segmentation task for the project:

segmentation_task_results = SegmentationTask.create(
project_id=project.id,
target=target,
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],
user_defined_segment_id_columns=[user_defined_segment_id_column],

)
segmentation_task = segmentation_task_results["completedJobs"][0]

Start a segmented project by passing the segmentation_task_id argument:

project.analyze_and_model(
target=target,
partitioning_method=spec,
mode=enums.AUTOPILOT_MODE.QUICK,
worker_count=-1,
segmentation_task_id=segmentation_task.id,

)

Working with Combined Models

Retrieve Combined Models:

from datarobot import Project, CombinedModel
project_id = "60ff165dde5f3ceacda0f2d6"

Get an existing segmentation project
project = Project.get(segmented_project_id)

Retrieve list of all combined models in the project
combined_models = project.get_combined_models()

Or just an active (current) combined model
current_combined_model = project.get_active_combined_model()

Get information about segments in the Combined Model:

segments_info = current_combined_model.get_segments_info()

Alternatively this information can be retrieved as a Pandas DataFrame
segments_df = current_combined_model.get_segments_as_dataframe()

(continues on next page)

80 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

Or even in CSV format
current_combined_model.get_segments_as_csv("combined_model_segments.csv")

Ensure Autopilot has completed for all segments:

segments_info = current_combined_model.get_segments_info()
assert all(segment.autopilot_done for segment in segments_info)

Optionally, view a list of all models associated with individual segments:

segments_and_child_models = project.get_segments_models(current_combined_model.id)

Set a new champion for a segment in the Combined Model, specifying the project_id of the segmented project and the
model_id from that project:

segment_project_id = "60ff165dde5f3ceacdaabcde"
new_champion_id = "60ff165dde5f3ceacdaa12f7"

CombinedModel.set_segment_champion(project_id=segment_project_id, model_id=new_champion_
→˓id)

If active Combined Model has already been deployed - changing champions is not allowed. In this case, create a copy
of Combined Model, make it active, and set champion for it (deployed model remains unchanged):

new_combined_model = CombinedModel.set_segment_champion(project_id=segment_project_id,␣
→˓model_id=new_champion_id, clone=True)

Run predictions on the Combined Model:

prediction_dataset = "multiseries_predictions.csv"

Upload dataset
dataset = project.upload_dataset(

source=prediction_dataset,
)

Request predictions
predictions_job = current_combined_model.request_predictions(

dataset_id=dataset.id,
)
predictions_job.wait_for_completion()
predictions = predictions.get_result()

Composable ML

Composable ML consists of two major components: the DataRobot Blueprint Workshop and custom tasks, detailed
below.

Custom tasks provide users the ability to train models with arbitrary code in an environment defined by the user.

For details on using environments, see: Manage Execution Environments.

2.2. User Guide 81

https://blueprint-workshop.datarobot.com/

DataRobot Python API Documentation, Release 3.2.2

Manage Custom Tasks

Before you can upload code for a custom task, you need to create the entity that holds all the metadata.

import datarobot as dr
from datarobot.enums import CUSTOM_TASK_TARGET_TYPE

transform = dr.CustomTask.create(
name="a convenient display name", # required
target_type=CUSTOM_TASK_TARGET_TYPE.TRANSFORM, # required
language="python",
description="a longer description of the task"

)

binary = dr.CustomTask.create(
name="this or that",
target_type=CUSTOM_TASK_TARGET_TYPE.BINARY,

)

A task, by itself is an empty metadata container. Before using your tasks, you need create a CustomTaskVersion asso-
ciated with it. A task that is ready for use will have a latest_version field populated with this task.

binary.latest_version
>>> None

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",

)
custom_task_folder = "datarobot-user-tasks/task_templates/python3_pytorch"
task_version = dr.CustomTaskVersion.create_clean(

custom_task_id=binary.id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

)

binary.refresh() # In order to see the change, you need to GET it from DataRobot
binary.latest_version
>>> CustomTaskVersion('v1.0')

If you create a new version, that will be returned as the latest_version. You can download the latest version as a zip file.

binary.latest_version
>>> CustomTaskVersion('v1.0')

custom_task_folder = "/home/my-user-name/tasks/my-updated-task/"
task_version = dr.CustomTaskVersion.create_clean(

custom_task_id=binary.id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

)

binary.refresh()
(continues on next page)

82 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

binary.latest_version
>>> CustomTaskVersion('v2.0')

binary.download_latest_version("/home/my-user-name/downloads/my-task-files.zip")

You can get, list, copy, exactly as you would expect. copy makes a complete copy of the task: new copies of the
metadata, new copies of the versions, new copies of uploaded files for the new versions.

all_tasks = CustomTask.list()
assert {el.id for el in all_tasks} == {binary.id, transform.id}

new_binary = CustomTask.copy(binary.id)
assert new_binary.latest_version.id != binary.latest_version.id

original_binary = CustomTask.get(binary.id)

assert len(CustomTask.list()) == 3

You can update the metadata of a task. When you do this, the object is also updated to the latest data.

assert binary.description == new_binary.description
binary.update(description="totally new description")

assert binary.description != new_binary.description
assert original_binary.description != binary.description # hasn't refreshed from the␣
→˓server yet

original_binary.refresh()
assert original_binary.description == binary.description

And finally, you can delete only if the task is not in use by any of the following:

• Trained models

• Deployments

• Blueprints in the AI catalog

Once you have deleted the objects that use the task, you will be able to delete the task itself.

Manage Custom Task Versions

Code for Custom Tasks can be uploaded by creating a Custom Task Version. When creating a Custom Task Version,
the version must be associated with a base execution environment. If the base environment supports additional task
dependencies (R or Python environments) and the Custom Task Version contains a valid requirements.txt file, the task
version will run in an environment based on the base environment with the additional dependencies installed.

2.2. User Guide 83

DataRobot Python API Documentation, Release 3.2.2

Create Custom Task Version

Upload actual custom task content by creating a clean Custom Task Version:

import os

custom_task_id = binary.id
custom_task_folder = "datarobot-user-tasks/task_templates/python3_pytorch"

add files from the folder to the custom task
task_version = dr.CustomTaskVersion.create_clean(

custom_task_id=custom_task_id,
base_environment_id=execution_environment.id,
folder_path=custom_task_folder,

)

To create a new Custom Task Version from a previous one, with just some files added or removed, do the following:

import os
import datarobot as dr

new_files_folder = "datarobot-user-tasks/task_templates/my_files_to_add_to_pytorch_task"

file_to_delete = task_version.items[0].id

task_version_2 = dr.CustomTaskVersion.create_from_previous(
custom_task_id=custom_task_id,
base_environment_id=execution_environment.id,
folder_path=new_files_folder,

)

Please refer to CustomTaskFileItem for description of custom task file properties.

List Custom Task Versions

Use the following command to list Custom Task Versions available to the user:

import datarobot as dr

dr.CustomTaskVersion.list(custom_task_id)

>>> [CustomTaskVersion('v2.0'), CustomTaskVersion('v1.0')]

84 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieve Custom Task Version

To retrieve a specific Custom Task Version, run:

import datarobot as dr

dr.CustomTaskVersion.get(custom_task_id, custom_task_version_id='5ebe96b84024035cc6a6560b
→˓')

>>> CustomTaskVersion('v2.0')

Update Custom Task Version

To update Custom Task Version description execute the following:

import datarobot as dr

custom_task_version = dr.CustomTaskVersion.get(
custom_task_id,
custom_task_version_id='5ebe96b84024035cc6a6560b',

)

custom_task_version.update(description='new description')

custom_task_version.description
>>> 'new description'

Download Custom Task Version

Download content of the Custom Task Version as a ZIP archive:

import datarobot as dr

path_to_download = '/home/user/Documents/myTask.zip'

custom_task_version = dr.CustomTaskVersion.get(
custom_task_id,
custom_task_version_id='5ebe96b84024035cc6a6560b',

)

custom_task_version.download(path_to_download)

2.2. User Guide 85

DataRobot Python API Documentation, Release 3.2.2

Preparing a Custom Task Version for Use

If your custom task version has dependencies, a dependency build must be completed before the task can be used. The
dependency build installs your task’s dependencies into the base environment associated with the task version.

see: Preparing a Custom Model Version for Use

Monotonic Constraints

Training with monotonic constraints allows users to force models to learn monotonic relationships with respect to some
features and the target. This helps users create accurate models that comply with regulations (e.g. insurance, banking).
Currently, only certain blueprints (e.g. xgboost) support this feature, and it is only supported for regression and binary
classification projects. Typically working with monotonic constraints follows the following two workflows:

Workflow one - Running a project with default monotonic constraints

• set the target and specify default constraint lists for the project

• when running autopilot or manually training models without overriding constraint settings, all blueprints that
support monotonic constraints will use the specified default constraint featurelists

Workflow two - Running a model with specific monotonic constraints

• create featurelists for monotonic constraints

• train a blueprint that supports monotonic constraints while specifying monotonic constraint featurelists

• the specified constraints will be used, regardless of the defaults on the blueprint

Creating featurelists

When specifying monotonic constraints, users must pass a reference to a featurelist containing only the features to
be constrained, one for features that should monotonically increase with the target and another for those that should
monotonically decrease with the target.

import datarobot as dr
project = dr.Project.get(project_id)
features_mono_up = ['feature_0', 'feature_1'] # features that have monotonically␣
→˓increasing relationship with target
features_mono_down = ['feature_2', 'feature_3'] # features that have monotonically␣
→˓decreasing relationship with target
flist_mono_up = project.create_featurelist(name='mono_up',

features=features_mono_up)
flist_mono_down = project.create_featurelist(name='mono_down',

features=features_mono_down)

86 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Specify default monotonic constraints for a project

Users can specify default monotonic constraints for the project, to ensure that autopilot models use the desired settings,
and optionally to ensure that only blueprints supporting monotonic constraints appear in the project. Regardless of
the defaults specified via advanced options selection, the user can override them when manually training a particular
model.

import datarobot as dr
from datarobot.enums import AUTOPILOT_MODE
project = dr.Project.get(project_id)
As of v3.0, ``Project.set_options`` may be used as an alternative to passing `advanced_
→˓options`` into ``Project.analyze_and_model``.
project.set_options(

monotonic_increasing_featurelist_id=flist_mono_up.id,
monotonic_decreasing_featurelist_id=flist_mono_down.id,
only_include_monotonic_blueprints=True

)
project.analyze_and_model(target='target', mode=AUTOPILOT_MODE.FULL_AUTO)

If Project.set_options is not used, alternatively, an advanced options instance may be passed directly to
project.analyze_and_model:

project.analyze_and_model(
target='target',
mode=AUTOPILOT_MODE.FULL_AUTO,
advanced_options=AdvancedOptions(monotonic_increasing_featurelist_id=flist_mono_up.

→˓id, monotonic_decreasing_featurelist_id=flist_mono_down.id, only_include_monotonic_
→˓blueprints=True)
)

Retrieve models and blueprints using monotonic constraints

When retrieving models, users can inspect to see which supports monotonic constraints, and which actually enforces
them. Some models will not support monotonic constraints at all, and some may support constraints but not have any
constrained features specified.

import datarobot as dr
project = dr.Project.get(project_id)
models = project.get_models()
retrieve models that support monotonic constraints
models_support_mono = [model for model in models if model.supports_monotonic_constraints]
retrieve models that support and enforce monotonic constraints
models_enforce_mono = [model for model in models

if (model.monotonic_increasing_featurelist_id or
model.monotonic_decreasing_featurelist_id)]

When retrieving blueprints, users can check if they support monotonic constraints and see what default constraint lists
are associated with them. The monotonic featurelist ids associated with a blueprint will be used every time it is trained,
unless the user specifically overrides them at model submission time.

import datarobot as dr
project = dr.Project.get(project_id)

(continues on next page)

2.2. User Guide 87

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

blueprints = project.get_blueprints()
retrieve blueprints that support monotonic constraints
blueprints_support_mono = [blueprint for blueprint in blueprints if blueprint.supports_
→˓monotonic_constraints]
retrieve blueprints that support and enforce monotonic constraints
blueprints_enforce_mono = [blueprint for blueprint in blueprints

if (blueprint.monotonic_increasing_featurelist_id or
blueprint.monotonic_decreasing_featurelist_id)]

Train a model with specific monotonic constraints

Even after specifying default settings for the project, users can override them to train a new model with different
constraints, if desired.

import datarobot as dr
features_mono_up = ['feature_2', 'feature_3'] # features that have monotonically␣
→˓increasing relationship with target
features_mono_down = ['feature_0', 'feature_1'] # features that have monotonically␣
→˓decreasing relationship with target
project = dr.Project.get(project_id)
flist_mono_up = project.create_featurelist(name='mono_up',

features=features_mono_up)
flist_mono_down = project.create_featurelist(name='mono_down',

features=features_mono_down)
model_job_id = project.train(

blueprint,
sample_pct=55,
featurelist_id=featurelist.id,
monotonic_increasing_featurelist_id=flist_mono_up.id,
monotonic_decreasing_featurelist_id=flist_mono_down.id

)

Working with binary data

Preparing data for training

Working with binary files using the DataRobot API requires prior dataset preparation in one of the supported formats.
See “Prepare the dataset” for more detail. When the dataset is ready, you can start a project following one of the methods
described in working with Datasets and Projects.

88 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/modeling/special-workflows/visual-ai/vai-model.html#prepare-the-dataset

DataRobot Python API Documentation, Release 3.2.2

Preparing data for predictions

For project creation and a lot of the prediction options, DataRobot allows you to upload ZIP archives with binary files
(e.g. images files). Whenever possible it is recommended to use this option. However, in a few cases the API routes
only allow you to upload your dataset in the JSON or CSV format. In these cases, you can add the binary files as base64
strings to your dataset.

Processing images

Installation

To enable support for processing images, install the datarobot library with the images option:

pip install datarobot[images]

This will install all needed dependencies for image processing.

Processing images

When working with image files, helper functions may first transform your images before encoding their binary data as
base64 strings.

Specifically, helper functions will perform these steps:
• Retrieve binary data from the file in the specified location (local path or URL).

• Resize images to the image size used by DataRobot and save them in a different format

• Convert binary data to base64-encoded strings.

Working with images locally and located on external servers differs only in the steps related to binary file retrieval. The
following steps for transformation and conversion to base64-encoded strings are the same.

This examples uses data stored in a folder structure:

/home/user/data/predictions
images
animal01.jpg
animal02.jpg
animal03.png
data.csv

As an input for processing, DataRobot needs a collection of image locations. Helper functions will process the images
and return base64-encoded strings in the same order. The first example uses the contents of data.csv as an input. This
file holds data needed for model predictions and also the image storage locations (in the “image_path” column).

Contents of data.csv:

weight_in_grams,age_in_months,image_path
5000,34,/home/user/data/predictions/images/animal01.jpg
4300,56,/home/user/data/predictions/images/animal02.jpg
4200,22,/home/user/data/predictions/images/animal03.png

This code snippet will read each image from the “image_path” column and store the base64-string with image data in
the “image_base64” column.

2.2. User Guide 89

DataRobot Python API Documentation, Release 3.2.2

import os
import pandas as pd
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

dataset_dir = '/home/user/data/predictions'
file_in = os.path.join(dataset_dir, 'data.csv')
file_out = os.path.join(dataset_dir, 'out.csv')

df = pd.read_csv(file_in)
df['image_base64'] = get_encoded_image_contents_from_paths(df['image_path'])
df.to_csv(file_out, index=False)

The same helper function will work with other iterables:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images'
images_absolute_paths = [

os.path.join(images_dir, file) for file in ['animal01.jpg', 'animal02.jpg',
→˓'animal03.png']
]

images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths)

There is also one helper function to work with remote data. This function retrieves binary content from specified URLs,
transforms the images, and returns base64-encoded strings (in the the same way as it does for images loaded from local
paths).

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_urls

image_urls = [
'https://<YOUR_SERVER_ADDRESS>/animal01.jpg',
'https://<YOUR_SERVER_ADDRESS>/animal02.jpg',
'https://<YOUR_SERVER_ADDRESS>/animal03.png'

]

images_base64 = get_encoded_image_contents_from_urls(image_urls)

Examples of helper functions up to this points have used default settings. If needed, the following functions allow
for further customization by passing explicit parameters related to error handling, image transformations, and request
header customization.

90 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Custom image transformations

By default helper functions will apply transformations, which have proven good results. The default values align with
the preprocessing used for images uploaded in ZIP archives for training. Therefore, using default values should be
the first choice when preparing datasets with images for predictions. However, you can also specify custom image
transformation settings to override default transformations before converting data into base64 strings. To override the
default behavior, create an instance of the ImageOptions class and pass it as an additional parameter to the helper
function.

Examples:

import os
from datarobot.helpers.image_utils import ImageOptions
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images'
images_absolute_paths = [

os.path.join(images_dir, file) for file in ['animal01.jpg', 'animal02.jpg',
→˓'animal03.png']
]

Override the default behavior for image quality and subsampling, but the images
will still be resized because that's the default behavior. Note: the `keep_quality`
parameter for JPEG files by default preserves the quality of the original images,
so this behavior must be disabled to manually override the quality setting with an
explicit value.
image_options = ImageOptions(keep_quality=False, image_quality=80, image_subsampling=0)
images_base64 = get_encoded_image_contents_from_paths(

paths=images_absolute_paths, image_options=image_options
)

overwrite default behavior for image resizing, this will keep image aspect
ratio and will resize all images using specified size: width=300 and height=300.
Note: if image had different aspect ratio originally it will generate image
thumbnail, not larger than the original, that will fit in requested image size
image_options = ImageOptions(image_size=(300, 300))
images_base64 = get_encoded_image_contents_from_paths(

paths=images_absolute_paths, image_options=image_options
)

Override the default behavior for image resizing, This will force the image
to be resized to size: width=300 and height=300. When the image originally
had a different aspect ratio - than resizing it using `force_size` parameter
will alter its aspect ratio modifying the image (e.g. stretching)
image_options = ImageOptions(image_size=(300, 300), force_size=True)
images_base64 = get_encoded_image_contents_from_paths(

paths=images_absolute_paths, image_options=image_options
)

overwrite default behavior and retain original image sizes
image_options = ImageOptions(should_resize=False)
images_base64 = get_encoded_image_contents_from_paths(

(continues on next page)

2.2. User Guide 91

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

paths=images_absolute_paths, image_options=image_options
)

Custom request headers

If needed, you can specify custom request headers for downloading binary data.

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_urls

token = 'Nl69vmABaEuchUsj88N0eOoH2kfUbhCCByhoFDf4whJyJINTf7NOhhPrNQKqVVJJ'
custom_headers = {

'User-Agent': 'My User Agent',
'Authorization': 'Bearer {}'.format(token)

}

image_urls = [
'https://<YOUR_SERVER_ADDRESS>/animal01.jpg',
'https://<YOUR_SERVER_ADDRESS>/animal02.jpg',
'https://<YOUR_SERVER_ADDRESS>/animal03.png',

]

images_base64 = get_encoded_image_contents_from_urls(image_urls, custom_headers)

Handling errors

When processing multiple images, any error during processing will, by default, stop operations (i.e., the helper function
will raise datarobot.errors.ContentRetrievalTerminatedError and terminate further processing). In the case
of an error during content retrieval (“connectivity issue”, “file not found” etc), you can override this behavior by passing
continue_on_error=True to the helper function. When specified, processing will continue. In rows where the error
was raised, the value``None`` value will be returned instead of a base64-encoded string. This applies only to errors
during content retrieval, other errors will always terminate execution.

Example:

import os
from datarobot.helpers.binary_data_utils import get_encoded_image_contents_from_paths

images_dir = '/home/user/data/predictions/images'
images_absolute_paths = [

os.path.join(images_dir, file) for file in ['animal01.jpg', 'missing.jpg', 'animal03.
→˓png']
]

This execution will print None for missing files and base64 strings for exising files
images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths, continue_on_
→˓error=True)
for value in images_base64:

(continues on next page)

92 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

print(value)

This execution will raise error during processing of missing file terminating operation
images_base64 = get_encoded_image_contents_from_paths(images_absolute_paths)

Processing other binary files

Other binary files can be processed by dedicated functions. These functions work similarly to the functions used for
images, although they do not provide functionality for any transformations. Processing follows two steps instead of
three:

• Retrieve binary data from the file in the specified location (local path or URL).

• Convert binary data to base64-encoded strings.

To process documents into base64-encoded strings use these functions:

• To retrieve files from local paths: get_encoded_file_contents_from_paths - t

• To retrieve files from locations specified as URLs: get_encoded_file_contents_from_urls -

Examples:

import os
from datarobot.helpers.binary_data_utils import get_encoded_file_contents_from_urls

document_urls = [
'https://<YOUR_SERVER_ADDRESS>/document01.pdf',
'https://<YOUR_SERVER_ADDRESS>/missing.pdf',
'https://<YOUR_SERVER_ADDRESS>/document03.pdf',

]

this call will return base64 strings for existing documents and None for missing files
documents_base64 = get_encoded_file_contents_from_urls(document_urls, continue_on_
→˓error=True)
for value in documents_base64:

print(value)

This execution will raise error during processing of missing file terminating operation
documents_base64 = get_encoded_file_contents_from_urls(document_urls)

Model Insights

The Modeling section provides information to help you easily navigate the process of building, understanding, and
analyzing models.

2.2. User Guide 93

DataRobot Python API Documentation, Release 3.2.2

Prediction Explanations

To compute prediction explanations you need to have feature impact computed for a model, and predictions for an
uploaded dataset computed with a selected model.

Computing prediction explanations is a resource-intensive task, but you can configure it with maximum explanations
per row and prediction value thresholds to speed up the process.

Quick Reference

import datarobot as dr
Get project
my_projects = dr.Project.list()
project = my_projects[0]
Get model
models = project.get_models()
model = models[0]
Compute feature impact
feature_impacts = model.get_or_request_feature_impact()
Upload dataset
dataset = project.upload_dataset('./data_to_predict.csv')
Compute predictions
predict_job = model.request_predictions(dataset.id)
predict_job.wait_for_completion()
Initialize prediction explanations
pei_job = dr.PredictionExplanationsInitialization.create(project.id, model.id)
pei_job.wait_for_completion()
Compute prediction explanations with default parameters
pe_job = dr.PredictionExplanations.create(project.id, model.id, dataset.id)
pe = pe_job.get_result_when_complete()
Iterate through predictions with prediction explanations
for row in pe.get_rows():

print(row.prediction)
print(row.prediction_explanations)

download to a CSV file
pe.download_to_csv('prediction_explanations.csv')

List Prediction Explanations

You can use the PredictionExplanations.list() method to return a list of prediction explanations computed for
a project’s models:

import datarobot as dr
prediction_explanations = dr.PredictionExplanations.list('58591727100d2b57196701b3')
print(prediction_explanations)
>>> [PredictionExplanations(id=585967e7100d2b6afc93b13b,

project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8acf),

PredictionExplanations(id=58596bc2100d2b639329eae4,
project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8ac5),

(continues on next page)

94 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

PredictionExplanations(id=58763db4100d2b66759cc187,
project_id=58591727100d2b57196701b3,
model_id=585932c5100d2b7c298b8ac5),

...]
pe = prediction_explanations[0]

pe.project_id
>>> u'58591727100d2b57196701b3'
pe.model_id
>>> u'585932c5100d2b7c298b8acf'

You can pass following parameters to filter the result:

• model_id – str, used to filter returned prediction explanations by model_id.

• limit – int, limit for number of items returned, default: no limit.

• offset – int, number of items to skip, default: 0.

List Prediction Explanations Example:

project_id = '58591727100d2b57196701b3'
model_id = '585932c5100d2b7c298b8acf'
dr.PredictionExplanations.list(project_id, model_id=model_id, limit=20, offset=100)

Initialize Prediction Explanations

In order to compute prediction explanations you have to initialize it for a particular model.

dr.PredictionExplanationsInitialization.create(project_id, model_id)

Compute Prediction Explanations

If all prerequisites are in place, you can compute prediction explanations in the following way:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
dataset_id = '5506fcd98bd88a8142b725c8'
pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,

max_explanations=2, threshold_low=0.2, threshold_high=0.8)
pe = pe_job.get_result_when_complete()

Where:

• max_explanations are the maximum number of prediction explanations to compute for each row.

• threshold_low and threshold_high are thresholds for the value of the prediction of the row. Prediction
explanations will be computed for a row if the row’s prediction value is higher than threshold_high or lower
than threshold_low. If no thresholds are specified, prediction explanations will be computed for all rows.

2.2. User Guide 95

DataRobot Python API Documentation, Release 3.2.2

Retrieving Prediction Explanations

You have three options for retrieving prediction explanations.

Note: PredictionExplanations.get_all_as_dataframe() and PredictionExplanations.
download_to_csv() reformat prediction explanations to match the schema of CSV file downloaded from UI
(RowId, Prediction, Explanation 1 Strength, Explanation 1 Feature, Explanation 1 Value, . . . , Explanation N Strength,
Explanation N Feature, Explanation N Value)

Get prediction explanations rows one by one as PredictionExplanationsRow objects:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
prediction_explanations_id = '5506fcd98bd88f1641a720a3'
pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
for row in pe.get_rows():

print(row.prediction_explanations)

Get all rows as pandas.DataFrame:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
prediction_explanations_id = '5506fcd98bd88f1641a720a3'
pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
prediction_explanations_df = pe.get_all_as_dataframe()

Download all rows to a file as CSV document:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
prediction_explanations_id = '5506fcd98bd88f1641a720a3'
pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
pe.download_to_csv('prediction_explanations.csv')

Adjusted Predictions In Prediction Explanations

In some projects such as insurance projects, the prediction adjusted by exposure is more useful compared with raw
prediction. For example, the raw prediction (e.g. claim counts) is divided by exposure (e.g. time) in the project with
exposure column. The adjusted prediction provides insights with regard to the predicted claim counts per unit of time.
To include that information, set exclude_adjusted_predictions to False in correspondent method calls.

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
prediction_explanations_id = '5506fcd98bd88f1641a720a3'
pe = dr.PredictionExplanations.get(project_id, prediction_explanations_id)
pe.download_to_csv('prediction_explanations.csv', exclude_adjusted_predictions=False)
prediction_explanations_df = pe.get_all_as_dataframe(exclude_adjusted_predictions=False)

96 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Multiclass/Clustering Prediction Explanation Modes

When calculating prediction explanations for the multiclass or clustering model you need to specify which classes
should be explained in each row. By default we only explain the predicted class but it can be set with the mode
parameter of PredictionExplanations.create

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
dataset_id = '5506fcd98bd88a8142b725c8'
Explain predicted and second-best class results in each row
pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,

mode=dr.models.TopPredictionsMode(2))
pe = pe_job.get_result_when_complete()
Explain results for classes "setosa" and "versicolor" in each row
pe_job = dr.PredictionExplanations.create(project_id, model_id, dataset_id,

mode=dr.models.ClassListMode(["setosa",
→˓"versicolor"]))
pe = pe_job.get_result_when_complete()

SHAP based prediction explanations

You can request SHAP based prediction explanations using previously uploaded scoring dataset for models that support
SHAP. Unlike for XEMP prediction explanations you do not need to have feature impact computed for a model, and
predictions for an uploaded dataset.

See datarobot.models.ShapMatrix.create() reference for a description of the types of parameters that can be
passed in.

import datarobot as dr
project_id = '5ea6d3354cfad121cf33a5e1'
model_id = '5ea6d38b4cfad121cf33a60d'
project = dr.Project.get(project_id)
model = dr.Model.get(project=project_id, model_id=model_id)
check if model supports SHAP
model_capabilities = model.get_supported_capabilities()
print(model_capabilities.get('supportsShap'))
>>> True
upload dataset to generate prediction explanations
dataset_from_path = project.upload_dataset('./data_to_predict.csv')

shap_matrix_job = ShapMatrix.create(project_id=project_id, model_id=model_id, dataset_
→˓id=dataset_from_path.id)
shap_matrix_job
>>> Job(shapMatrix, status=inprogress)
wait for job to finish
shap_matrix = shap_matrix_job.get_result_when_complete()
shap_matrix
>>> ShapMatrix(id='5ea84b624cfad1361c53f65d', project_id='5ea6d3354cfad121cf33a5e1',␣
→˓model_id='5ea6d38b4cfad121cf33a60d', dataset_id='5ea84b464cfad1361c53f655')

retrieve SHAP matrix as pandas.DataFrame
(continues on next page)

2.2. User Guide 97

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

df = shap_matrix.get_as_dataframe()

list as available SHAP matrices for a project
shap_matrices = dr.ShapMatrix.list(project_id)
shap_matrices
>>> [ShapMatrix(id='5ea84b624cfad1361c53f65d', project_id='5ea6d3354cfad121cf33a5e1',␣
→˓model_id='5ea6d38b4cfad121cf33a60d', dataset_id='5ea84b464cfad1361c53f655')]

shap_matrix = shap_matrices[0]
retrieve SHAP matrix as pandas.DataFrame
df = shap_matrix.get_as_dataframe()

Rating Table

A rating table is an exportable csv representation of a Generalized Additive Model. They contain information about the
features and coefficients used to make predictions. Users can influence predictions by downloading and editing values
in a rating table, then reuploading the table and using it to create a new model.

See the page about interpreting Generalized Additive Models’ output in the Datarobot user guide for more details on
how to interpret and edit rating tables.

Download A Rating Table

You can retrieve a rating table from the list of rating tables in a project:

import datarobot as dr
project_id = '5506fcd38bd88f5953219da0'
project = dr.Project.get(project_id)
rating_tables = project.get_rating_tables()
rating_table = rating_tables[0]

Or you can retrieve a rating table from a specific model. The model must already exist:

import datarobot as dr
from datarobot.models import RatingTableModel, RatingTable
project_id = '5506fcd38bd88f5953219da0'
project = dr.Project.get(project_id)

Get model from list of models with a rating table
rating_table_models = project.get_rating_table_models()
rating_table_model = rating_table_models[0]

Or retrieve model by id. The model must have a rating table.
model_id = '5506fcd98bd88f1641a720a3'
rating_table_model = dr.RatingTableModel.get(project=project_id, model_id=model_id)

Then retrieve the rating table from the model
rating_table_id = rating_table_model.rating_table_id
rating_table = dr.RatingTable.get(projcet_id, rating_table_id)

Then you can download the contents of the rating table:

98 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

rating_table.download('./my_rating_table.csv')

Uploading A Rating Table

After you’ve retrieved the rating table CSV and made the necessary edits, you can re-upload the CSV so you can create
a new model from it:

job = dr.RatingTable.create(project_id, model_id, './my_rating_table.csv')
new_rating_table = job.get_result_when_complete()
job = new_rating_table.create_model()
model = job.get_result_when_complete()

Automated Documentation

DataRobot can generate Automated Documentation about various entities within the platform, such as specific models
or projects. These reports can be downloaded and shared to help with regulatory compliance as well as to provide a
general understanding of the AI lifecycle.

Check Available Document Types

Automated Documentation is available behind different feature flags set up according to your POC settings or subscrip-
tion plan. MODEL_COMPLIANCE documentation is a premium add-on DataRobot product, while AUTOPILOT_SUMMARY
report is available behind an optional feature flag for Self-Service and other platforms.

import datarobot as dr

Connect to your DataRobot platform with your token
dr.Client(token=my_token, endpoint=endpoint)
options = dr.AutomatedDocument.list_available_document_types()

In response, you get a data dictionary with a list of document types that are available for generation with your account.

Generate Automated Documents

Now that you know which documents you can generate, create one with AutomatedDocument .generate method.
Note that for AUTOPILOT_SUMMARY report, you need to assign a project ID to the entity_id parameter, while
MODEL_COMPLIANCE expects an ID of a model with the entity_id parameter.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

doc_type = "AUTOPILOT_SUMMARY"
entity_id = "5e8b6a34d2426053ab9a39ed" # This is an ID of a project
file_format="docx"

doc = dr.AutomatedDocument(document_type=doc_type, entity_id=entity_id, output_
→˓format=file_format)
doc.generate()

2.2. User Guide 99

DataRobot Python API Documentation, Release 3.2.2

You can specify other attributes. For example, filepath presets the file location and name to use when downloading
the document. Please see the API Reference for more details.

Download Automated Documents

If you followed the steps above to generate an automated document, you can use the AutomatedDocument.download
method right away to get the document.

doc.filepath = "Users/jeremy/DR_project_docs/autopilot_report_staff_2021.docx"
doc.download()

You can set a desired filepath (that includes the future file’s name) before you download a document. Otherwise, it
will be automatically downloaded to the directory from which you launched your script.

Please note that to download the document, you need its ID. When you generate a document with the Python client,
the ID is set automatically without your interference. However, if the document has already been generated from the
application interface (or REST API) and you want to download it using the Python client, you need to provide the ID
of the document you want to download:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

doc_id = "604f81f0f3d6397d250c35bc"
path = "Users/jeremy/DR_project_docs/xgb_model_doc_staff_project_2021.docx"
doc = dr.AutomatedDocument(id=doc_id, filepath=path)
doc.download()

List Previously Generated Automated Documents

You can retrieve information about previously generated documents available for your account. The information in-
cludes document ID and type, ID of the entity it was generated for, time of creation, and other information. Documents
are sorted by creation time – created_at key – from most recent to oldest.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = dr.AutomatedDocument.list_generated_documents()

This returns list of AutomatedDocument objects. You can request a list of specific documents. For example, get a list
of all MODEL_COMPLIANCE documents:

model_docs = dr.AutomatedDocument.list_generated_documents(document_types=["MODEL_
→˓COMPLIANCE"])

Or get a list of documents created for specific entities:

otv_project_reports = dr.AutomatedDocument.list_generated_documents(
entity_ids=["604f81f0f3d6397d250c35bc", "5ed60de32f18d97d250c3db5"]
)

For more information about all query options, see AutomatedDocument .list_generated_documents in the API
Reference.

100 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Delete Automated Documents

To delete a document from the DataRobot application, use the AutomatedDocument.delete method.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument(id="604f81f0f3d6397d250c35bc")
doc.delete()

All locally saved automated documents will remain intact.

External Testset

Testing with external datasets allows better evaluation model performance, you can compute metric scores and insights
on external test dataset to ensure consistent performance prior to deployment.

Note: Not available for Time series models.

Requesting External Scores and Insights

To compute scores and insights on a dataset

Upload a prediction dataset that contains the target column PredictionDataset.contains_target_values ==
True. Dataset should be in the same structure as the original project.

import datarobot as dr
Upload dataset
project = dr.Project(project_id)
dataset = project.upload_dataset('./test_set.csv')
dataset.contains_target_values
>>>True
request external test to compute metric scores and insights on dataset
select model using project.get_models()
external_test_job = model.request_external_test(dataset.id)
once job is complete, scores and insights are ready for retrieving
external_test_job.wait_for_completion()

Retrieving External Metric Scores and Insights

After completion of external test job, metric scores and insights for external testsets will be ready.

Note: Please check PredictionDataset.data_quality_warnings for dataset warnings. Insights are not available
if dataset is too small (less than 10 rows). ROC curve cannot be calculated if dataset has only one class in target column

2.2. User Guide 101

DataRobot Python API Documentation, Release 3.2.2

Retrieving External Metric Scores

import datarobot as dr
retrieving list of external metric scores on multiple datasets
metric_scores_list = dr.ExternalScores.list(project_id, model_id)
retrieving external metric scores on one dataset
metric_scores = dr.ExternalScores.get(project_id, model_id, dataset_id)

Retrieving External Lift Chart

import datarobot as dr
retrieving list of lift charts on multiple datasets
lift_list = dr.ExternalLiftChart.list(project_id, model_id)
retrieving one lift chart for dataset
lift = dr.ExternalLiftChart.get(project_id, model_id, dataset_id)

Retrieving External Multiclass Lift Chart

Lift chart for Multiclass models only

import datarobot as dr
retrieving list of lift charts on multiple datasets
lift_list = ExternalMulticlassLiftChart.list(project_id, model_id)
retrieving one lift chart for dataset and a target class
lift = ExternalMulticlassLiftChart.get(project_id, model_id, dataset_id, target_class)

Retrieving External ROC Curve

Available for Binary classification models only

import datarobot as dr
retrieving list of roc curves on multiple datasets
roc_list = ExternalRocCurve.list(project_id, model_id)
retrieving one ROC curve for dataset
roc = ExternalRocCurve.get(project_id, model_id, dataset_id)

Retrieving Multiclass Confusion Matrix

Available for Multiclass classification models only

import datarobot as dr
retrieving list of confusion charts on multiple datasets
confusion_list = ExternalConfusionChart.list(project_id, model_id)
retrieving one confusion chart for dataset
confusion = ExternalConfusionChart.get(project_id, model_id, dataset_id)

102 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Retrieving Residuals Chart

Available for Regression models only

import datarobot as dr
retrieving list of residuals charts on multiple datasets
residuals_list = ExternalResidualsChart.list(project_id, model_id)
retrieving one residuals chart for dataset
residuals = ExternalResidualsChart.get(project_id, model_id, dataset_id)

Jobs

The Job class is a generic representation of jobs running through a project’s queue. Many tasks involved in modeling,
such as creating a new model or computing feature impact for a model, will use a job to track the worker usage and
progress of the associated task.

Checking the Contents of the Queue

To see what jobs running or waiting in the queue for a project, use the Project.get_all_jobs method.

from datarobot.enums import QUEUE_STATUS

jobs_list = project.get_all_jobs() # gives all jobs queued or inprogress
jobs_by_type = {}
for job in jobs_list:

if job.job_type not in jobs_by_type:
jobs_by_type[job.job_type] = [0, 0]

if job.status == QUEUE_STATUS.QUEUE:
jobs_by_type[job.job_type][0] += 1

else:
jobs_by_type[job.job_type][1] += 1

for type in jobs_by_type:
(num_queued, num_inprogress) = jobs_by_type[type]
print('{} jobs: {} queued, {} inprogress'.format(type, num_queued, num_inprogress))

Cancelling a Job

If a job is taking too long to run or no longer necessary, it can be cancelled easily from the Job object.

from datarobot.enums import QUEUE_STATUS

project.pause_autopilot()
bad_jobs = project.get_all_jobs(status=QUEUE_STATUS.QUEUE)
for job in bad_jobs:

job.cancel()
project.unpause_autopilot()

2.2. User Guide 103

DataRobot Python API Documentation, Release 3.2.2

Retrieving Results From a Job

Once you’ve found a particular job of interest, you can retrieve the results once it is complete. Note that the type of the
returned object will vary depending on the job_type. All return types are documented in Job.get_result.

from datarobot.enums import JOB_TYPE

time_to_wait = 60 * 60 # how long to wait for the job to finish (in seconds) - i.e. an␣
→˓hour
assert my_job.job_type == JOB_TYPE.MODEL
my_model = my_job.get_result_when_complete(max_wait=time_to_wait)

Model Jobs

Model creation is an asynchronous process. This means that when explicitly invoking new model creation (with
project.train or model.train for example) all you get is the id of the process, responsible for model creation.
With this id you can get info about the model that is being created or the model itself, when the creation process is
finished. For this you should use the ModelJob class.

Get an existing ModelJob

To retrieve existing ModelJob use ModelJob.get method. For this you need the id of Project that is used for model
creation and the id of ModelJob. Having ModelJob might be useful if you want to know parameters of model creation,
automatically chosen by the API backend, before actual model was created.

If model is already created, ModelJob.get will raise PendingJobFinished exception

import time

import datarobot as dr

blueprint_id = '5506fcd38bd88f5953219da0'
model_job_id = project.train(blueprint_id)
model_job = dr.ModelJob.get(project_id=project.id,

model_job_id=model_job_id)
model_job.sample_pct
>>> 64.0

wait for model to be created (in a very inefficient way)
time.sleep(10 * 60)
model_job = dr.ModelJob.get(project_id=project.id,

model_job_id=model_job_id)
>>> datarobot.errors.PendingJobFinished

get the job attached to the model
model_job.model
>>> Model('5d518cd3962d741512605e2b')

104 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get a created model

After model is created, you can use ModelJob.get_model to get newly created model.

import datarobot as dr

model = dr.ModelJob.get_model(project_id=project.id,
model_job_id=model_job_id)

wait_for_async_model_creation function

If you just want to get the created model after getting the ModelJob id, you can use the wait_for_async_model_creation
function. It will poll for the status of the model creation process until it’s finished, and then will return the newly created
model. Note the differences below between datetime partitioned projects and non-datetime-partitioned projects.

from datarobot.models.modeljob import wait_for_async_model_creation

used during training based on blueprint
model_job_id = project.train(blueprint, sample_pct=33)
new_model = wait_for_async_model_creation(

project_id=project.id,
model_job_id=model_job_id,

)

used during training based on existing model
model_job_id = existing_model.train(sample_pct=33)
new_model = wait_for_async_model_creation(

project_id=existing_model.project_id,
model_job_id=model_job_id,

)

For datetime-partitioned projects, use project.train_datetime. Note that train_
→˓datetime returns a ModelJob instead
of just an id.
model_job = project.train_datetime(blueprint)
new_model = wait_for_async_model_creation(

project_id=project.id,
model_job_id=model_job.id

)

DataRobot Prime

DataRobot Prime allows the download of executable code approximating models. For more information about this
feature, see the documentation within the DataRobot webapp. Contact your Account Executive or CFDS for information
on enabling DataRobot Prime, if needed.

2.2. User Guide 105

DataRobot Python API Documentation, Release 3.2.2

Approximate a Model

Given a Model you wish to approximate, Model.request_approximation will start a job creating several Ruleset
objects approximating the parent model. Each of those rulesets will identify how many rules were used to approximate
the model, as well as the validation score the approximation achieved.

rulesets_job = model.request_approximation()
rulesets = rulesets_job.get_result_when_complete()
for ruleset in rulesets:

info = (ruleset.id, ruleset.rule_count, ruleset.score)
print('id: {}, rule_count: {}, score: {}'.format(*info))

Prime Models vs. Models

Given a ruleset, you can create a model based on that ruleset. We consider such models to be Prime models. The
PrimeModel class inherits from the Model class, so anything a Model can do, as PrimeModel can do as well.

The PrimeModel objects available within a Project can be listed by project.get_prime_models, or a particular
one can be retrieve via PrimeModel.get. If a ruleset has not yet had a model built for it, ruleset.request_model
can be used to start a job to make a PrimeModel using a particular ruleset.

rulesets = parent_model.get_rulesets()
selected_ruleset = sorted(rulesets, key=lambda x: x.score)[-1]
if selected_ruleset.model_id:

prime_model = PrimeModel.get(selected_ruleset.project_id, selected_ruleset.model_id)
else:

prime_job = selected_ruleset.request_model()
prime_model = prime_job.get_result_when_complete()

The PrimeModel class has two additional attributes and one additional method. The attributes are ruleset, which is
the Ruleset used in the PrimeModel, and parent_model_id which is the id of the model it approximates.

Finally, the new method defined is request_download_validation which is used to prepare code download for the
model and is discussed later on in this document.

Retrieving Code from a PrimeModel

Given a PrimeModel, you can download the code used to approximate the parent model, and view and execute it locally.

The first step is to validate the PrimeModel, which runs some basic validation of the generated code, as well as preparing
it for download. We use the PrimeFile object to represent code that is ready to download. PrimeFiles can be
prepared by the request_download_validation method on PrimeModel objects, and listed from a project with the
get_prime_files method.

Once you have a PrimeFile you can check the is_valid attribute to verify the code passed basic validation, and then
download it to a local file with download.

validation_job = prime_model.request_download_validation(enums.PRIME_LANGUAGE.PYTHON)
prime_file = validation_job.get_result_when_complete()
if not prime_file.is_valid:

raise ValueError('File was not valid')
prime_file.download('/home/myuser/drCode/primeModelCode.py')

106 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Model Recommendation

During the Autopilot modeling process, DataRobot will recommend a model for deployment based on its accuracy and
complexity.

When running Autopilot in Full or Comprehensive mode, DataRobot uses the following deployment preparation pro-
cess:

1. First, DataRobot calculates Feature Impact for the selected model and uses it to generate a reduced feature list.

2. Next, DataRobot retrains the selected model on the reduced feature list. If the new model performs better than
the original model, DataRobot uses the new model for the next stage. Otherwise, the original model is used.

3. DataRobot then retrains the selected model at an up-to-holdout sample size (typically 80%). As long as the
sample is under the frozen threshold (1.5GB), the stage is not frozen.

4. Finally, DataRobot retrains the selected model as a frozen run (hyperparameters are not changed from the up-to-
holdout run) using a 100% sample size and selects it as Recommended for Deployment.

Note: The higher sample size DataRobot uses in Step 3 is either:

1. Up to holdout if the training sample size does not exceed the maximum Autopilot size threshold: sample size is
the training set plus the validation set (for TVH) or 5-folds (for CV). In this case, DataRobot compares retrained
and original models on the holdout score.

2. Up to validation if the training sample size does exceed the maximum Autopilot size threshold: sample size is
the training set (for TVH) or 4-folds (for CV). In this case, DataRobot compares retrained and original models
on the validation score.

DataRobot gives one model the Recommended for Deployment* badge. This is the most accurate individual, non-
blender model on the Leaderboard. After completing the steps described above, it will receive the Prepared for
Deployment badge.

Retrieve all recommendations

The following code will return all models recommended for the project.

import datarobot as dr

recommendations = dr.ModelRecommendation.get_all(project_id)

Retrieve a default recommendation

If you are unsure about the tradeoffs between the various types of recommendations, DataRobot can make this choice
for you. The following route will return the Recommended for Deployment model to use for predictions for the project.

import datarobot as dr

recommendation = dr.ModelRecommendation.get(project_id)

2.2. User Guide 107

DataRobot Python API Documentation, Release 3.2.2

Retrieve a specific recommendation

If you know which recommendation you want to use, you can select a specific recommendation using the following
code.

import datarobot as dr

recommendation_type = dr.enums.RECOMMENDED_FOR_DEPLOYMENT
recommendations = dr.ModelRecommendation.get(project_id, recommendation_type)

Get recommended model

You can use method get_model() of a recommendation object to retrieve a recommended model.

import datarobot as dr

recommendation = dr.ModelRecommendation.get(project_id)
recommended_model = recommendation.get_model()

2.2.3 Predictions

The following sections describe the components to making predictions in DataRobot:

• Generate predictions: Initiate a prediction job with the Model.request_predictions() method. This
method can use either a training dataset or predictions dataset for scoring.

• Batch predictions: Score large sets of data with batch predictions. You can define jobs and their schedule.

• Prediction API: Use DataRobot’s Prediction API. to make predictions on both a dedicated and/or a standalone
prediction server.

• Scoring Code: Qualifying models allow you to export Scoring Code and use DataRobot-generated models out-
side of the platform

Predictions

Predictions generation is an asynchronous process. This means that when starting predictions with Model.
request_predictions() you will receive back a PredictJob for tracking the process responsible for fulfilling your
request.

With this object you can get info about the predictions generation process before it has finished and be rerouted to the
predictions themselves when the process is finished. For this you should use the PredictJob class.

108 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/predictions/api/dr-predapi.html
https://docs.datarobot.com/en/docs/predictions/scoring-code/index.html

DataRobot Python API Documentation, Release 3.2.2

Starting predictions generation

Before actually requesting predictions, you should upload the dataset you wish to predict via Project.
upload_dataset. Previously uploaded datasets can be seen under Project.get_datasets. When uploading the
dataset you can provide the path to a local file, a file object, raw file content, a pandas.DataFrame object, or the url
to a publicly available dataset.

To start predicting on new data using a finished model use Model.request_predictions(). It will create a new
predictions generation process and return a PredictJob object tracking this process. With it, you can monitor an existing
PredictJob and retrieve generated predictions when the corresponding PredictJob is finished.

import datarobot as dr

project_id = '5506fcd38bd88f5953219da0'
model_id = '5506fcd98bd88f1641a720a3'
project = dr.Project.get(project_id)
model = dr.Model.get(

project=project_id,
model_id=model_id,

)

As of v3.0, in addition to passing a ``dataset_id``, you can pass in a ``dataset``,␣
→˓``file``, ``file_path`` or
``dataframe`` to `Model.request_predictions`.

predict_job = model.request_predictions(file_path='./data_to_predict.csv')

Alternative version uploading the dataset from a local path and passing it by its id
dataset_from_path = project.upload_dataset('./data_to_predict.csv')
predict_job = model.request_predictions(dataset_id=dataset_from_path.id)

Alternative version: upload the dataset as a file object and pass it by using its␣
→˓dataset id
with open('./data_to_predict.csv') as data_to_predict:

dataset_from_file = project.upload_dataset(data_to_predict)
predict_job = model.request_predictions(dataset_id=dataset_from_file.id) # OR predict_
→˓job = model.request_predictions(dataset_id=dataset_from_file.id)

Listing Predictions

You can use the Predictions.list() method to return a list of predictions generated on a project.

import datarobot as dr
predictions = dr.Predictions.list('58591727100d2b57196701b3')

print(predictions)
>>>[Predictions(prediction_id='5b6b163eca36c0108fc5d411',

project_id='5b61bd68ca36c04aed8aab7f',
model_id='5b61bd7aca36c05744846630',
dataset_id='5b6b1632ca36c03b5875e6a0'),

Predictions(prediction_id='5b6b2315ca36c0108fc5d41b',
project_id='5b61bd68ca36c04aed8aab7f',

(continues on next page)

2.2. User Guide 109

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

model_id='5b61bd7aca36c0574484662e',
dataset_id='5b6b1632ca36c03b5875e6a0'),

Predictions(prediction_id='5b6b23b7ca36c0108fc5d422',
project_id='5b61bd68ca36c04aed8aab7f',
model_id='5b61bd7aca36c0574484662e',
dataset_id='55b6b1632ca36c03b5875e6a0')

]

You can pass following parameters to filter the result:

• model_id – str, used to filter returned predictions by model_id.

• dataset_id – str, used to filter returned predictions by dataset_id.

Get an existing PredictJob

To retrieve an existing PredictJob use the PredictJob.get method. This will give you a PredictJob matching the
latest status of the job if it has not completed.

If predictions have finished building, PredictJob.get will raise a PendingJobFinished exception.

import time

import datarobot as dr

predict_job = dr.PredictJob.get(
project_id=project_id,
predict_job_id=predict_job_id,

)
predict_job.status
>>> 'queue'

wait for generation of predictions (in a very inefficient way)
time.sleep(10 * 60)
predict_job = dr.PredictJob.get(

project_id=project_id,
predict_job_id=predict_job_id,

)
>>> dr.errors.PendingJobFinished

now the predictions are finished
predictions = dr.PredictJob.get_predictions(

project_id=project.id,
predict_job_id=predict_job_id,

)

110 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Get generated predictions

After predictions are generated, you can use PredictJob.get_predictions to get newly generated predictions.

If predictions have not yet been finished, it will raise a JobNotFinished exception.

import datarobot as dr

predictions = dr.PredictJob.get_predictions(
project_id=project.id,
predict_job_id=predict_job_id,

)

Wait for and Retrieve results

If you just want to get generated predictions from a PredictJob, you can use the PredictJob.
get_result_when_complete function. It will poll the status of the predictions generation process until it has
finished, and then will return predictions.

dataset = project.get_datasets()[0]
predict_job = model.request_predictions(dataset.id)
predictions = predict_job.get_result_when_complete()

Get previously generated predictions

If you don’t have a Model.predict_job on hand, there are two more ways to retrieve predictions from the
Predictions interface:

1. Get all prediction rows as a pandas.DataFrame object:

import datarobot as dr

preds = dr.Predictions.get("5b61bd68ca36c04aed8aab7f", prediction_id=
→˓"5b6b163eca36c0108fc5d411")
df = preds.get_all_as_dataframe()
df_with_serializer = preds.get_all_as_dataframe(serializer='csv')

2. Download all prediction rows to a file as a CSV document:

import datarobot as dr

preds = dr.Predictions.get("5b61bd68ca36c04aed8aab7f", prediction_id=
→˓"5b6b163eca36c0108fc5d411")
preds.download_to_csv('predictions.csv')

preds.download_to_csv('predictions_with_serializer.csv', serializer='csv')

2.2. User Guide 111

DataRobot Python API Documentation, Release 3.2.2

Training predictions

The training predictions interface allows computing and retrieving out-of-sample predictions for a model using the
original project dataset. The predictions can be computed for all the rows, or restricted to validation or holdout data.
As the predictions generated will be out-of-sample, they can be expected to have different results than if the project
dataset were reuploaded as a prediction dataset.

Quick reference

Training predictions generation is an asynchronous process. This means that when starting predictions with
datarobot.models.Model.request_training_predictions() you will receive back a datarobot.models.
TrainingPredictionsJob for tracking the process responsible for fulfilling your request. Actual predictions may be
obtained with the help of a datarobot.models.training_predictions.TrainingPredictions object returned
as the result of the training predictions job. There are three ways to retrieve them:

1. Iterate prediction rows one by one as named tuples:

import datarobot as dr

Calculate new training predictions on all dataset
training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.ALL)
training_predictions = training_predictions_job.get_result_when_complete()

Fetch rows from API and print them
for prediction in training_predictions.iterate_rows(batch_size=250):

print(prediction.row_id, prediction.prediction)

2. Get all prediction rows as a pandas.DataFrame object:

import datarobot from dr

Calculate new training predictions on holdout partition of dataset
training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.
→˓HOLDOUT)
training_predictions = training_predictions_job.get_result_when_complete()

Fetch training predictions as data frame
dataframe = training_predictions.get_all_as_dataframe()

3. Download all prediction rows to a file as a CSV document:

import datarobot from dr

Calculate new training predictions on all dataset
training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.ALL)
training_predictions = training_predictions_job.get_result_when_complete()

Fetch training predictions and save them to file
training_predictions.download_to_csv('my-training-predictions.csv')

112 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Batch Predictions

The Batch Prediction API provides a way to score large datasets using flexible options for intake and output on the
Prediction Servers you have already deployed.

The main features are:

• Flexible options for intake and output.

• Stream local files and start scoring while still uploading - while simultaneously downloading the results.

• Score large datasets from and to S3.

• Connect to your database using JDBC with bidirectional streaming of scoring data and results.

• Intake and output options can be mixed and doesn’t need to match. So scoring from a JDBC source to an S3
target is also an option.

• Protection against overloading your prediction servers with the option to control the concurrency level for scoring.

• Prediction Explanations can be included (with option to add thresholds).

• Passthrough Columns are supported to correlate scored data with source data.

• Prediction Warnings can be included in the output.

To interact with Batch Predictions, you should use the BatchPredictionJob class.

Make batch predictions with a deployment

DataRobot provides a utility function to make batch predictions using a deployment: Deployment.predict_batch .

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
To note: `source` can be a file path, a file or a pandas DataFrame
prediction_results_as_dataframe = deployment.predict_batch(

source="./my_local_file.csv",
)

Scoring local CSV files

We provide a small utility function for scoring from/to local CSV files: BatchPredictionJob.score_to_file. The
first parameter can be either:

• Path to a CSV dataset

• File-like object

• Pandas DataFrame

For larger datasets, you should avoid using a DataFrame, as that will load the entire dataset into memory. The other
options don’t.

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

(continues on next page)

2.2. User Guide 113

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.BatchPredictionJob.score_to_file(
deployment_id,
'./data_to_predict.csv',
'./predicted.csv',

)

The input file will be streamed to our API and scoring will start immediately. As soon as results start coming in, we
will initiate the download concurrently. The entire call will block until the file has been scored.

Scoring from and to S3

We provide a small utility function for scoring from/to CSV files hosted on S3 BatchPredictionJob.score_s3. This
requires that the intake and output buckets share the same credentials (see Credentials and Credential.create_s3)
or that their access policy is set to public:

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

cred = dr.Credential.get('5a8ac9ab07a57a0001be501f')

job = dr.BatchPredictionJob.score_s3(
deployment=deployment_id,
source_url='s3://mybucket/data_to_predict.csv',
destination_url='s3://mybucket/predicted.csv',
credential=cred,

)

Note: The S3 output functionality has a limit of 100 GB.

Scoring from and to Azure Cloud Storage

Like with S3, we provide the same support for Azure through the utility function BatchPredictionJob.
score_azure. This required that an Azure connection string has been added to the DataRobot credentials store.
(see Credentials and Credential.create_azure)

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

cred = dr.Credential.get('5a8ac9ab07a57a0001be501f')

job = dr.BatchPredictionJob.score_azure(
deployment=deployment_id,
source_url='https://mybucket.blob.core.windows.net/bucket/data_to_predict.csv',
destination_url='https://mybucket.blob.core.windows.net/results/predicted.csv',
credential=cred,

)

114 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Scoring from and to Google Cloud Platform

Like with Azure, we provide the same support for GCP through the utility function BatchPredictionJob.
score_gcp. This required that an Azure connection string has been added to the DataRobot credentials store. (see
Credentials and Credential.create_gcp)

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

cred = dr.Credential.get('5a8ac9ab07a57a0001be501f')

job = dr.BatchPredictionJob.score_gcp(
deployment=deployment_id,
source_url='gs:/bucket/data_to_predict.csv',
destination_url='gs://results/predicted.csv',
credential=cred,

)

Wiring a Batch Prediction Job manually

If you can’t use any of the utilities above, you are also free to configure your job manually. This requires configuring
an intake and output option:

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

dr.BatchPredictionJob.score(
deployment_id,
intake_settings={

'type': 's3',
'url': 's3://public-bucket/data_to_predict.csv',
'credential_id': '5a8ac9ab07a57a0001be501f',

},
output_settings={

'type': 'localFile',
'path': './predicted.csv',

},
)

Credentials may be created with Credentials API .

2.2. User Guide 115

DataRobot Python API Documentation, Release 3.2.2

Supported intake types

These are the supported intake types and descriptions of their configuration parameters:

Local file intake

This requires you to pass either a path to a CSV dataset, file-like object or a Pandas DataFrame as the file parameter:

intake_settings={
'type': 'localFile',
'file': './data_to_predict.csv',

}

S3 CSV intake

This requires you to pass an S3 URL to the CSV file your scoring in the url parameter:

intake_settings={
'type': 's3',
'url': 's3://public-bucket/data_to_predict.csv',

}

If the bucket is not publicly accessible, you can supply AWS credentials using the three parameters:

• aws_access_key_id

• aws_secret_access_key

• aws_session_token

And save it to the Credential API . Here is an example:

import datarobot as dr

get to make sure it exists
credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

intake_settings={
'type': 's3',
'url': 's3://private-bucket/data_to_predict.csv',
'credential_id': cred.credential_id,

}

116 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

JDBC intake

This requires you to create a DataStore and Credential for your database:

get to make sure it exists
datastore_id = '5a8ac9ab07a57a0001be5010'
data_store = dr.DataStore.get(datastore_id)

credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

intake_settings = {
'type': 'jdbc',
'table': 'table_name',
'schema': 'public', # optional, if supported by database
'catalog': 'master', # optional, if supported by database
'data_store_id': data_store.id,
'credential_id': cred.credential_id,

}

BigQuery intake

This requires you to create a GCS Credential for your database:

get to make sure it exists
credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

intake_settings = {
'type': 'bigquery',
'dataset': 'dataset_name',
'table': 'table_or_view_name',
'bucket': 'bucket_in_gcs',
'credential_id': cred.credential_id,

}

AI Catalog intake

This requires you to create a Dataset and identify the dataset_id of that to use as input.

get to make sure it exists
dataset_id = '5a8ac9ab07a57a0001be501f'
dataset = dr.Dataset.get(dataset_id)

intake_settings={
'type': 'dataset',
'dataset': dataset

}

Or, in case you want another version_id than the latest, supply your own.

2.2. User Guide 117

DataRobot Python API Documentation, Release 3.2.2

get to make sure it exists
dataset_id = '5a8ac9ab07a57a0001be501f'
dataset = dr.Dataset.get(dataset_id)

intake_settings={
'type': 'dataset',
'dataset': dataset,
'dataset_version_id': 'another_version_id'

}

Supported output types

These are the supported output types and descriptions of their configuration parameters:

Local file output

For local file output you have two options. You can either pass a path parameter and have the client block and download
the scored data concurrently. This is the fastest way to get predictions as it will upload, score and download concurrently:

output_settings={
'type': 'localFile',
'path': './predicted.csv',

}

Another option is to leave out the parameter and subsequently call BatchPredictionJob.download at your own
convenience. The BatchPredictionJob.score call will then return as soon as the upload is complete.

If the job is not finished scoring, the call to BatchPredictionJob.download will start streaming the data that has
been scored so far and block until more data is available.

You can poll for job completion using BatchPredictionJob.get_status or use BatchPredictionJob.
wait_for_completion to wait.

import datarobot as dr

deployment_id = '5dc5b1015e6e762a6241f9aa'

job = dr.BatchPredictionJob.score(
deployment_id,
intake_settings={

'type': 'localFile',
'file': './data_to_predict.csv',

},
output_settings={

'type': 'localFile',
},

)

job.wait_for_completion()

with open('./predicted.csv', 'wb') as f:
job.download(f)

118 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

S3 CSV output

This requires you to pass an S3 URL to the CSV file where the scored data should be saved to in the url parameter:

output_settings={
'type': 's3',
'url': 's3://public-bucket/predicted.csv',

}

Most likely, the bucket is not publicly accessible for writes, but you can supply AWS credentials using the three param-
eters:

• aws_access_key_id

• aws_secret_access_key

• aws_session_token

And save it to the Credential API . Here is an example:

get to make sure it exists
credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

output_settings={
'type': 's3',
'url': 's3://private-bucket/predicted.csv',
'credential_id': cred.credential_id,

}

JDBC output

Same as for the input, this requires you to create a DataStore and Credential for your database, but for output_settings
you also need to specify statementType, which should be one of datarobot.enums.AVAILABLE_STATEMENT_TYPES:

get to make sure it exists
datastore_id = '5a8ac9ab07a57a0001be5010'
data_store = dr.DataStore.get(datastore_id)

credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

output_settings = {
'type': 'jdbc',
'table': 'table_name',
'schema': 'public', # optional, if supported by database
'catalog': 'master', # optional, if supported by database
'statementType': 'insert',
'data_store_id': data_store.id,
'credential_id': cred.credential_id,

}

2.2. User Guide 119

DataRobot Python API Documentation, Release 3.2.2

BigQuery output

Same as for the input, this requires you to create a GCS Credential to access BigQuery:

get to make sure it exists
credential_id = '5a8ac9ab07a57a0001be501f'
cred = dr.Credential.get(credential_id)

output_settings = {
'type': 'bigquery',
'dataset': 'dataset_name',
'table': 'table_name',
'bucket': 'bucket_in_gcs',
'credential_id': cred.credential_id,

}

Copying a previously submitted job

We provide a small utility function for submitting a job using parameters from a job previously submitted:
BatchPredictionJob.score_from_existing. The first parameter is the job id of another job.

import datarobot as dr

previously_submitted_job_id = '5dc5b1015e6e762a6241f9aa'

dr.BatchPredictionJob.score_from_existing(
previously_submitted_job_id,

)

Scoring an in-memory Pandas DataFrame

When working with DataFrames, we provide a method for scoring the data without first writing it to a CSV file and
subsequently reading the data back from a CSV file.

This will also take care of joining the computed predictions into the existing DataFrame.

Use the method BatchPredictionJob.score_pandas. The first parameter is the deployment ID and then the
DataFrame to score.

import datarobot as dr
import pandas as pd

deployment_id = '5dc5b1015e6e762a6241f9aa'

df = pd.read_csv('testdata/titanic_predict.csv')

job, df = dr.BatchPredictionJob.score_pandas(deployment_id, df)

The method returns a copy of the job status and the updated DataFrame with the predictions added. So your DataFrame
will now contain the following extra columns:

• Survived_1_PREDICTION

120 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Survived_0_PREDICTION

• Survived_PREDICTION

• THRESHOLD

• POSITIVE_CLASS

• prediction_status

print(df)
PassengerId Pclass Name ... Survived_

→˓PREDICTION THRESHOLD POSITIVE_CLASS
0 892 3 Kelly, Mr. James ... ␣
→˓ 0 0.5 1
1 893 3 Wilkes, Mrs. James (Ellen Needs) ... ␣
→˓ 1 0.5 1
2 894 2 Myles, Mr. Thomas Francis ... ␣
→˓ 0 0.5 1
3 895 3 Wirz, Mr. Albert ... ␣
→˓ 0 0.5 1
4 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) ... ␣
→˓ 1 0.5 1
.. ␣
→˓
413 1305 3 Spector, Mr. Woolf ... ␣
→˓ 0 0.5 1
414 1306 1 Oliva y Ocana, Dona. Fermina ... ␣
→˓ 0 0.5 1
415 1307 3 Saether, Mr. Simon Sivertsen ... ␣
→˓ 0 0.5 1
416 1308 3 Ware, Mr. Frederick ... ␣
→˓ 0 0.5 1
417 1309 3 Peter, Master. Michael J ... ␣
→˓ 1 0.5 1

[418 rows x 16 columns]

If you don’t want all of them or if you’re not happy with the names of the added columns, they can be modified using
column remapping:

import datarobot as dr
import pandas as pd

deployment_id = '5dc5b1015e6e762a6241f9aa'

df = pd.read_csv('testdata/titanic_predict.csv')

job, df = dr.BatchPredictionJob.score_pandas(
deployment_id,
df,
column_names_remapping={

'Survived_1_PREDICTION': None, # discard column
'Survived_0_PREDICTION': None, # discard column
'Survived_PREDICTION': 'predicted', # rename column
'THRESHOLD': None, # discard column

(continues on next page)

2.2. User Guide 121

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'POSITIVE_CLASS': None, # discard column
},

)

Any column mapped to None will be discarded. Any column mapped to a string will be renamed. Any column not
mentioned will be kept in the output untouched. So your DataFrame will now contain the following extra columns:

• predicted

• prediction_status

Refer to the documentation for BatchPredictionJob.score for the full range of available options.

Batch Prediction Job Definitions

To submit a working Batch Prediction job, you must supply a variety of elements to the datarobot.models.
BatchPredictionJob.score() request payload depending on what type of prediction is required. Additionally,
you must consider the type of intake and output adapters used for a given job.

Every time a new Batch Prediction is created, the same amount of information must be stored somewhere outside of
DataRobot and re-submitted every time.

For example, a request could look like:

import datarobot as dr

deployment_id = "5dc5b1015e6e762a6241f9aa"

job = dr.BatchPredictionJob.score(
deployment_id,
intake_settings={

"type": "s3",
"url": "s3://bucket/container/file.csv",
"credential_id": "5dc5b1015e6e762a6241f9bb"

},
output_settings={

"type": "s3",
"url": "s3://bucket/container/output.csv",
"credential_id": "5dc5b1015e6e762a6241f9bb"

},
)

job.wait_for_completion()

with open("./predicted.csv", "wb") as f:
job.download(f)

122 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Job Definitions

If your use case requires the same, or close to the same, type of prediction to be done multiple times, you can choose
to create a Job Definition of the Batch Prediction job and store this inside DataRobot for future use.

The method for creating job definitions is identical to the existing datarobot.models.BatchPredictionJob.
score() method, except for the addition of a enabled, name and schedule parameter: datarobot.models.
BatchPredictionJobDefinition.create()

>>> import datarobot as dr
>>> job_spec = {
... "num_concurrent": 4,
... "deployment_id": "5dc5b1015e6e762a6241f9aa",
... "intake_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv",
... "credential_id": "5dc5b1015e6e762a6241f9bb"
... },
... "output_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv",
... "credential_id": "5dc5b1015e6e762a6241f9bb"
... },
...}
>>> definition = BatchPredictionJobDefinition.create(
... enabled=False,
... batch_prediction_job=job_spec,
... name="some_definition_name",
... schedule=None
...)
>>> definition
BatchPredictionJobDefinition(foobar)

Note: The name parameter must be unique across your organization. If you attempt to create multiple definitions
with the same name, the request will fail. If you wish to free up a name, you must first datarobot.models.
BatchPredictionJobDefinition.delete() the existing definition before creating this one. Alternatively you can
just datarobot.models.BatchPredictionJobDefinition.update() the existing definition with a new name.

Executing a job definition

Manual job execution

To submit a stored job definition for scoring, you can either do so on a scheduled basis, described below, or manually
submit the definition ID using datarobot.models.BatchPredictionJobDefinition.run_once(), as such:

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.get("5dc5b1015e6e762a6241f9aa")
>>> job = definition.run_once()
>>> job.wait_for_completion()

2.2. User Guide 123

DataRobot Python API Documentation, Release 3.2.2

Scheduled job execution

A Scheduled Batch Prediction job works just like a regular Batch Prediction job, except DataRobot handles the execution
of the job.

In order to schedule the execution of a Batch Prediction job, a definition must first be created, us-
ing datarobot.models.BatchPredictionJobDefinition.create(), or updated, using datarobot.models.
BatchPredictionJobDefinition.update(), where enabled is set to True and a schedule payload is provided.

Alternatively, you can use a short-hand version with datarobot.models.BatchPredictionJobDefinition.
run_on_schedule() as such:

>>> import datarobot as dr
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... 16
...],
... "minute": [
... 0
...],
... "day_of_month": [
... 1
...]
...}
>>> definition = dr.BatchPredictionJob.get("5dc5b1015e6e762a6241f9aa")
>>> job = definition.run_on_schedule(schedule)

If the created job was not enabled previously, this method will also enable it.

The Schedule payload

The schedule payload defines at what intervals the job should run, which can be combined in various ways to construct
complex scheduling terms if needed. In all of the elements in the objects, you can supply either an asterisk ["*"]
denoting “every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a specific interval.

124 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Table 1: The schedule payload elements
Key Possible values Example Description
minute ["*"] or [0 ... 59] [15, 30, 45] The job will

run at these
minute val-
ues for every
hour of the
day.

hour ["*"] or [0 ... 23] [12,23] The hour(s)
of the day
that the job
will run.

month ["*"] or [1 ... 12] ["jan"] Strings, ei-
ther 3-letter
abbreviations
or the full
name of the
month, can
be used inter-
changeably
(e.g., “jan” or
“october”).
Months that
are not com-
patible with
day_of_month
are ignored,
for example {
"day_of_month
": [31],
"month":[
"feb"]}.

day_of_week ["*"] or [0 ... 6] where
(Sunday=0)

["sun"] The day(s) of
the week that
the job will
run. Strings,
either 3-letter
abbrevia-
tions or the
full name
of the day,
can be used
interchange-
ably (e.g.,
“sunday”,
“Sunday”,
“sun”, or
“Sun”, all
map to [0]).
NOTE: This
field is ad-
ditive with
day_of_month,
meaning the
job will
run both
on the date
specified by
day_of_month
and the day
defined in
this field.

day_of_month ["*"] or [1 ... 31] [1, 25] The date(s)
of the month
that the job
will run. Al-
lowed values
are either [1
... 31] or
["*"] for all
days of the
month.
NOTE: This
field is ad-
ditive with
day_of_week,
meaning the
job will
run both on
the date(s)
defined in
this field
and the day
specified by
day_of_week
(for example,
dates 1st,
2nd, 3rd,
plus every
Tuesday). If
day_of_month
is set to
["*"] and
day_of_week
is defined,
the scheduler
will trigger
on every day
of the month
that matches
day_of_week
(for example,
Tuesday the
2nd, 9th,
16th, 23rd,
30th).
Invalid dates
such as
February
31st are ig-
nored.

2.2. User Guide 125

DataRobot Python API Documentation, Release 3.2.2

Disabling a scheduled job

Job definitions are only be executed by the scheduler if enabled is set to True. If you have a
job definition that was previously running as a scheduled job, but should now be stopped, simply
datarobot.models.BatchPredictionJobDefinition.delete() to remove it completely, or datarobot.
models.BatchPredictionJobDefinition.update() it with enabled=False if you want to keep the definition,
but stop the scheduled job from executing at intervals. If a job is currently running, this will finish execution regardless.

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.get("5dc5b1015e6e762a6241f9aa")
>>> definition.delete()

2.2.4 MLOps

DataRobot MLOps provides a central hub to deploy, monitor, manage, and govern all your models in production.

Deployments

Deployment is the central hub for users to deploy, manage and monitor their models.

Manage Deployments

The following commands can be used to manage deployments.

Create a Deployment

A new deployment can be created from:

• DataRobot model - use create_from_learning_model()

• Custom model version with dependency management - use create_from_custom_model_version(). Please
refer to Custom Model documentation on how to create a custom model version

When creating a new deployment, a DataRobot model_id/custom_model_image_id and label must be provided.
A description can be optionally provided to document the purpose of the deployment.

The default prediction server is used when making predictions against the deployment, and is a requirement for creating
a deployment on DataRobot cloud. For on-prem installations, a user must not provide a default prediction server and
a pre-configured prediction server will be used instead. Refer to datarobot.PredictionServer.list for more
information on retrieving available prediction servers.

import datarobot as dr

project = dr.Project.get('5506fcd38bd88f5953219da0')
model = project.get_models()[0]
prediction_server = dr.PredictionServer.list()[0]

deployment = dr.Deployment.create_from_learning_model(
model.id, label='New Deployment', description='A new deployment',
default_prediction_server_id=prediction_server.id)

deployment
>>> Deployment('New Deployment')

126 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

List Deployments

Use the following command to list deployments a user can view.

import datarobot as dr

deployments = dr.Deployment.list()
deployments
>>> [Deployment('New Deployment'), Deployment('Previous Deployment')]

Refer to Deployment for properties of the deployment object.

You can also filter the deployments that are returned by passing an instance of the DeploymentListFilters class to
the filters keyword argument.

import datarobot as dr

filters = dr.models.deployment.DeploymentListFilters(
role='OWNER',
accuracy_health=dr.enums.DEPLOYMENT_ACCURACY_HEALTH_STATUS.FAILING

)
deployments = dr.Deployment.list(filters=filters)
deployments
>>> [Deployment('Deployment Owned by Me w/ Failing Accuracy 1'), Deployment('Deployment␣
→˓Owned by Me w/ Failing Accuracy 2')]

Retrieve a Deployment

It is possible to retrieve a single deployment with its identifier, rather than list all deployments.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.id
>>> '5c939e08962d741e34f609f0'
deployment.label
>>> 'New Deployment'

Refer to Deployment for properties of the deployment object.

Update a Deployment

Deployment’s label and description can be updated.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update(label='new label')

2.2. User Guide 127

DataRobot Python API Documentation, Release 3.2.2

Delete a Deployment

To mark a deployment as deleted, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.delete()

Activate or deactivate a Deployment

To activate a deployment, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.activate()
deployment.status
>>> 'active'

To deactivate a deployment, use the following command.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.deactivate()
deployment.status
>>> 'inactive'

Make batch predictions with a deployment

DataRobot provides a small utility function to make batch predictions using a deployment: Deployment.
predict_batch .

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
To note: `source` can be a file path, a file, or a pandas DataFrame
prediction_results_as_dataframe = deployment.predict_batch(

source="./my_local_file.csv",
)

128 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Model Replacement

A deployment’s model can be replaced effortlessly with zero interruption of predictions.

Model replacement is an asynchronous process, which means some preparatory work may be performed after the initial
request is completed. Predictions made against this deployment will start using the new model as soon as the request
is completed. There will be no interruption for predictions throughout the process. The replace_model() function
won’t return until the asynchronous process is fully finished.

Alongside the identifier of the new model, a reason is also required. The reason is stored in model history of the
deployment for bookkeeping purpose. An enum MODEL_REPLACEMENT_REASON is provided for convenience, all
possible values are documented below:

• MODEL_REPLACEMENT_REASON.ACCURACY

• MODEL_REPLACEMENT_REASON.DATA_DRIFT

• MODEL_REPLACEMENT_REASON.ERRORS

• MODEL_REPLACEMENT_REASON.SCHEDULED_REFRESH

• MODEL_REPLACEMENT_REASON.SCORING_SPEED

• MODEL_REPLACEMENT_REASON.OTHER

Here is an example of model replacement:

import datarobot as dr
from datarobot.enums import MODEL_REPLACEMENT_REASON

project = dr.Project.get('5cc899abc191a20104ff446a')
model = project.get_models()[0]

deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.model['id'], deployment.model['type']
>>> ('5c0a979859b00004ba52e431', 'Decision Tree Classifier (Gini)')

deployment.replace_model('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.ACCURACY)
deployment.model['id'], deployment.model['type']
>>> ('5c0a969859b00004ba52e41b', 'Support Vector Classifier (Linear Kernel)')

Validation

Before initiating the model replacement request, it is usually a good idea to use the validate_replacement_model()
function to validate if the new model can be used as a replacement.

The validate_replacement_model() function returns the validation status, a message and a checks dictionary. If
the status is ‘passing’ or ‘warning’, use replace_model() to perform model the replacement. If status is ‘failing’,
refer to the checks dict for more details on why the new model cannot be used as a replacement.

import datarobot as dr

project = dr.Project.get('5cc899abc191a20104ff446a')
model = project.get_models()[0]
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
status, message, checks = deployment.validate_replacement_model(new_model_id=model.id)
status

(continues on next page)

2.2. User Guide 129

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> 'passing'

`checks` can be inspected for detail, showing two examples here:
checks['target']
>>> {'status': 'passing', 'message': 'Target is compatible.'}
checks['permission']
>>> {'status': 'passing', 'message': 'User has permission to replace model.'}

Monitoring

Deployment monitoring can be categorized into several area of concerns:

• Service Stats & Service Stats Over Time

• Accuracy & Accuracy Over Time

With a Deployment object, get functions are provided to allow querying of the monitoring data. Alternatively, it is
also possible to retrieve monitoring data directly using a deployment ID. For example:

from datarobot.models import Deployment, ServiceStats

deployment_id = '5c939e08962d741e34f609f0'

call `get` functions on a `Deployment` object
deployment = Deployment.get(deployment_id)
service_stats = deployment.get_service_stats()

directly fetch without a `Deployment` object
service_stats = ServiceStats.get(deployment_id)

When querying monitoring data, a start and end time can be optionally provided, will accept either a datetime object
or a string. Note that only top of the hour datetimes are accepted, for example: 2019-08-01T00:00:00Z. By default,
the end time of the query will be the next top of the hour, the start time will be 7 days before the end time.

In the over time variants, an optional bucket_size can be provided to specify the resolution of time buckets. For ex-
ample, if start time is 2019-08-01T00:00:00Z, end time is 2019-08-02T00:00:00Z and bucket_size is T1H, then 24
time buckets will be generated, each providing data calculated over one hour. Use construct_duration_string()
to help construct a bucket size string.

Note: The minimum bucket size is one hour.

Service Stats

Service stats are metrics tracking deployment utilization and how well deployments respond to prediction requests.
Use SERVICE_STAT_METRIC.ALL to retrieve a list of supported metrics.

ServiceStats retrieves values for all service stats metrics; ServiceStatsOverTime can be used to fetch how one
single metric changes over time.

from datetime import datetime
from datarobot.enums import SERVICE_STAT_METRIC

(continues on next page)

130 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment

deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
service_stats = deployment.get_service_stats(

start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15)

)
service_stats[SERVICE_STAT_METRIC.TOTAL_PREDICTIONS]
>>> 12597

total_predictions = deployment.get_service_stats_over_time(
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
bucket_size=construct_duration_string(days=1),
metric=SERVICE_STAT_METRIC.TOTAL_PREDICTIONS

)
total_predictions.bucket_values
>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1610),

(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 2249),
(datetime.datetime(2019, 8, 3, 15, 0, tzinfo=tzutc()), 254),
(datetime.datetime(2019, 8, 4, 15, 0, tzinfo=tzutc()), 943),
(datetime.datetime(2019, 8, 5, 15, 0, tzinfo=tzutc()), 1967),
(datetime.datetime(2019, 8, 6, 15, 0, tzinfo=tzutc()), 2810),
(datetime.datetime(2019, 8, 7, 15, 0, tzinfo=tzutc()), 2775)])

Data Drift

Data drift describe how much the distribution of target or a feature has changed comparing to the training data. Deploy-
ment’s target drift and feature drift can be retrieved separately using datarobot.models.deployment.TargetDrift
and datarobot.models.deployment.FeatureDrift. Use DATA_DRIFT_METRIC.ALL to retrieve a list of sup-
ported metrics.

from datetime import datetime
from datarobot.enums import DATA_DRIFT_METRIC
from datarobot.models import Deployment, FeatureDrift

deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
target_drift = deployment.get_target_drift(

start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15)

)
target_drift.drift_score
>>> 0.00408514

feature_drift_data = FeatureDrift.list(
deployment_id='5c939e08962d741e34f609f0',
start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 8, hour=15),
metric=DATA_DRIFT_METRIC.HELLINGER

)
(continues on next page)

2.2. User Guide 131

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

feature_drift = feature_drift_data[0]
feature_drift.name
>>> 'age'
feature_drift.drift_score
>>> 4.16981594

Predictions Over Time

Predictions over time gives insight on how deployment’s prediction response has changed over time. Different data can
be retrieved in each bucket, depending on deployment’s target type:

• row_count: number of rows in the bucket, available for all target types

• mean_predicted_value: mean of predicted value for all rows in the bucket, available for regression target type

• mean_probabilities: mean of predicted probability for each class, available for binary or multiclass classification
target types

• class_distribution: count and percent of predicted class labels, available for binary or multiclass classification
target types

• percentiles: 10th and 90th percentile of predicted value or positive class probability, available for regression and
binary target type

from datetime import datetime
from datarobot.enums import BUCKET_SIZE
from datarobot.models import Deployment

deployment with regression target type
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
predictions_over_time = deployment.get_predictions_over_time(

start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 30),
bucket_size=BUCKET_SIZE.P1D,

)
predicted = [bucket['mean_predicted_value'] for bucket in predictions_over_time.buckets]
predicted
>>> [0.3772, 0.6642,, 0.7937]

deployment with binary target type
deployment = Deployment.get(deployment_id='62fff28a0f5fee488587ce92')
predictions_over_time = deployment.get_predictions_over_time(

start_time=datetime(2023, 4, 1),
end_time=datetime(2023, 4, 22),
bucket_size=BUCKET_SIZE.P7D,

)
predicted = [

{item['class_name']: item['value'] for item in bucket['mean_probabilities']}.get(
→˓'True')
for bucket in predictions_over_time.buckets

]
predicted
>>> [0.3955, 0.4274, None]

132 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Accuracy

A collection of metrics are provided to measure the accuracy of a deployment’s predictions. For deployments with clas-
sification model, use ACCURACY_METRIC.ALL_CLASSIFICATION for all supported metrics; in the case of deployment
with regression model, use ACCURACY_METRIC.ALL_REGRESSION instead.

Similarly with Service Stats, Accuracy and AccuracyOverTime are provided to retrieve all default accuracy metrics
and how one single metric change over time.

from datetime import datetime
from datarobot.enums import ACCURACY_METRIC
from datarobot.helpers.partitioning_methods import construct_duration_string
from datarobot.models import Deployment

deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
accuracy = deployment.get_accuracy(

start_time=datetime(2019, 8, 1, hour=15),
end_time=datetime(2019, 8, 1, 15, 0)

)
accuracy[ACCURACY_METRIC.RMSE]
>>> 943.225

rmse = deployment.get_accuracy_over_time(
start_time=datetime(2019, 8, 1),
end_time=datetime(2019, 8, 3),
bucket_size=construct_duration_string(days=1),
metric=ACCURACY_METRIC.RMSE

)
rmse.bucket_values
>>> OrderedDict([(datetime.datetime(2019, 8, 1, 15, 0, tzinfo=tzutc()), 1777.190657),

(datetime.datetime(2019, 8, 2, 15, 0, tzinfo=tzutc()), 1613.140772)])

It is also possible to retrieve how multiple metrics changes over the same period of time, enabling easier side by side
comparison across different metrics.

from datarobot.enums import ACCURACY_METRIC
from datarobot.models import Deployment

accuracy_over_time = AccuracyOverTime.get_as_dataframe(
ram_app.id, [ACCURACY_METRIC.RMSE, ACCURACY_METRIC.GAMMA_DEVIANCE, ACCURACY_METRIC.

→˓MAD])

Delete Data

Monitoring data accumulated on a deployment can be deleted using delete_monitoring_data(). A start and end
timestamp could be provided to limit data deletion to certain time period.

Warning: Monitoring data is not recoverable once deleted.

import datarobot as dr

(continues on next page)

2.2. User Guide 133

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.delete_monitoring_data(model_id=deployment.model['id'])

Settings

Drift Tracking Settings

Drift tracking is used to help analyze and monitor the performance of a model after it is deployed. When the model of
a deployment is replaced drift tracking status will not be altered.

Use get_drift_tracking_settings() to retrieve the current tracking status for target drift and feature drift.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_drift_tracking_settings()
settings
>>> {'target_drift': {'enabled': True}, 'feature_drift': {'enabled': True}}

Use update_drift_tracking_settings() to update target drift and feature drift tracking status.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_drift_tracking_settings(target_drift_enabled=True, feature_drift_
→˓enabled=True)

Association ID Settings

Association ID is used to identify predictions, so that when actuals are acquired, accuracy can be calculated.

Use get_association_id_settings() to retrieve current association ID settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_association_id_settings()
settings
>>> {'column_names': ['application_id'], 'required_in_prediction_requests': True}

Use update_association_id_settings() to update association ID settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_association_id_settings(column_names=['application_id'], required_in_
→˓prediction_requests=True)

134 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Predictions By Forecast Date

Forecast date setting for the deployment.

Use get_predictions_by_forecast_date_settings() to retrieve current predictions by forecast date settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_predictions_by_forecast_date_settings()
settings
>>> {'enabled': False, 'column_name': 'date (actual)', 'datetime_format': '%Y-%m-%d'}

Use update_predictions_by_forecast_date_settings() to update predictions by forecast date settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_predictions_by_forecast_date_settings(

enable_predictions_by_forecast_date=True,
forecast_date_column_name='date (actual)',
forecast_date_format='%Y-%m-%d')

Challenger Models Settings

Challenger models can be used to compare the currently deployed model (the “champion” model) to another model.

Use get_challenger_models_settings() to retrieve current challenger model settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_challenger_models_settings()
settings
>>> {'enabled': False}

Use update_challenger_models_settings() to update challenger models settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_challenger_models_settings(challenger_models_enabled=True)

Segment Analysis Settings

Segment analysis is a deployment utility that filters data drift and accuracy statistics into unique segment attributes and
values.

Use get_segment_analysis_settings() to retrieve current segment analysis settings.

import datarobot as dr

(continues on next page)

2.2. User Guide 135

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_segment_analysis_settings()
settings
>>> {'enabled': False, 'attributes': []}

Use update_segment_analysis_settings() to update segment analysis settings. Any categorical column can be
a segment attribute.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_segment_analysis_settings(

segment_analysis_enabled=True,
segment_analysis_attributes=["country_code", "is_customer"])

Predictions Data Collection Settings

Predictions Data Collection configures whether prediction requests and results should be saved to Predictions Data
Storage.

Use get_predictions_data_collection_settings() to retrieve current settings of predictions data collection.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_predictions_data_collection_settings()
settings
>>> {'enabled': True}

Use update_predictions_data_collection_settings() to update predictions data collection settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_predictions_data_collection_settings(enabled=True)

Prediction Warning Settings

Prediction Warning is used to enable Humble AI for a deployment which determines if a model is misbehaving when
a prediction goes outside of the calculated boundaries.

Use get_prediction_warning_settings() to retrieve the current prediction warning settings.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
settings = deployment.get_prediction_warning_settings()
settings
>>> {{'enabled': True}, 'custom_boundaries': {'upper': 1337, 'lower': 0}}

Use update_prediction_warning_settings() to update current prediction warning settings.

136 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

Set custom boundaries
deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.update_prediction_warning_settings(

prediction_warning_enabled=True,
use_default_boundaries=False,
lower_boundary=1337,
upper_boundary=2000,

)

Reset boundaries
deployment.update_prediction_warning_settings(

prediction_warning_enabled=True,
use_default_boundaries=True,

)

Secondary Dataset Config Settings

The secondary dataset config for a deployed Feature discovery model can be replaced and retrieved.

Secondary dataset config is used to specify which secondary datasets to use during prediction for a given deployment.

Use update_secondary_dataset_config() to update the secondary dataset config.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
config = deployment.update_secondary_dataset_config(secondary_dataset_config_id=
→˓'5f48cb94408673683eca0fab')
config
>>> '5f48cb94408673683eca0fab'

Use get_secondary_dataset_config() to get the secondary dataset config.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
config = deployment.get_secondary_dataset_config()
config
>>> '5f48cb94408673683eca0fab'

Share deployments

You can grant or revoke other users’ access to a deployment.

2.2. User Guide 137

DataRobot Python API Documentation, Release 3.2.2

Access levels

For deployments, there are 3 access levels:

OWNER - Allows all actions on a deployment.

USER - Can see the deployment in the DataRobot UI and see the prediction statistics of the deployment, but cannot edit
or delete the deployment.

CONSUMER - Can only make predictions on the deployment. Cannot see the deployment in the DataRobot UI or retrieve
prediction statistics for the deployment in the API.

Sharing

Use list_shared_roles() to get a list of users, groups, and organizations that currently have a role on the project.
Each role will be returned as a datarobot.models.deployment.DeploymentSharedRole.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
→˓'name': 'user@datarobot.com'},
{'role': 'USER', 'id': '5c939e08962d741e34f609f1', 'share_recipient_type': 'group',
→˓'name': 'Example Group'},
{'role': 'CONSUMER', 'id': '5c939e08962d741e34f609f2', 'share_recipient_type':
→˓'organization', 'name': 'Example Org'}]

Use update_shared_roles() to grant and revoke roles on the deployment. This function takes a list
of datarobot.models.deployment.DeploymentGrantSharedRoleWithId and datarobot.models.
deployment.DeploymentGrantSharedRoleWithUsername objects and updates roles accordingly.

import datarobot as dr

deployment = dr.Deployment.get(deployment_id='5c939e08962d741e34f609f0')
roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
→˓'name': 'user@datarobot.com'}]

new_role = DeploymentGrantSharedRoleWithUsername(username='user_2@datarobot.com', role=
→˓'OWNER')
response = deployment.update_shared_roles([new_role])
response.status_code
>>> 204

roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
→˓'name': 'user@datarobot.com'},
{'role': 'OWNER', 'id': '5c939e08962d741e34f609f1', 'share_recipient_type': 'user',

→˓'name': 'user_2@datarobot.com'}]

(continues on next page)

138 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

revoke_role = DeploymentGrantSharedRoleWithUsername(username='user_2@datarobot.com',␣
→˓role='NO_ROLE')
response = deployment.update_shared_roles([revoke_role])
response.status_code
>>> 204

roles = deployment.list_shared_roles()
[role.to_dict() for role in roles]
>>> [{'role': 'OWNER', 'id': '5c939e08962d741e34f609f0', 'share_recipient_type': 'user',
→˓'name': 'user@datarobot.com'}]

Custom Models

Custom models provide users the ability to run arbitrary modeling code in an environment defined by the user.

Manage Execution Environments

Execution Environment defines the runtime environment for custom models. Execution Environment Version is a
revision of Execution Environment with an actual runtime definition. Please refer to DataRobot User Models (https:
//github.com/datarobot/datarobot-user-models) for sample environments.

Create Execution Environment

To create an Execution Environment run:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",

)

execution_environment.id
>>> '5b6b2315ca36c0108fc5d41b'

There are 2 ways to create an Execution Environment Version: synchronous and asynchronous.

Synchronous way means that program execution will be blocked until an Execution Environment Version creation
process is finished with either success or failure:

import datarobot as dr

use execution_environment created earlier

environment_version = dr.ExecutionEnvironmentVersion.create(
execution_environment.id,
docker_context_path="datarobot-user-models/public_dropin_environments/python3_pytorch

→˓",
max_wait=3600, # 1 hour timeout

)
(continues on next page)

2.2. User Guide 139

https://github.com/datarobot/datarobot-user-models
https://github.com/datarobot/datarobot-user-models

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

environment_version.id
>>> '5eb538959bc057003b487b2d'
environment_version.build_status
>>> 'success'

Asynchronous way means that program execution will be not blocked, but an Execution Environment Version created
will not be ready to be used for some time, until its creation process is finished. In such case, it will be required to
manually call refresh() for the Execution Environment Version and check if its build_status is “success”. To create
an Execution Environment Version without blocking a program, set max_wait to None:

import datarobot as dr

use execution_environment created earlier

environment_version = dr.ExecutionEnvironmentVersion.create(
execution_environment.id,
docker_context_path="datarobot-user-models/public_dropin_environments/python3_pytorch

→˓",
max_wait=None, # set None to not block execution on this method

)

environment_version.id
>>> '5eb538959bc057003b487b2d'
environment_version.build_status
>>> 'processing'

after some time
environment_version.refresh()
environment_version.build_status
>>> 'success'

If your environment requires additional metadata to be supplied for models using it, you can create an environment
with additional metadata keys. Custom model versions that use this environment must specify values for these keys
before they can be used to run tests or make deployments. The values will be baked in as environment variables with
field_name as the environment variable name.

import datarobot as dr
from datarobot.models.execution_environment import RequiredMetadataKey

execution_environment = dr.ExecutionEnvironment.create(
name="Python3 PyTorch Environment",
description="This environment contains Python3 pytorch library.",
required_metadata_keys=[

RequiredMetadataKey(field_name="MY_VAR", display_name="A value needed by hte␣
→˓environment")

],
)

model_version = dr.CustomModelVersion.create_clean(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,

(continues on next page)

140 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

folder_path=custom_model_folder,
required_metadata={"MY_VAR": "a value"}

)

List Execution Environments

Use the following command to list execution environments available to the user.

import datarobot as dr

execution_environments = dr.ExecutionEnvironment.list()
execution_environments
>>> [ExecutionEnvironment('[DataRobot] Python 3 PyTorch Drop-In'), ExecutionEnvironment(
→˓'[DataRobot] Java Drop-In')]

environment_versions = dr.ExecutionEnvironmentVersion.list(execution_environment.id)
environment_versions
>>> [ExecutionEnvironmentVersion('v1')]

Refer to ExecutionEnvironment for properties of the execution environment object and
ExecutionEnvironmentVersion for properties of the execution environment object version.

You can also filter the execution environments that are returned by passing a string as search_for parameter - only the
execution environments that contain the passed string in name or description will be returned.

import datarobot as dr

execution_environments = dr.ExecutionEnvironment.list(search_for='java')
execution_environments
>>> [ExecutionEnvironment('[DataRobot] Java Drop-In')]

Execution environment versions can be filtered by build status.

import datarobot as dr

environment_versions = dr.ExecutionEnvironmentVersion.list(
execution_environment.id, dr.EXECUTION_ENVIRONMENT_VERSION_BUILD_STATUS.PROCESSING

)
environment_versions
>>> [ExecutionEnvironmentVersion('v1')]

Retrieve Execution Environment

To retrieve an execution environment and an execution environment version by identifier, rather than list all available
ones, do the following:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
→˓'5506fcd38bd88f5953219da0')

(continues on next page)

2.2. User Guide 141

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

execution_environment
>>> ExecutionEnvironment('[DataRobot] Python 3 PyTorch Drop-In')

environment_version = dr.ExecutionEnvironmentVersion.get(
execution_environment_id=execution_environment.id, version_id=

→˓'5eb538959bc057003b487b2d')
environment_version
>>> ExecutionEnvironmentVersion('v1')

Update Execution Environment

To update name and/or description of the execution environment run:

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
→˓'5506fcd38bd88f5953219da0')
execution_environment.update(name='new name', description='new description')

Delete Execution Environment

To delete the execution environment and execution environment version, use the following commands.

import datarobot as dr

execution_environment = dr.ExecutionEnvironment.get(execution_environment_id=
→˓'5506fcd38bd88f5953219da0')
execution_environment.delete()

Get Execution Environment build log

To get execution environment version build log run:

import datarobot as dr

environment_version = dr.ExecutionEnvironmentVersion.get(
execution_environment_id='5506fcd38bd88f5953219da0', version_id=

→˓'5eb538959bc057003b487b2d')
log, error = environment_version.get_build_log()

142 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Manage Custom Models

Custom Inference Model is user-defined modeling code that supports making predictions against it. Custom Inference
Model supports regression and binary classification target types.

To upload actual modeling code Custom Model Version must be created for a custom model. Please see Custom Model
Version documentation.

Create Custom Inference Model

To create a regression Custom Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.REGRESSION,
target_name='MEDV',
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on boston housing',
language='python'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

When creating a binary classification Custom Inference Model, positive_class_label and negative_class_label must be
set:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.BINARY,
target_name='readmitted',
positive_class_label='False',
negative_class_label='True',
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on 10k_diabetes dataset',
language='Python 3'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

When creating a multiclass classification Custom Inference Model, class_labels must be provided:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.MULTICLASS,
target_name='readmitted',

(continues on next page)

2.2. User Guide 143

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

class_labels=['hot dog', 'burrito', 'hoagie', 'reuben'],
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on sandwich dataset',
language='Python 3'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

For convenience when there are many class labels, multiclass labels can also be provided as a file. The file should have
all the class labels separated by newline:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.MULTICLASS,
target_name='readmitted',
class_labels_file='/path/to/classlabels.txt',
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on sandwich dataset',
language='Python 3'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

For unstructured model target_name parameter is optional and is ignored if provided. To create an unstructured Custom
Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 Unstructured Custom Model',
target_type=dr.TARGET_TYPE.UNSTRUCTURED,
description='This is a Python3-based unstructured model',
language='python'

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

For anomaly detection models, the target_name parameter is also optional and is ignored if provided. To create an
anomaly Custom Inference Model run:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 Unstructured Custom Model',
target_type=dr.TARGET_TYPE.ANOMALY,
description='This is a Python3-based anomaly detection model',
language='python'

)
(continues on next page)

144 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

To create a Custom Inference Model with specific k8s resources:

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.BINARY,
target_name='readmitted',
positive_class_label='False',
negative_class_label='True',
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on 10k_diabetes dataset',
language='Python 3',
maximum_memory=512*1024*1024,

)

Custom Inference Model k8s resources are optional and unless specifically provided, the configured defaults will be
used.

To create a Custom Inference Model enabling training data assigment on the model version level, provide
is_training_data_for_versions_permanently_enabled=True parameter. For more information, refer to Cus-
tom model version creation with training data documentation.

import datarobot as dr

custom_model = dr.CustomInferenceModel.create(
name='Python 3 PyTorch Custom Model',
target_type=dr.TARGET_TYPE.REGRESSION,
target_name='MEDV',
description='This is a Python3-based custom model. It has a simple PyTorch model␣

→˓built on boston housing',
language='python',
is_training_data_for_versions_permanently_enabled=True

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

List Custom Inference Models

Use the following command to list Custom Inference Models available to the user:

import datarobot as dr

dr.CustomInferenceModel.list()
>>> [CustomInferenceModel('my model 2'), CustomInferenceModel('my model 1')]

use these parameters to filter results:
(continues on next page)

2.2. User Guide 145

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.CustomInferenceModel.list(
is_deployed=True, # set to return only deployed models
order_by='-updated', # set to define order of returned results
search_for='model 1', # return only models containing 'model 1' in name or␣

→˓description
)
>>> CustomInferenceModel('my model 1')

Please refer to list() for detailed parameter description.

Retrieve Custom Inference Model

To retrieve a specific Custom Inference Model, run:

import datarobot as dr

dr.CustomInferenceModel.get('5ebe95044024035cc6a65602')
>>> CustomInferenceModel('my model 1')

Update Custom Model

To update Custom Inference Model properties execute the following:

import datarobot as dr

custom_model = dr.CustomInferenceModel.get('5ebe95044024035cc6a65602')

custom_model.update(
name='new name',
description='new description',

)

Please, refer to update() for the full list of properties that can be updated.

Download latest revision of Custom Inference Model

To download content of the latest Custom Model Version of CustomInferenceModel as a ZIP archive:

import datarobot as dr

path_to_download = '/home/user/Documents/myModel.zip'

custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b')

custom_model.download_latest_version(path_to_download)

146 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Assign training data to Custom Inference Model

This example assigns training data on the model level. To assign training data on the model version level, see the
Custom model version creation with training data documentation.

To assign training data to Custom Inference Model, run:

import datarobot as dr

path_to_dataset = '/home/user/Documents/trainingDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b')

custom_model.assign_training_data(dataset.id)

To assign training data without blocking a program, set max_wait to None:

import datarobot as dr

path_to_dataset = '/home/user/Documents/trainingDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model = dr.CustomInferenceModel.get('5ebe96b84024035cc6a6560b')

custom_model.assign_training_data(
dataset.id,
max_wait=None

)

custom_model.training_data_assignment_in_progress
>>> True

after some time
custom_model.refresh()
custom_model.training_data_assignment_in_progress
>>> False

Note: training data must be assigned to retrieve feature impact from Custom Model Version. Please see to Custom
Model Version documentation.

Manage Custom Model Versions

Modeling code for Custom Inference Models can be uploaded by creating a Custom Model Version. When creating
a Custom Model Version, the version must be associated with a base execution environment. If the base environment
supports additional model dependencies (R or Python environments) and the Custom Model Version contains a valid
requirements.txt file, the model version will run in an environment based on the base environment with the additional
dependencies installed.

2.2. User Guide 147

DataRobot Python API Documentation, Release 3.2.2

Create Custom Model Version

Upload actual custom model content by creating a clean Custom Model Version:

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"

add files from the folder to the custom model
model_version = dr.CustomModelVersion.create_clean(

custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,
folder_path=custom_model_folder,

)

custom_model.id
>>> '5b6b2315ca36c0108fc5d41b'

or add a list of files to the custom model
model_version_2 = dr.CustomModelVersion.create_clean(

custom_model_id=custom_model.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],

)

and/or set k8s resources to the custom model
model_version_3 = dr.CustomModelVersion.create_clean(

custom_model_id=custom_model.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],
network_egress_policy=dr.NETWORK_EGRESS_POLICY.PUBLIC,
maximum_memory=512*1024*1024,
replicas=1,

)

To create a new Custom Model Version from a previous one, with just some files added or removed, do the following:

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"

file_to_delete = model_version_2.items[0].id

model_version_3 = dr.CustomModelVersion.create_from_previous(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,
files=[(os.path.join(custom_model_folder, 'custom.py'), 'custom.py')],
files_to_delete=[file_to_delete],

)

Please refer to CustomModelFileItem for description of custom model file properties.

To create a new Custom Model Version from a previous one, with just new k8s resources values, do the following:

148 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

import os
import datarobot as dr

custom_model_folder = "datarobot-user-models/model_templates/python3_pytorch"

file_to_delete = model_version_2.items[0].id

model_version_3 = dr.CustomModelVersion.create_from_previous(
custom_model_id=custom_model.id,
base_environment_id=execution_environment.id,
maximum_memory=1024*1024*1024,

)

Create a custom model version with training data

Model version creation allows to provide training (and holdout) data information. Every custom model has to be
explicitly switched to allow training data assignment for model versions. Note that the training data assignment differs
for structured and unstructured models, and should be handled differently.

Enable training data assignment for custom model versions

By default, custom model training data is assigned on the model level; for more information, see the Custom model
training data assignment documentation. When training data is assigned to a model, the same training data is used for
every model version. This method of training data assignment is deprecated and scheduled for removal; however, to
avoid introducing issues for existing models, you must individually convert existing models to perform training data
assignment by model version. This change is permanent and can not be undone. Because the conversion process is
irreversible, it is highly recommended that you do not convert critical models to the new training data assignment
method. Instead, you should duplicate the existing model and test the new method.

To permanently enable training data assignment on the model version level for the specified model, do the following:
.. code-block:: python

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

custom_model = dr.CustomInferenceModel.get(custom_model_id)

custom_model.update(is_training_data_for_versions_permanently_enabled=True) cus-
tom_model.is_training_data_for_versions_permanently_enabled >>> True

Assign training data for structured models

Assign training data for structured models, you can provide the parameters training_dataset_id and partition_column.
Training data assignment is performed asynchronously, so you can create a version in a blocking or non-blocking way
(see examples).

Create a structured model version with blocking (default max_wait=600) and wait for the training data assignment
result.

If the training data assignment fails:
• a datarobot.errors.TrainingDataAssignmentError exception is raised. The exception contains the custom

model ID, the custom model version ID, the failure message.

2.2. User Guide 149

DataRobot Python API Documentation, Release 3.2.2

• a new custom model version is still created and can be fetched for further processing, but it’s not possible
to create a model package from it or deploy it.

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(

custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",

)
except TrainingDataAssignmentError as e:

print(e)

Fetching model version in the case of the assignment error, example 1:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(

custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",

)
except TrainingDataAssignmentError as e:

version = CustomModelVersion.get(
custom_model_id="6444482e5583f6ee2e572265",
custom_model_version_id=e.custom_model_version_id,

)
print(version.training_data.dataset_id)
print(version.training_data.dataset_version_id)
print(version.training_data.dataset_name)
print(version.training_data.assignment_error)

Fetching model version in the case of the assignment error, example 2:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)
custom_model = dr.CustomInferenceModel.get("6444482e5583f6ee2e572265")

try:
version = dr.CustomModelVersion.create_from_previous(

custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",

)
(continues on next page)

150 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

except TrainingDataAssignmentError as e:
pass

custom_model.refresh()
version = custom_model.latest_version
print(version.training_data.dataset_id)
print(version.training_data.dataset_version_id)
print(version.training_data.dataset_name)
print(version.training_data.assignment_error)

Create a structured model version with a non-blocking (set max_wat=None) training data assignment. In this case, it
is the user’s responsibility to poll for version.training_data.assignment_in_progress. Once the assignment is finished,
check for errors if version.training_data.assignment_in_progress==False. If version.training_data.assignment_error
is None, then there is no error.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",
max_wait=None,

)

while version.training_data.assignment_in_progress:
time.sleep(10)
version.refresh()

if version.training_data.assignment_error:
print(version.training_data.assignment_error["message"])

Assign training data for unstructured models

For unstructured models: you can provide the parameters training_dataset_id and holdout_dataset_id. The training
data assignment is performed synchronously and the max_wait parameter is ignored.

The example below shows how to create an unstructured model version with training and holdout data.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",
holdout_dataset_id="6421f2149a4f9b1bec6ad6ef",

)
if version.training_data.assignment_error:

print(version.training_data.assignment_error["message"])

2.2. User Guide 151

DataRobot Python API Documentation, Release 3.2.2

Remove training data

By default, training and holdout data are copied to a new model version from the previous model version. If you don’t
want to keep training and holdout data for the new version, set keep_training_holdout_data to False.

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
keep_training_holdout_data=False,

)

List Custom Model Versions

Use the following command to list Custom Model Versions available to the user:

import datarobot as dr

dr.CustomModelVersion.list(custom_model.id)

>>> [CustomModelVersion('v2.0'), CustomModelVersion('v1.0')]

Retrieve Custom Model Version

To retrieve a specific Custom Model Version, run:

import datarobot as dr

dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
→˓'5ebe96b84024035cc6a6560b')

>>> CustomModelVersion('v2.0')

Update Custom Model Version

To update Custom Model Version description execute the following:

import datarobot as dr

custom_model_version = dr.CustomModelVersion.get(
custom_model.id,
custom_model_version_id='5ebe96b84024035cc6a6560b',

)

custom_model_version.update(description='new description')

(continues on next page)

152 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_version.description
>>> 'new description'

Download Custom Model Version

Download content of the Custom Model Version as a ZIP archive:

import datarobot as dr

path_to_download = '/home/user/Documents/myModel.zip'

custom_model_version = dr.CustomModelVersion.get(
custom_model.id,
custom_model_version_id='5ebe96b84024035cc6a6560b',

)

custom_model_version.download(path_to_download)

Start Custom Model Inference Legacy Conversion

Custom model version may include SAS files, with a main program entrypoint. In order to be able to use this model it
is required to run a conversion. The conversion can later be fetched and examined by reading the conversion print-outs.
By default, a conversion is initiated in a non-blocking mode. If a max_wait parameter is provided, than the call is
blocked until the conversion is completed. The results can than be read by fetching the conversion entity.

import datarobot as dr

Read a custom model version
custom_model_version = dr.CustomModelVersion.get(model_id, model_version_id)

Find the main program item ID
main_program_item_id = None
for item in cm_ver.items:

if item.file_name.lower().endswith('.sas'):
main_program_item_id = item.id

Execute the conversion
if async:

This is a non-blocking call
conversion_id = dr.models.CustomModelVersionConversion.run_conversion(

custom_model_version.custom_model_id,
custom_model_version.id,
main_program_item_id,

)
else:

This call is blocked until a completion or a timeout
conversion_id = dr.models.CustomModelVersionConversion.run_conversion(

custom_model_version.custom_model_id,
custom_model_version.id,

(continues on next page)

2.2. User Guide 153

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

main_program_item_id,
max_wait=60,

)

Monitor Custom Model Inference Legacy Conversion Process

If a custom model version conversion was initiated in a non-blocking mode, it is possible to monitor the progress as
follows:

import datarobot as dr

while True:
conversion = dr.models.CustomModelVersionConversion.get(

custom_model_id, custom_model_version_id, conversion_id,
)
if conversion.conversion_in_progress:

logging.info('Conversion is in progress...')
time.sleep(1)

else:
if conversion.conversion_succeeded:

logging.info('Conversion succeeded')
else:

logging.error(f'Conversion failed!\n{conversion.log_message}
→˓')

break

Stop a Custom Model Inference Legacy Conversion

It is possible to stop a custom model version conversion that is in progress. The call is non-blocking and you may keep
monitoring the conversion progress (see above) until is it completed.

import datarobot as dr

dr.models.CustomModelVersionConversion.stop_conversion(
custom_model_id, custom_model_version_id, conversion_id,

)

Calculate Custom ModelVersion feature impact

To trigger calculation of Custom Model Version feature impact, training data must be assigned to a Custom Inference
Model. Please refer to Custom Inference Model documentation. If training data is assigned, run the following to trigger
the calculation of the feature impact:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
→˓'5ebe96b84024035cc6a6560b')

version.calculate_feature_impact()

154 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

To trigger calculating feature impact without blocking a program, set max_wait to None:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
→˓'5ebe96b84024035cc6a6560b')

version.calculate_feature_impact(max_wait=None)

Retrieve Custom Inference Image feature impact

To retrieve Custom Model Version feature impact, it must be calculated beforehand. Please refer to Custom Inference
Image feature impact documentation. Run the following to get feature impact:

import datarobot as dr

version = dr.CustomModelVersion.get(custom_model.id, custom_model_version_id=
→˓'5ebe96b84024035cc6a6560b')

version.get_feature_impact()
>>> [{'featureName': 'B', 'impactNormalized': 1.0, 'impactUnnormalized': 1.
→˓1085356209402688, 'redundantWith': 'B'}...]

Preparing a Custom Model Version for Use

If your custom model version has dependencies, a dependency build must be completed before the model can be used.
The dependency build installs your model’s dependencies into the base environment associated with the model version.

Starting the Dependency Build

To start the Custom Model Version Dependency Build, run:

import datarobot as dr

build_info = dr.CustomModelVersionDependencyBuild.start_build(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
max_wait=3600, # 1 hour timeout

)

build_info.build_status
>>> 'success'

To start Custom Model Version Dependency Build without blocking a program until the test finishes, set max_wait to
None:

import datarobot as dr

build_info = dr.CustomModelVersionDependencyBuild.start_build(
custom_model_id=custom_model.id,

(continues on next page)

2.2. User Guide 155

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_version_id=model_version.id,
max_wait=None,

)

build_info.build_status
>>> 'submitted'

after some time
build_info.refresh()
build_info.build_status
>>> 'success'

In case the build fails, or you are just curious, do the following to retrieve the build log once complete:

print(build_info.get_log())

To cancel a Custom Model Version Dependency Build, simply run:

build_info.cancel()

Manage Custom Model Tests

A Custom Model Test represents testing performed on custom models.

Create Custom Model Test

To create Custom Model Test, run:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout

)

custom_model_test.overall_status
>>> 'succeeded'

or, with k8s resources:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

(continues on next page)

156 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout
maximum_memory=1024*1024*1024,

)

custom_model_test.overall_status
>>> 'succeeded'

To start Custom Model Test without blocking a program until the test finishes, set max_wait to None:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=None,

)

custom_model_test.overall_status
>>> 'in_progress'

after some time
custom_model_test.refresh()
custom_model_test.overall_status
>>> 'succeeded'

Running a Custom Model Test uses the Custom Model Version’s base image with its dependencies installed as an
execution environment. To start Custom Model Test using an execution environment “as-is”, without the model’s
dependencies installed, supply an environment ID and (optionally) and environment version ID:

import datarobot as dr

path_to_dataset = '/home/user/Documents/testDataset.csv'
dataset = dr.Dataset.create_from_file(file_path=path_to_dataset)

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,
dataset_id=dataset.id,
max_wait=3600, # 1 hour timeout

)

custom_model_test.overall_status
>>> 'succeeded'

In case a test fails, do the following to examine details of the failure:

2.2. User Guide 157

DataRobot Python API Documentation, Release 3.2.2

for name, test in custom_model_test.detailed_status.items():
print('Test: {}'.format(name))
print('Status: {}'.format(test['status']))
print('Message: {}'.format(test['message']))

print(custom_model_test.get_log())

To cancel a Custom Model Test, simply run:

custom_model_test.cancel()

To start Custom Model Test for an unstructured custom model, dataset details should not be provided:

import datarobot as dr

custom_model_test = dr.CustomModelTest.create(
custom_model_id=custom_model.id,
custom_model_version_id=model_version.id,

)

List Custom Model Tests

Use the following command to list Custom Model Tests available to the user:

import datarobot as dr

dr.CustomModelTest.list(custom_model_id=custom_model.id)
>>> [CustomModelTest('5ec262604024031bed5aaa16')]

Retrieve Custom Model Test

To retrieve a specific Custom Model Test, run:

import datarobot as dr

dr.CustomModelTest.get(custom_model_test_id='5ec262604024031bed5aaa16')
>>> CustomModelTest('5ec262604024031bed5aaa16')

2.2.5 Administration

The administration section provides details for users and administrators.

158 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Credentials

Credentials for user with Database and Data Storage Connectivity can be stored by the system.

To interact with Credentials API, you should use the Credential class.

List credentials

In order to retrieve the list of all credentials accessible for current user you can use Credential.list.

import datarobot as dr

credentials = dr.Credential.list()

Each Credential object contains the credential_id string field which can be used e.g. in Batch Predictions.

Basic credentials

You can store generic user/password credentials:

>>> import datarobot as dr
>>> cred = dr.Credential.create_basic(
... name='my_db_cred',
... user='<user>',
... password='<password>',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e0f', 'my_db_cred', 'basic'),

store cred.credential_id

>>> cred = dr.Credential.get(credential_id)
>>> cred.credential_id
'5e429d6ecf8a5f36c5693e0f'

Stored credential can be used e.g. in Batch Bredictions for JDBC intake or output.

S3 credentials

You can store AWS credentials using the three parameters:

• aws_access_key_id

• aws_secret_access_key

• aws_session_token

>>> import datarobot as dr
>>> cred = dr.Credential.create_s3(
... name='my_s3_cred',
... aws_access_key_id='<aws access key id>',
... aws_secret_access_key='<aws secret access key>',
... aws_session_token='<aws session token>',

(continues on next page)

2.2. User Guide 159

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),

store cred.credential_id

>>> cred = dr.Credential.get(credential_id)
>>> cred.credential_id
'5e429d6ecf8a5f36c5693e03'

Stored credential can be used e.g. in Batch Bredictions for S3 intake or output.

OAUTH credentials

You can store oauth credentials in the store:

>>> import datarobot as dr
>>> cred = dr.Credential.create_oauth(
... name='my_oauth_cred',
... token='<token>',
... refresh_token='<refresh_token>',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e0f', 'my_oauth_cred', 'oauth'),

store cred.credential_id

>>> cred = dr.Credential.get(credential_id)
>>> cred.credential_id
'5e429d6ecf8a5f36c5693e0f'

Credential Data

For methods that accept credential data instead of user/password, or credential ID:

{
"credentialType": "basic",
"user": "user123",
"password": "pass123",

}

{
"credentialType": "s3",
"awsAccessKeyId": "key123",
"awsSecretAccessKey": "secret123",

}

{
"credentialType": "oauth",

(continues on next page)

160 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

"oauthRefreshToken": "token123",
"oauthClientId": "client123",
"oauthClientSecret": "secret123",

}

Sharing

Once you have created entities in DataRobot, you may want to share them with collaborators. DataRobot provides an
API for sharing the following entities:

• Data Sources and Data Stores (see Database Connectivity for more info on connecting to JDBC databases)

• Datasets

• Projects

• Calendar Files

• Model Deployments (see Deployment Sharing for more information on sharing deployments)

• Use Cases (Sharing for Use Cases is slightly different than what’s documented on this page. See Use Case
Sharing for more information and examples.)

Access Levels

Entities can be shared at varying access levels. For example, you can allow someone to create projects from a data
source you have built without letting them delete it.

Each entity type uses slightly different permission names intended to convey more specifically what kind of actions are
available, and these roles fall into three categories. These generic role names can be used in the sharing API for any
entity.

For the complete set of actions granted by each role on a given entity, please see the user documentation in the web
application.

• OWNER

– used for all entities

– allows any action including deletion

• READ_WRITE

– known as as EDITOR on data sources and data stores

– allows modifications to the state, e.g. renaming and creating data sources from a data store, but not deleting
the entity

• READ_ONLY

– known as CONSUMER on data sources and data stores

– for data sources, enables creating projects and predictions; for data stores, allows viewing them only.

Finally, when a user’s new role is specified as None, their access will be revoked.

In addition to the role, some entities (currently only data sources and data stores) allow separate control over whether
a new user should be able to share that entity further. When granting access to a user, the can_share parameter
determines whether that user can, in turn, share this entity with another user. When this parameter is specified as false,

2.2. User Guide 161

DataRobot Python API Documentation, Release 3.2.2

the user in question will have all the access to the entity granted by their role and be able to remove themselves if
desired, but be unable to change the role of any other user.

Examples

Transfer access to the data source from old_user@datarobot.com to new_user@datarobot.com

import datarobot as dr

new_access = dr.SharingAccess(
"new_user@datarobot.com",
dr.enums.SHARING_ROLE.OWNER,
can_share=True,

)
access_list = [dr.SharingAccess("old_user@datarobot.com", None), new_access]

dr.DataSource.get('my-data-source-id').share(access_list)

Checking access to a project

import datarobot as dr

project = dr.Project.create('mydata.csv', project_name='My Data')

access_list = project.get_access_list()

access_list[0].username

Transfer ownership of all projects owned by your account to new_user@datarobot.com without sending notifications.

import datarobot as dr

Put path to YAML credentials below
dr.Client(config_path= '.yaml')

Get all projects for your account and store the ids in a list
projects = dr.Project.list()

project_ids = [project.id for project in projects]

List of emails to share with
share_targets = ['new_user@datarobot.com']

Target role
target_role = dr.enums.SHARING_ROLE.OWNER

for pid in project_ids:

project = dr.Project.get(project_id=pid)

shares = []

for user in share_targets:
(continues on next page)

162 Chapter 2. Table of contents

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

shares.append(dr.SharingAccess(username=user, role=target_role))

project.share(shares, send_notification=False)

2.2.6 Use Cases

The Use Cases section provides details on how to utilize and manage DataRobot Use Cases in your Python code.

Use Cases

Use Cases are folder-like containers in DataRobot Workbench that allow you to group all assets related to solving a
specific business problem inside of a single, manageable entity. These assets include datasets, models, experiments,
No-Code AI Apps, and notebooks. You can share entire Use Cases or the individual assets they contain.

The primary benefit of a Use Case is that it enables experiment-based, iterative workflows. By housing all key insights
in a single location, data scientists have improved navigation of assets and a cleaner interface for experiment creation
and model training, review, and evaluation.

Specifically, Use Cases allow you to:

• Organize your work — group all related datasets, experiments, notebooks, etc. by the problem they solve.

• Find assets easily. Use Cases eliminate the need to search through hundreds of unrelated projects or scrape emails
for hyperlinks to specific assets.

• Share collections of assets. You can share entire Use Cases, containing all the assets your team needs to partici-
pate.

• Manage access. Add or remove members to a Use Case to control their access.

• Monitor changes. Receive notifications when a team member adds, removes, or modifies any asset in a Use Case.

Currently, Use Cases in the Python client support interactions with binary classification and regression projects, appli-
cations, and datasets. Development is ongoing, so see the release notes for a full list of supported capabilities.

For a more in-depth look at Use Cases and the DataRobot Workbench, refer to the Workbench documentation.

Add to a Use Case

Currently, only project, dataset, and application instances can be added to a Use Case via the Python client.

The process of adding a dataset is shown in the example below:

import datarobot as dr

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

new_dataset = dr.Dataset.create_from_file(
(continues on next page)

2.2. User Guide 163

https://docs.datarobot.com/en/docs/workbench/wb-getstarted/wb-overview.html

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

file_path="/foo/bar/risk_data.csv",
)

risk_use_case.add(entity=new_dataset)

risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27')]

You can add an application to a Use Case in a similar way. The primary difference is that you cannot create applications
with the Python client. Instead, retrieve an application using its ID or pull it from a retrieved list of applications and
then add it to a Use Case:

import datarobot as dr

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

existing_application = dr.Application.list()[0]

risk_use_case.add(entity=existing_application)

risk_use_case.list_applications()
>>> [Application(name='Financial Risk Detection')]

Alternatively, the UseCaseReferenceEntity returned from UseCase.add can be used to share an entity between
Use Cases:

import datarobot as dr

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case_1 = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

risk_use_case_2 = dr.UseCase.create(
name="Financial Risk Experimentation Environment 2",
description="For running experiments on modeling financial risks to our business.",

)

new_dataset = dr.Dataset.create_from_file(
file_path="/foo/bar/risk_data.csv",

)

dataset_entity = risk_use_case_1.add(entity=new_dataset)
risk_use_case_2.add(entity=dataset_entity)

(continues on next page)

164 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

risk_use_case_2.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27')]

To add a project to a Use Case, it must meet the following conditions:

• It must be binary classification or regression project

• The associated dataset must be linked to the same Use Case

• Modeling must be in progress (via UI, the analyze_and_model method, or any other methods that initiate mod-
eling)

import datarobot as dr

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

new_dataset = dr.Dataset.create_from_file(
file_path="/foo/bar/risk_data.csv",
use_case=risk_use_case

)

risk_use_case.add(entity=new_dataset)

new_project = dr.Project.create_from_dataset(
dataset_id=new_dataset.dataset_id,
project_name="Risk Assessment v1",
use_case=risk_use_case

)
new_project.analyze_and_model(target="credit_risk")

risk_use_case.add(entity=new_project)

risk_use_case.list_projects()
>>> [Project(Risk Assessment v1)]
risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27')]

Configuration

There are three primary ways of adding new projects or datasets to Use Cases once they’ve been generated.

1. The easiest method is to directly pass a Use Case to one of the project or dataset creation methods. Passing the
use case directly allows for you to finely control what is added to a Use Case in your code. For example, the
following code example creates a new Use Case, then creates a new project that is automatically added to the
Use Case.

import datarobot as dr

(continues on next page)

2.2. User Guide 165

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

new_project = dr.Project.create(
sourcedata="/foo/bar/risk_data.csv",
project_name="Risk Assessment v1",
use_case=risk_use_case

)

risk_use_case.list_projects()
>>> [Project(Risk Assessment v1)]

2. You can also use a context manager to perform a series of actions that automatically result in projects or datasets
being added to a Use Case without having to manually pass the Use Case yourself. This can be extremely useful
if you have a series of calls you want to make that all should be added to a Use Case. For example:

import datarobot as dr
from datarobot.client import client_configuration

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2")

risk_use_case = dr.UseCase.create(
name="Financial Risk Experimentation Environment",
description="For running experiments on modeling financial risks to our business.",

)

with risk_use_case:

new_dataset = dr.Dataset.create_from_file(
file_path="/foo/bar/risk_data.csv",

)

risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27')]

3. You can also set a global Use Case to automatically add all project and dataset instances that are created by
your code. This is useful if all of the work you are doing should be contained in a single Use Case, but risks
accidentally adding projects and datasets that should not be included in your Use Case. Setting a global default
Use Case requires knowing the ID of your Use Case ahead of time. For example:

import datarobot as dr
from datarobot.client import client_configuration

dr.Client(token="<token>", endpoint="https://app.datarobot.com/api/v2", default_use_case=
→˓"639ce542862e9b1b1bfa8f1b")

new_dataset = dr.Dataset.create_from_file(file_path="/foo/bar/risk_data.csv")

(continues on next page)

166 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

risk_use_case = dr.UseCase.get(id="639ce542862e9b1b1bfa8f1b")
risk_use_case.list_datasets()
>>> [Dataset(name='risk_data.csv', id='646e8bb507b108ce7b474b27')]

Sharing

Overview

Instances of datarobot.models.sharing.SharingRole can be created to define a new role grant (or revocation).

The UseCase.share() instance method takes a list of SharingRole as its only argument. Calling this method will
apply the list of SharingRoles to the given UseCase.

Use Cases support SHARING_ROLE.OWNER, SHARING_ROLE.EDITOR, SHARING_ROLE.CONSUMER and
SHARING_ROLE.NO_ROLE as possible role designations (see datarobot.enums.SHARING_ROLE). Currently,
the only supported SHARING_RECIPIENT_TYPE is USER.

Examples

Suppose you had a list of user IDs you wanted to share this Use Case with. You could use a loop to generate a list of
SharingRole objects for them, and bulk share this Use Case.

>>> from datarobot.models.use_cases.use_case import UseCase
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_ids = ["60912e09fd1f04e832a575c1", "639ce542862e9b1b1bfa8f1b",
→˓"63e185e7cd3a5f8e190c6393"]
>>> sharing_roles = []
>>> for user_id in user_ids:
... new_sharing_role = SharingRole(
... role=SHARING_ROLE.CONSUMER,
... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
... id=user_id,
... can_share=True,
...)
... sharing_roles.append(new_sharing_role)
>>> use_case = UseCase.get(use_case_id="5f33f1fd9071ae13568237b2")
>>> use_case.share(roles=sharing_roles)

Similarly, a SharingRole instance can be used to remove a user’s access if the role is set to SHARING_ROLE.NO_ROLE,
like in this example:

>>> from datarobot.models.use_cases.use_case import UseCase
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_to_remove = "foo.bar@datarobot.com"
... remove_sharing_role = SharingRole(
... role=SHARING_ROLE.NO_ROLE,
... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,

(continues on next page)

2.2. User Guide 167

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

... username=user_to_remove,

... can_share=False,

...)
>>> use_case = UseCase.get(use_case_id="5f33f1fd9071ae13568237b2")
>>> use_case.share(roles=[remove_sharing_role])

2.3 API Reference

2.3.1 API Object

class datarobot.models.api_object.APIObject

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

168 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.2 Advanced Options

class datarobot.helpers.AdvancedOptions(weights=None, response_cap=None, blueprint_threshold=None,
seed=None, smart_downsampled=None,
majority_downsampling_rate=None, offset=None,
exposure=None, accuracy_optimized_mb=None,
scaleout_modeling_mode=None, events_count=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
only_include_monotonic_blueprints=None,
allowed_pairwise_interaction_groups=None,
blend_best_models=None, scoring_code_only=None,
prepare_model_for_deployment=None,
consider_blenders_in_recommendation=None,
min_secondary_validation_model_count=None,
shap_only_mode=None,
autopilot_data_sampling_method=None,
run_leakage_removed_feature_list=None,
autopilot_with_feature_discovery=False,
feature_discovery_supervised_feature_reduction=None,
exponentially_weighted_moving_alpha=None,
external_time_series_baseline_dataset_id=None,
use_supervised_feature_reduction=True,
primary_location_column=None, protected_features=None,
preferable_target_value=None, fairness_metrics_set=None,
fairness_threshold=None, bias_mitigation_feature_name=None,
bias_mitigation_technique=None,
include_bias_mitigation_feature_as_predictor_variable=None,
default_monotonic_increasing_featurelist_id=None,
default_monotonic_decreasing_featurelist_id=None)

Used when setting the target of a project to set advanced options of modeling process.

Parameters
weights [string, optional] The name of a column indicating the weight of each row

response_cap [bool or float in [0.5, 1), optional] Defaults to none here, but server defaults to
False. If specified, it is the quantile of the response distribution to use for response capping.

blueprint_threshold [int, optional] Number of hours models are permitted to run before being
excluded from later autopilot stages Minimum 1

seed [int, optional] a seed to use for randomization

smart_downsampled [bool, optional] whether to use smart downsampling to throw away excess
rows of the majority class. Only applicable to classification and zero-boosted regression
projects.

majority_downsampling_rate [float, optional] the percentage between 0 and 100 of the major-
ity rows that should be kept. Specify only if using smart downsampling. May not cause the
majority class to become smaller than the minority class.

offset [list of str, optional] (New in version v2.6) the list of the names of the columns containing
the offset of each row

exposure [string, optional] (New in version v2.6) the name of a column containing the exposure
of each row

2.3. API Reference 169

DataRobot Python API Documentation, Release 3.2.2

accuracy_optimized_mb [bool, optional] (New in version v2.6) Include additional, longer-
running models that will be run by the autopilot and available to run manually.

scaleout_modeling_mode [string, optional] (Deprecated in 2.28. Will be removed in 2.30)
DataRobot no longer supports scaleout models. Please remove any usage of this parame-
ter as it will be removed from the API soon.

events_count [string, optional] (New in version v2.8) the name of a column specifying events
count.

monotonic_increasing_featurelist_id [string, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. If None, no such constraints are enforced. When specified, this will set a default for
the project that can be overriden at model submission time if desired.

monotonic_decreasing_featurelist_id [string, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the
target. If None, no such constraints are enforced. When specified, this will set a default for
the project that can be overriden at model submission time if desired.

only_include_monotonic_blueprints [bool, optional] (new in version 2.11) when true, only
blueprints that support enforcing monotonic constraints will be available in the project or
selected for the autopilot.

allowed_pairwise_interaction_groups [list of tuple, optional] (New in version v2.19) For
GA2M models - specify groups of columns for which pairwise interactions will be allowed.
E.g. if set to [(A, B, C), (C, D)] then GA2M models will allow interactions between columns
AxB, BxC, AxC, CxD. All others (AxD, BxD) will not be considered.

blend_best_models: bool, optional (New in version v2.19) blend best models during Autopilot
run.

scoring_code_only: bool, optional (New in version v2.19) Keep only models that can be con-
verted to scorable java code during Autopilot run

shap_only_mode: bool, optional (New in version v2.21) Keep only models that support SHAP
values during Autopilot run. Use SHAP-based insights wherever possible. Defaults to False.

prepare_model_for_deployment: bool, optional (New in version v2.19) Prepare model for
deployment during Autopilot run. The preparation includes creating reduced feature list
models, retraining best model on higher sample size, computing insights and assigning
“RECOMMENDED FOR DEPLOYMENT” label.

consider_blenders_in_recommendation: bool, optional (New in version 2.22.0) Include
blenders when selecting a model to prepare for deployment in an Autopilot Run. Defaults to
False.

min_secondary_validation_model_count: int, optional (New in version v2.19) Compute “All
backtest” scores (datetime models) or cross validation scores for the specified number of the
highest ranking models on the Leaderboard, if over the Autopilot default.

autopilot_data_sampling_method: str, optional (New in version v2.23) one of datarobot.
enums.DATETIME_AUTOPILOT_DATA_SAMPLING_METHOD. Applicable for OTV projects
only, defines if autopilot uses “random” or “latest” sampling when iteratively building mod-
els on various training samples. Defaults to “random” for duration-based projects and to
“latest” for row-based projects.

run_leakage_removed_feature_list: bool, optional (New in version v2.23) Run Autopilot on
Leakage Removed feature list (if exists).

170 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

autopilot_with_feature_discovery: bool, default ``False``, optional (New in version v2.23) If
true, autopilot will run on a feature list that includes features found via search for interactions.

feature_discovery_supervised_feature_reduction: bool, optional (New in version v2.23)
Run supervised feature reduction for feature discovery projects.

exponentially_weighted_moving_alpha: float, optional (New in version v2.26) defaults to
None, value between 0 and 1 (inclusive), indicates alpha parameter used in exponentially
weighted moving average within feature derivation window.

external_time_series_baseline_dataset_id: str, optional (New in version v2.26) If provided,
will generate metrics scaled by external model predictions metric for time series projects.
The external predictions catalog must be validated before autopilot starts, see Project.
validate_external_time_series_baseline and external baseline predictions docu-
mentation for further explanation.

use_supervised_feature_reduction: bool, default ``True` optional Time Series only. When
true, during feature generation DataRobot runs a supervised algorithm to retain only quali-
fying features. Setting to false can severely impact autopilot duration, especially for datasets
with many features.

primary_location_column: str, optional. The name of primary location column.

protected_features: list of str, optional. (New in version v2.24) A list of project features to
mark as protected for Bias and Fairness testing calculations. Max number of protected fea-
tures allowed is 10.

preferable_target_value: str, optional. (New in version v2.24) A target value that should be
treated as a favorable outcome for the prediction. For example, if we want to check gender
discrimination for giving a loan and our target is named is_bad, then the positive outcome
for the prediction would be No, which means that the loan is good and that’s what we treat
as a favorable result for the loaner.

fairness_metrics_set: str, optional. (New in version v2.24) Metric to use for cal-
culating fairness. Can be one of proportionalParity, equalParity,
predictionBalance, trueFavorableAndUnfavorableRateParity or
favorableAndUnfavorablePredictiveValueParity. Used and required only if
Bias & Fairness in AutoML feature is enabled.

fairness_threshold: str, optional. (New in version v2.24) Threshold value for the fairness met-
ric. Can be in a range of [0.0, 1.0]. If the relative (i.e. normalized) fairness score is
below the threshold, then the user will see a visual indication on the

bias_mitigation_feature_name [str, optional] The feature from protected features that will be
used in a bias mitigation task to mitigate bias

bias_mitigation_technique [str, optional] One of datarobot.enums.BiasMitigationTechnique
Options: - ‘preprocessingReweighing’ - ‘postProcessingRejectionOptionBasedClassifica-
tion’ The technique by which we’ll mitigate bias, which will inform which bias mitigation
task we insert into blueprints

include_bias_mitigation_feature_as_predictor_variable [bool, optional] Whether we should
also use the mitigation feature as in input to the modeler just like any other categorical used
for training, i.e. do we want the model to “train on” this feature in addition to using it for
bias mitigation

default_monotonic_increasing_featurelist_id [str, optional] Returned from server on Project
GET request - not able to be updated by user

default_monotonic_decreasing_featurelist_id [str, optional] Returned from server on Project
GET request - not able to be updated by user

2.3. API Reference 171

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
advanced_options = dr.AdvancedOptions(

weights='weights_column',
offset=['offset_column'],
exposure='exposure_column',
response_cap=0.7,
blueprint_threshold=2,
smart_downsampled=True, majority_downsampling_rate=75.0)

update_individual_options(**kwargs)
Update individual attributes of an instance of AdvancedOptions.

Return type None

2.3.3 Anomaly Assessment

class datarobot.models.anomaly_assessment.AnomalyAssessmentRecord(status, status_details,
start_date, end_date,
prediction_threshold,
preview_location,
delete_location,
latest_explanations_location,
**record_kwargs)

Object which keeps metadata about anomaly assessment insight for the particular subset, backtest and series and
the links to proceed to get the anomaly assessment data.

New in version v2.25.

Notes

Record contains:

• record_id : the ID of the record.

• project_id : the project ID of the record.

• model_id : the model ID of the record.

• backtest : the backtest of the record.

• source : the source of the record.

• series_id : the series id of the record for the multiseries projects.

• status : the status of the insight.

• status_details : the explanation of the status.

• start_date : the ISO-formatted timestamp of the first prediction in the subset. Will be None if status is
not AnomalyAssessmentStatus.COMPLETED.

• end_date : the ISO-formatted timestamp of the last prediction in the subset. Will be None if status is not
AnomalyAssessmentStatus.COMPLETED.

• prediction_threshold : the threshold, all rows with anomaly scores greater or equal to it have shap
explanations computed. Will be None if status is not AnomalyAssessmentStatus.COMPLETED.

172 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• preview_location : URL to retrieve predictions preview for the subset. Will be None if status is not
AnomalyAssessmentStatus.COMPLETED.

• latest_explanations_location : the URL to retrieve the latest predictions with the shap explanations.
Will be None if status is not AnomalyAssessmentStatus.COMPLETED.

• delete_location : the URL to delete anomaly assessment record and relevant insight data.

Attributes
record_id: str The ID of the record.

project_id: str The ID of the project record belongs to.

model_id: str The ID of the model record belongs to.

backtest: int or “holdout” The backtest of the record.

source: “training” or “validation” The source of the record

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

status: str The status of the insight. One of datarobot.enums.AnomalyAssessmentStatus

status_details: str The explanation of the status.

start_date: str or None See start_date info in Notes for more details.

end_date: str or None See end_date info in Notes for more details.

prediction_threshold: float or None See prediction_threshold info in Notes for more details.

preview_location: str or None See preview_location info in Notes for more details.

latest_explanations_location: str or None See latest_explanations_location info in Notes for
more details.

delete_location: str The URL to delete anomaly assessment record and relevant insight data.

classmethod list(project_id, model_id, backtest=None, source=None, series_id=None, limit=100,
offset=0, with_data_only=False)

Retrieve the list of the anomaly assessment records for the project and model. Output can be filtered and
limited.

Parameters
project_id: str The ID of the project record belongs to.

model_id: str The ID of the model record belongs to.

backtest: int or “holdout” The backtest to filter records by.

source: “training” or “validation” The source to filter records by.

series_id: str, optional The series id to filter records by. Can be specified for multiseries
projects.

limit: int, optional 100 by default. At most this many results are returned.

offset: int, optional This many results will be skipped.

with_data_only: bool, False by default Filter by status == AnomalyAssessmentSta-
tus.COMPLETED. If True, records with no data or not supported will be omitted.

Returns

2.3. API Reference 173

DataRobot Python API Documentation, Release 3.2.2

AnomalyAssessmentRecord The anomaly assessment record.

Return type List[AnomalyAssessmentRecord]

classmethod compute(project_id, model_id, backtest, source, series_id=None)
Request anomaly assessment insight computation on the specified subset.

Parameters
project_id: str The ID of the project to compute insight for.

model_id: str The ID of the model to compute insight for.

backtest: int or “holdout” The backtest to compute insight for.

source: “training” or “validation” The source to compute insight for.

series_id: str, optional The series id to compute insight for. Required for multiseries
projects.

Returns
AnomalyAssessmentRecord The anomaly assessment record.

Return type AnomalyAssessmentRecord

delete()
Delete anomaly assessment record with preview and explanations.

Return type None

get_predictions_preview()
Retrieve aggregated predictions statistics for the anomaly assessment record.

Returns
AnomalyAssessmentPredictionsPreview

Return type AnomalyAssessmentPredictionsPreview

get_latest_explanations()
Retrieve latest predictions along with shap explanations for the most anomalous records.

Returns
AnomalyAssessmentExplanations

Return type AnomalyAssessmentExplanations

get_explanations(start_date=None, end_date=None, points_count=None)
Retrieve predictions along with shap explanations for the most anomalous records in the specified date
range/for defined number of points. Two out of three parameters: start_date, end_date or points_count
must be specified.

Parameters
start_date: str, optional The start of the date range to get explanations in. Example:
2020-01-01T00:00:00.000000Z

end_date: str, optional The end of the date range to get explanations in. Example:
2020-10-01T00:00:00.000000Z

points_count: int, optional The number of the rows to return.

174 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
AnomalyAssessmentExplanations

Return type AnomalyAssessmentExplanations

get_explanations_data_in_regions(regions, prediction_threshold=0.0)
Get predictions along with explanations for the specified regions, sorted by predictions in descending order.

Parameters
regions: list of preview_bins For each region explanations will be retrieved and merged.

prediction_threshold: float, optional If specified, only points with score greater or equal
to the threshold will be returned.

Returns
dict in a form of {‘explanations’: explanations, ‘shap_base_value’: shap_base_value}

Return type RegionExplanationsData

class datarobot.models.anomaly_assessment.AnomalyAssessmentExplanations(shap_base_value,
data, start_date,
end_date, count,
**record_kwargs)

Object which keeps predictions along with shap explanations for the most anomalous records in the specified
date range/for defined number of points.

New in version v2.25.

Notes

AnomalyAssessmentExplanations contains:

• record_id : the id of the corresponding anomaly assessment record.

• project_id : the project ID of the corresponding anomaly assessment record.

• model_id : the model ID of the corresponding anomaly assessment record.

• backtest : the backtest of the corresponding anomaly assessment record.

• source : the source of the corresponding anomaly assessment record.

• series_id : the series id of the corresponding anomaly assessment record for the multiseries projects.

• start_date : the ISO-formatted first timestamp in the response. Will be None of there is no data in the
specified range.

• end_date : the ISO-formatted last timestamp in the response. Will be None of there is no data in the
specified range.

• count : The number of points in the response.

• shap_base_value : the shap base value.

• data : list of DataPoint objects in the specified date range.

DataPoint contains:

2.3. API Reference 175

DataRobot Python API Documentation, Release 3.2.2

• shap_explanation : None or an array of up to 10 ShapleyFeatureContribution objects. Only rows with
the highest anomaly scores have Shapley explanations calculated. Value is None if prediction is lower than
prediction_threshold.

• timestamp (str) : ISO-formatted timestamp for the row.

• prediction (float) : The output of the model for this row.

ShapleyFeatureContribution contains:

• feature_value (str) : the feature value for this row. First 50 characters are returned.

• strength (float) : the shap value for this feature and row.

• feature (str) : the feature name.

Attributes
record_id: str The ID of the record.

project_id: str The ID of the project record belongs to.

model_id: str The ID of the model record belongs to.

backtest: int or “holdout” The backtest of the record.

source: “training” or “validation” The source of the record.

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

start_date: str or None The ISO-formatted datetime of the first row in the data.

end_date: str or None The ISO-formatted datetime of the last row in the data.

data: array of `data_point` objects or None See data info in Notes for more details.

shap_base_value: float Shap base value.

count: int The number of points in the data.

classmethod get(project_id, record_id, start_date=None, end_date=None, points_count=None)
Retrieve predictions along with shap explanations for the most anomalous records in the specified date
range/for defined number of points. Two out of three parameters: start_date, end_date or points_count
must be specified.

Parameters
project_id: str The ID of the project.

record_id: str The ID of the anomaly assessment record.

start_date: str, optional The start of the date range to get explanations in. Example:
2020-01-01T00:00:00.000000Z

end_date: str, optional The end of the date range to get explanations in. Example:
2020-10-01T00:00:00.000000Z

points_count: int, optional The number of the rows to return.

Returns
AnomalyAssessmentExplanations

Return type AnomalyAssessmentExplanations

176 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.anomaly_assessment.AnomalyAssessmentPredictionsPreview(start_date,
end_date,
preview_bins,
**record_kwargs)

Aggregated predictions over time for the corresponding anomaly assessment record. Intended to find the bins
with highest anomaly scores.

New in version v2.25.

Notes

AnomalyAssessmentPredictionsPreview contains:

• record_id : the id of the corresponding anomaly assessment record.

• project_id : the project ID of the corresponding anomaly assessment record.

• model_id : the model ID of the corresponding anomaly assessment record.

• backtest : the backtest of the corresponding anomaly assessment record.

• source : the source of the corresponding anomaly assessment record.

• series_id : the series id of the corresponding anomaly assessment record for the multiseries projects.

• start_date : the ISO-formatted timestamp of the first prediction in the subset.

• end_date : the ISO-formatted timestamp of the last prediction in the subset.

• preview_bins : list of PreviewBin objects. The aggregated predictions for the subset. Bins boundaries
may differ from actual start/end dates because this is an aggregation.

PreviewBin contains:

• start_date (str) : the ISO-formatted datetime of the start of the bin.

• end_date (str) : the ISO-formatted datetime of the end of the bin.

• avg_predicted (float or None) : the average prediction of the model in the bin. None if there are no
entries in the bin.

• max_predicted (float or None) : the maximum prediction of the model in the bin. None if there are no
entries in the bin.

• frequency (int) : the number of the rows in the bin.

Attributes
record_id: str The ID of the record.

project_id: str The ID of the project record belongs to.

model_id: str The ID of the model record belongs to.

backtest: int or “holdout” The backtest of the record.

source: “training” or “validation” The source of the record

series_id: str or None The series id of the record for the multiseries projects. Defined only for
the multiseries projects.

start_date: str the ISO-formatted timestamp of the first prediction in the subset.

end_date: str the ISO-formatted timestamp of the last prediction in the subset.

2.3. API Reference 177

DataRobot Python API Documentation, Release 3.2.2

preview_bins: list of preview_bin objects. The aggregated predictions for the subset. See
more info in Notes.

classmethod get(project_id, record_id)
Retrieve aggregated predictions over time.

Parameters
project_id: str The ID of the project.

record_id: str The ID of the anomaly assessment record.

Returns
AnomalyAssessmentPredictionsPreview

Return type AnomalyAssessmentPredictionsPreview

find_anomalous_regions(max_prediction_threshold=0.0)

Sort preview bins by max_predicted value and select those with max predicted value greater or
equal to max prediction threshold. Sort the result by max predicted value in descending order.

Parameters
max_prediction_threshold: float, optional Return bins with maximum anomaly score

greater or equal to max_prediction_threshold.

Returns
preview_bins: list of preview_bin Filtered and sorted preview bins

Return type List[AnomalyAssessmentPreviewBin]

2.3.4 Application

class datarobot.Application(id, application_type_id, user_id, model_deployment_id, name, created_by,
created_at, updated_at, datasets, cloud_provider, deployment_ids, pool_used,
permissions, has_custom_logo, org_id, deployment_status_id=None,
description=None, related_entities=None, application_template_type=None,
deployment_name=None, deactivation_status_id=None,
created_first_name=None, creator_last_name=None, creator_userhash=None,
deployments=None)

An entity associated with a DataRobot Application.

Attributes
id [str] The ID of the created application.

application_type_id [str] The ID of the type of the application.

user_id [str] The ID of the user which created the application.

model_deployment_id [str] The ID of the associated model deployment.

deactivation_status_id [str or None] The ID of the status object to track the asynchronous app
deactivation process status. Will be None if the app was never deactivated.

name [str] The name of the application.

created_by [str] The username of the user created the application.

178 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

created_at [str] The timestamp when the application was created.

updated_at [str] The timestamp when the application was updated.

datasets [List[str]] The list of datasets IDs associated with the application.

creator_first_name [Optional[str]] Application creator first name. Optional.

creator_last_name [Optional[str]] Application creator last name. Optional.

creator_userhash [Optional[str]] Application creator userhash. Optional.

deployment_status_id [str] The ID of the status object to track the asynchronous deployment
process status.

description [str] A description of the application.

cloud_provider [str] The host of this application.

deployments [Optional[List[ApplicationDeployment]]] A list of deployment details. Optional.

deployment_ids [List[str]] A list of deployment IDs for this app.

deployment_name [Optional[str]] Name of the deployment. Optional.

application_template_type [Optional[str]] Application template type, purpose. Optional.

pool_used [bool] Whether the pool where used for last app deployment.

permissions [List[str]] The list of permitted actions, which the authenticated user can perform
on this application. Permissions should be ApplicationPermission options.

has_custom_logo [bool] Whether the app has a custom logo.

related_entities [Optional[ApplcationRelatedEntity]] IDs of entities, related to app for easy
search.

org_id [str] ID of the app’s organization.

classmethod list(offset=None, limit=None, use_cases=None)
Retrieve a list of user applications.

Parameters
offset [Optional[int]] Optional. Retrieve applications in a list after this number.

limit [Optional[int]] Optional. Retrieve only this number of applications.

use_cases: Optional[Union[UseCase, List[UseCase], str, List[str]]] Optional. Filter
available Applications by a specific Use Case or Use Cases. Accepts either the entity or
the ID.

Returns
applications [List[Application]] The requested list of user applications.

Return type List[Application]

classmethod get(application_id)
Retrieve a single application.

Parameters
application_id [str] The ID of the application to retrieve.

Returns
application [Application] The requested application.

2.3. API Reference 179

DataRobot Python API Documentation, Release 3.2.2

Return type Application

2.3.5 Batch Predictions

class datarobot.models.BatchPredictionJob(data, completed_resource_url=None)
A Batch Prediction Job is used to score large data sets on prediction servers using the Batch Prediction API.

Attributes
id [str] the id of the job

classmethod score(deployment, intake_settings=None, output_settings=None, csv_settings=None,
timeseries_settings=None, num_concurrent=None, chunk_size=None,
passthrough_columns=None, passthrough_columns_set=None,
max_explanations=None, max_ngram_explanations=None, threshold_high=None,
threshold_low=None, prediction_warning_enabled=None,
include_prediction_status=False, skip_drift_tracking=False,
prediction_instance=None, abort_on_error=True, column_names_remapping=None,
include_probabilities=True, include_probabilities_classes=None,
download_timeout=120, download_read_timeout=660, upload_read_timeout=600,
explanations_mode=None)

Create new batch prediction job, upload the scoring dataset and return a batch prediction job.

The default intake and output options are both localFile which requires the caller to pass the file parameter
and either download the results using the download() method afterwards or pass a path to a file where the
scored data will be downloaded to afterwards.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

intake_settings [dict (optional)] A dict configuring how data is coming from. Supported
options:

• type : string, either localFile, s3, azure, gcp, dataset, jdbc snowflake, synapse or big-
query

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a dr.Dataset object.

To score from a local file, add the this parameter to the settings:

• file : file-like object, string path to file or a pandas.DataFrame of scoring data

To score from S3, add the next parameters to the settings:

• url : string, the URL to score (e.g.: s3://bucket/key)

• credential_id : string (optional)

• endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default)

To score from JDBC, add the next parameters to the settings:

• data_store_id : string, the ID of the external data store connected to the JDBC data source
(see Database Connectivity).

180 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• query : string (optional if table, schema and/or catalog is specified), a self-supplied
SELECT statement of the data set you wish to predict.

• table : string (optional if query is specified), the name of specified database table.

• schema : string (optional if query is specified), the name of specified database schema.

• catalog : string (optional if query is specified), (new in v2.22) the name of specified
database catalog.

• fetch_size : int (optional), Changing the fetchSize can be used to balance throughput and
memory usage.

• credential_id : string (optional) the ID of the credentials holding information about a
user with read-access to the JDBC data source (see Credentials).

output_settings [dict (optional)] A dict configuring how scored data is to be saved. Sup-
ported options:

• type : string, either localFile, s3, azure, gcp, jdbc, snowflake, synapse or bigquery

To save scored data to a local file, add this parameters to the settings:

• path : string (optional), path to save the scored data as CSV. If a path is not specified,
you must download the scored data yourself with job.download(). If a path is specified,
the call will block until the job is done. if there are no other jobs currently processing for
the targeted prediction instance, uploading, scoring, downloading will happen in parallel
without waiting for a full job to complete. Otherwise, it will still block, but start down-
loading the scored data as soon as it starts generating data. This is the fastest method to
get predictions.

To save scored data to S3, add the next parameters to the settings:

• url : string, the URL for storing the results (e.g.: s3://bucket/key)

• credential_id : string (optional)

• endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default)

To save scored data to JDBC, add the next parameters to the settings:

• data_store_id : string, the ID of the external data store connected to the JDBC data
source (see Database Connectivity).

• table : string, the name of specified database table.

• schema : string (optional), the name of specified database schema.

• catalog : string (optional), (new in v2.22) the name of specified database catalog.

• statement_type : string, the type of insertion statement to create, one of datarobot.
enums.AVAILABLE_STATEMENT_TYPES.

• update_columns : list(string) (optional), a list of strings containing those column names
to be updated in case statement_type is set to a value related to update or upsert.

• where_columns : list(string) (optional), a list of strings containing those column names
to be selected in case statement_type is set to a value related to insert or update.

• credential_id : string, the ID of the credentials holding information about a user with
write-access to the JDBC data source (see Credentials).

• create_table_if_not_exists : bool (optional), If no existing table is detected, attempt to
create it before writing data with the strategy defined in the statementType parameter.

2.3. API Reference 181

DataRobot Python API Documentation, Release 3.2.2

csv_settings [dict (optional)] CSV intake and output settings. Supported options:

• delimiter : string (optional, default ,), fields are delimited by this character. Use the
string tab to denote TSV (TAB separated values). Must be either a one-character string
or the string tab.

• quotechar : string (optional, default “), fields containing the delimiter must be quoted
using this character.

• encoding : string (optional, default utf-8), encoding for the CSV files. For example (but
not limited to): shift_jis, latin_1 or mskanji.

timeseries_settings [dict (optional)] Configuration for time-series scoring. Supported op-
tions:

• type : string, must be forecast or historical (default if not passed is forecast).
forecast mode makes predictions using forecast_point or rows in the dataset with-
out target. historical enables bulk prediction mode which calculates predictions
for all possible forecast points and forecast distances in the dataset within predic-
tions_start_date/predictions_end_date range.

• forecast_point : datetime (optional), forecast point for the dataset, used for the fore-
cast predictions, by default value will be inferred from the dataset. May be passed if
timeseries_settings.type=forecast.

• predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

• predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

• relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

num_concurrent [int (optional)] Number of concurrent chunks to score simultaneously. De-
faults to the available number of cores of the deployment. Lower it to leave resources for
real-time scoring.

chunk_size [string or int (optional)] Which strategy should be used to determine the chunk
size. Can be either a named strategy or a fixed size in bytes. - auto: use fixed or dynamic
based on flipper - fixed: use 1MB for explanations, 5MB for regular requests - dynamic:
use dynamic chunk sizes - int: use this many bytes per chunk

passthrough_columns [list[string] (optional)] Keep these columns from the scoring dataset
in the scored dataset. This is useful for correlating predictions with source data.

passthrough_columns_set [string (optional)] To pass through every column from the scor-
ing dataset, set this to all. Takes precedence over passthrough_columns if set.

max_explanations [int (optional)] Compute prediction explanations for this amount of fea-
tures.

max_ngram_explanations [int or str (optional)] Compute text explanations for this amount
of ngrams. Set to all to return all ngram explanations, or set to a positive integer value to
limit the amount of ngram explanations returned. By default no ngram explanations will
be computed and returned.

182 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

threshold_high [float (optional)] Only compute prediction explanations for predictions
above this threshold. Can be combined with threshold_low.

threshold_low [float (optional)] Only compute prediction explanations for predictions below
this threshold. Can be combined with threshold_high.

explanations_mode [PredictionExplanationsMode, optional] Mode of prediction explana-
tions calculation for multiclass and clustering models, if not specified - server default is to
explain only the predicted class, identical to passing TopPredictionsMode(1).

prediction_warning_enabled [boolean (optional)] Add prediction warnings to the scored
data. Currently only supported for regression models.

include_prediction_status [boolean (optional)] Include the prediction_status column in the
output, defaults to False.

skip_drift_tracking [boolean (optional)] Skips drift tracking on any predictions made from
this job. This is useful when running non-production workloads to not affect drift tracking
and cause unnecessary alerts. Defaults to False.

prediction_instance [dict (optional)] Defaults to instance specified by deployment or system
configuration. Supported options:

• hostName : string

• sslEnabled : boolean (optional, default true). Set to false to run prediction requests from
the batch prediction job without SSL.

• datarobotKey : string (optional), if running a job against a prediction instance in the
Managed AI Cloud, you must provide the organization level DataRobot-Key

• apiKey : string (optional), by default, prediction requests will use the API key of the user
that created the job. This allows you to make requests on behalf of other users.

abort_on_error [boolean (optional)] Default behavior is to abort the job if too many rows
fail scoring. This will free up resources for other jobs that may score successfully. Set
to false to unconditionally score every row no matter how many errors are encountered.
Defaults to True.

column_names_remapping [dict (optional)] Mapping with column renaming for output ta-
ble. Defaults to {}.

include_probabilities [boolean (optional)] Flag that enables returning of all probability
columns. Defaults to True.

include_probabilities_classes [list (optional)] List the subset of classes if a user doesn’t
want all the classes. Defaults to [].

download_timeout [int (optional)] New in version 2.22.

If using localFile output, wait this many seconds for the download to become available.
See download().

download_read_timeout [int (optional, default 660)] New in version 2.22.

If using localFile output, wait this many seconds for the server to respond between chunks.

upload_read_timeout: int (optional, default 600) New in version 2.28.

If using localFile intake, wait this many seconds for the server to respond after whole dataset
upload.

Return type BatchPredictionJob

2.3. API Reference 183

DataRobot Python API Documentation, Release 3.2.2

classmethod apply_time_series_data_prep_and_score(deployment, intake_settings,
timeseries_settings, **kwargs)

Prepare the dataset with time series data prep, create new batch prediction job, upload the scoring dataset,
and return a batch prediction job.

The supported intake_settings are of type localFile or dataset.

For timeseries_settings of type forecast the forecast_point must be specified.

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

New in version v3.1.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Raises
InvalidUsageError If the deployment does not support time series data prep. If the intake

type is not supported for time series data prep.

Attributes
deployment [Deployment] Deployment which will be used for scoring.

intake_settings [dict] A dict configuring where data is coming from. Supported options:

• type : string, either localFile, dataset

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a Dataset object.

To score from a local file, add this parameter to the settings:

• file : file-like object, string path to file or a pandas.DataFrame of scoring data.

timeseries_settings [dict] Configuration for time-series scoring. Supported options:

• type : string, must be forecast or historical (default if not passed is forecast). forecast
mode makes predictions using forecast_point. historical enables bulk prediction mode
which calculates predictions for all possible forecast points and forecast distances in the
dataset within predictions_start_date/predictions_end_date range.

• forecast_point : datetime (optional), forecast point for the dataset, used for the forecast
predictions. Must be passed if timeseries_settings.type=forecast.

• predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

• predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

• relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

Return type BatchPredictionJob

184 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod score_to_file(deployment, intake_path, output_path, **kwargs)
Create new batch prediction job, upload the scoring dataset and download the scored CSV file concurrently.

Will block until the entire file is scored.

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

intake_path [file-like object/string path to file/pandas.DataFrame] Scoring data

output_path [str] Filename to save the result under

classmethod apply_time_series_data_prep_and_score_to_file(deployment, intake_path,
output_path, timeseries_settings,
**kwargs)

Prepare the input dataset with time series data prep. Then, create a new batch prediction job using the
prepared AI catalog item as input and concurrently download the scored CSV file.

The function call will return when the entire file is scored.

For timeseries_settings of type forecast the forecast_point must be specified.

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

New in version v3.1.

Returns
BatchPredictionJob Instance of BatchPredictionJob.

Raises
InvalidUsageError If the deployment does not support time series data prep.

Attributes
deployment [Deployment] The deployment which will be used for scoring.

intake_path [file-like object/string path to file/pandas.DataFrame] The scoring data.

output_path [str] The filename under which you save the result.

timeseries_settings [dict] Configuration for time-series scoring. Supported options:

• type : string, must be forecast or historical (default if not passed is forecast). forecast
mode makes predictions using forecast_point. historical enables bulk prediction mode
which calculates predictions for all possible forecast points and forecast distances in the
dataset within predictions_start_date/predictions_end_date range.

• forecast_point : datetime (optional), forecast point for the dataset, used for the forecast
predictions. Must be passed if timeseries_settings.type=forecast.

• predictions_start_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

2.3. API Reference 185

DataRobot Python API Documentation, Release 3.2.2

• predictions_end_date : datetime (optional), used for historical predictions in order to
override date from which predictions should be calculated. By default value will be
inferred automatically from the dataset. May be passed if timeseries_settings.
type=historical.

• relax_known_in_advance_features_check : bool, (default False). If True, missing values
in the known in advance features are allowed in the forecast window at the prediction
time. If omitted or False, missing values are not allowed.

Return type BatchPredictionJob

classmethod score_s3(deployment, source_url, destination_url, credential=None, endpoint_url=None,
**kwargs)

Create new batch prediction job, with a scoring dataset from S3 and writing the result back to S3.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job)

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

source_url [string] The URL for the prediction dataset (e.g.: s3://bucket/key)

destination_url [string] The URL for the scored dataset (e.g.: s3://bucket/key)

credential [string or Credential (optional)] The AWS Credential object or credential id

endpoint_url [string (optional)] Any non-default endpoint URL for S3 access (omit to use
the default)

classmethod score_azure(deployment, source_url, destination_url, credential=None, **kwargs)
Create new batch prediction job, with a scoring dataset from Azure blob storage and writing the result back
to Azure blob storage.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job).

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

source_url [string] The URL for the prediction dataset (e.g.:
https://storage_account.blob.endpoint/container/blob_name)

destination_url [string] The URL for the scored dataset (e.g.:
https://storage_account.blob.endpoint/container/blob_name)

credential [string or Credential (optional)] The Azure Credential object or credential id

186 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod score_gcp(deployment, source_url, destination_url, credential=None, **kwargs)
Create new batch prediction job, with a scoring dataset from Google Cloud Storage and writing the result
back to one.

This returns immediately after the job has been created. You must poll for job completion using get_status()
or wait_for_completion() (see datarobot.models.Job).

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

source_url [string] The URL for the prediction dataset (e.g.:
http(s)://storage.googleapis.com/[bucket]/[object])

destination_url [string] The URL for the scored dataset (e.g.:
http(s)://storage.googleapis.com/[bucket]/[object])

credential [string or Credential (optional)] The GCP Credential object or credential id

classmethod score_from_existing(batch_prediction_job_id)
Create a new batch prediction job based on the settings from a previously created one

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
batch_prediction_job_id: str ID of the previous batch prediction job

Return type BatchPredictionJob

classmethod score_pandas(deployment, df, read_timeout=660, **kwargs)
Run a batch prediction job, with a scoring dataset from a pandas dataframe. The output from the prediction
will be joined to the passed DataFrame and returned.

Use columnNamesRemapping to drop or rename columns in the output

This method blocks until the job has completed or raises an exception on errors.

Refer to the datarobot.models.BatchPredictionJob.score()method for details on the other kwargs
parameters.

Returns
BatchPredictionJob Instance of BatchPredictonJob

pandas.DataFrame The original dataframe merged with the predictions

Attributes
deployment [Deployment or string ID] Deployment which will be used for scoring.

df [pandas.DataFrame] The dataframe to score

Return type Tuple[BatchPredictionJob, DataFrame]

2.3. API Reference 187

DataRobot Python API Documentation, Release 3.2.2

classmethod get(batch_prediction_job_id)
Get batch prediction job

Returns
BatchPredictionJob Instance of BatchPredictionJob

Attributes
batch_prediction_job_id: str ID of batch prediction job

Return type BatchPredictionJob

download(fileobj, timeout=120, read_timeout=660)
Downloads the CSV result of a prediction job

Attributes
fileobj: A file-like object where the CSV prediction results will be written to. Examples

include an in-memory buffer (e.g., io.BytesIO) or a file on disk (opened for binary writing).

timeout [int (optional, default 120)] New in version 2.22.

Seconds to wait for the download to become available.

The download will not be available before the job has started processing. In case other jobs
are occupying the queue, processing may not start immediately.

If the timeout is reached, the job will be aborted and RuntimeError is raised.

Set to -1 to wait infinitely.

read_timeout [int (optional, default 660)] New in version 2.22.

Seconds to wait for the server to respond between chunks.

Return type None

delete(ignore_404_errors=False)
Cancel this job. If this job has not finished running, it will be removed and canceled.

Return type None

get_status()
Get status of batch prediction job

Returns
BatchPredictionJob status data Dict with job status

classmethod list_by_status(statuses=None)
Get jobs collection for specific set of statuses

Returns
BatchPredictionJob statuses List of job statuses dicts with specific statuses

Attributes
statuses List of statuses to filter jobs ([ABORTED|COMPLETED. . .]) if statuses is not pro-

vided, returns all jobs for user

Return type List[BatchPredictionJob]

188 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.BatchPredictionJobDefinition(id=None, name=None, enabled=None,
schedule=None, batch_prediction_job=None,
created=None, updated=None,
created_by=None, updated_by=None,
last_failed_run_time=None,
last_successful_run_time=None,
last_started_job_status=None,
last_scheduled_run_time=None)

classmethod get(batch_prediction_job_definition_id)
Get batch prediction job definition

Returns
BatchPredictionJobDefinition Instance of BatchPredictionJobDefinition

Examples

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.get('5a8ac9ab07a57a0001be501f')
>>> definition
BatchPredictionJobDefinition(60912e09fd1f04e832a575c1)

Attributes
batch_prediction_job_definition_id: str ID of batch prediction job definition

Return type BatchPredictionJobDefinition

classmethod list()
Get job all definitions

Returns
List[BatchPredictionJobDefinition] List of job definitions the user has access to see

Examples

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.list()
>>> definition
[

BatchPredictionJobDefinition(60912e09fd1f04e832a575c1),
BatchPredictionJobDefinition(6086ba053f3ef731e81af3ca)

]

Return type List[BatchPredictionJobDefinition]

classmethod create(enabled, batch_prediction_job, name=None, schedule=None)
Creates a new batch prediction job definition to be run either at scheduled interval or as a manual run.

Returns
BatchPredictionJobDefinition Instance of BatchPredictionJobDefinition

2.3. API Reference 189

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> job_spec = {
... "num_concurrent": 4,
... "deployment_id": "foobar",
... "intake_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
... "output_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
...}
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... 16
...],
... "minute": [
... 0
...],
... "day_of_month": [
... 1
...]
...}
>>> definition = BatchPredictionJobDefinition.create(
... enabled=False,
... batch_prediction_job=job_spec,
... name="some_definition_name",
... schedule=schedule
...)
>>> definition
BatchPredictionJobDefinition(60912e09fd1f04e832a575c1)

Attributes
enabled [bool (default False)] Whether or not the definition should be active on a scheduled

basis. If True, schedule is required.

batch_prediction_job: dict The job specifications for your batch prediction job. It requires
the same job input parameters as used with score(), only it will not initialize a job scoring,
only store it as a definition for later use.

name [string (optional)] The name you want your job to be identified with. Must be unique
across the organization’s existing jobs. If you don’t supply a name, a random one will be
generated for you.

190 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

schedule [dict (optional)] The schedule payload defines at what intervals the job should
run, which can be combined in various ways to construct complex scheduling terms if
needed. In all of the elements in the objects, you can supply either an asterisk ["*"]
denoting “every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a
specific interval.

The schedule payload is split up in the following items:

Minute:
The minute(s) of the day that the job will run. Allowed values are either ["*"] meaning
every minute of the day or [0 ... 59]

Hour: The hour(s) of the day that the job will run. Allowed values are either ["*"]
meaning every hour of the day or [0 ... 23].

Day of Month: The date(s) of the month that the job will run. Allowed values are either
[1 ... 31] or ["*"] for all days of the month. This field is additive with dayOfWeek,
meaning the job will run both on the date(s) defined in this field and the day specified by
dayOfWeek (for example, dates 1st, 2nd, 3rd, plus every Tuesday). If dayOfMonth is set to
["*"] and dayOfWeek is defined, the scheduler will trigger on every day of the month that
matches dayOfWeek (for example, Tuesday the 2nd, 9th, 16th, 23rd, 30th). Invalid dates
such as February 31st are ignored.

Month: The month(s) of the year that the job will run. Allowed values are either [1 ...
12] or ["*"] for all months of the year. Strings, either 3-letter abbreviations or the full
name of the month, can be used interchangeably (e.g., “jan” or “october”). Months that
are not compatible with dayOfMonth are ignored, for example {"dayOfMonth": [31],
"month":["feb"]}

Day of Week: The day(s) of the week that the job will run. Allowed values are [0 .. 6],
where (Sunday=0), or ["*"], for all days of the week. Strings, either 3-letter abbreviations
or the full name of the day, can be used interchangeably (e.g., “sunday”, “Sunday”, “sun”,
or “Sun”, all map to [0]. This field is additive with dayOfMonth, meaning the job will
run both on the date specified by dayOfMonth and the day defined in this field.

Return type BatchPredictionJobDefinition

update(enabled, batch_prediction_job=None, name=None, schedule=None)
Updates a job definition with the changed specs.

Takes the same input as create()

Returns
BatchPredictionJobDefinition Instance of the updated BatchPredictionJobDefinition

Examples

>>> import datarobot as dr
>>> job_spec = {
... "num_concurrent": 5,
... "deployment_id": "foobar_new",
... "intake_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"

(continues on next page)

2.3. API Reference 191

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

... },

... "output_settings": {

... "url": "s3://foobar/123",

... "type": "s3",

... "format": "csv"

... },

...}
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... "*"
...],
... "minute": [
... 30, 59
...],
... "day_of_month": [
... 1, 2, 6
...]
...}
>>> definition = BatchPredictionJobDefinition.create(
... enabled=False,
... batch_prediction_job=job_spec,
... name="updated_definition_name",
... schedule=schedule
...)
>>> definition
BatchPredictionJobDefinition(60912e09fd1f04e832a575c1)

Attributes
enabled [bool (default False)] Same as enabled in create().

batch_prediction_job: dict Same as batch_prediction_job in create().

name [string (optional)] Same as name in create().

schedule [dict] Same as schedule in create().

Return type BatchPredictionJobDefinition

run_on_schedule(schedule)
Sets the run schedule of an already created job definition.

If the job was previously not enabled, this will also set the job to enabled.

Returns
BatchPredictionJobDefinition Instance of the updated BatchPredictionJobDefinition with

the new / updated schedule.

192 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.create('...')
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... "*"
...],
... "minute": [
... 30, 59
...],
... "day_of_month": [
... 1, 2, 6
...]
...}
>>> definition.run_on_schedule(schedule)
BatchPredictionJobDefinition(60912e09fd1f04e832a575c1)

Attributes
schedule [dict] Same as schedule in create().

Return type BatchPredictionJobDefinition

run_once()
Manually submits a batch prediction job to the queue, based off of an already created job definition.

Returns
BatchPredictionJob Instance of BatchPredictionJob

Examples

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.create('...')
>>> job = definition.run_once()
>>> job.wait_for_completion()

Return type BatchPredictionJob

delete()
Deletes the job definition and disables any future schedules of this job if any. If a scheduled job is currently
running, this will not be cancelled.

2.3. API Reference 193

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> definition = dr.BatchPredictionJobDefinition.get('5a8ac9ab07a57a0001be501f')
>>> definition.delete()

Return type None

2.3.6 Batch Monitoring

class datarobot.models.BatchMonitoringJob(data, completed_resource_url=None)
A Batch Monitoring Job is used to monitor data sets outside DataRobot app.

Attributes
id [str] the id of the job

classmethod get(project_id, job_id)
Get batch monitoring job

Returns
BatchMonitoringJob Instance of BatchMonitoringJob

Attributes
job_id: str ID of batch job

Return type BatchMonitoringJob

download(fileobj, timeout=120, read_timeout=660)
Downloads the results of a monitoring job as a CSV.

Attributes
fileobj: A file-like object where the CSV monitoring results will be written to. Exam-

ples include an in-memory buffer (e.g., io.BytesIO) or a file on disk (opened for binary
writing).

timeout [int (optional, default 120)] Seconds to wait for the download to become available.

The download will not be available before the job has started processing. In case other jobs
are occupying the queue, processing may not start immediately.

If the timeout is reached, the job will be aborted and RuntimeError is raised.

Set to -1 to wait infinitely.

read_timeout [int (optional, default 660)] Seconds to wait for the server to respond between
chunks.

Return type None

classmethod run(deployment, intake_settings=None, output_settings=None, csv_settings=None,
num_concurrent=None, chunk_size=None, abort_on_error=True,
monitoring_aggregation=None, monitoring_columns=None,
monitoring_output_settings=None, download_timeout=120,
download_read_timeout=660, upload_read_timeout=600)

Create new batch monitoring job, upload the dataset, and return a batch monitoring job.

194 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
BatchMonitoringJob Instance of BatchMonitoringJob

Examples

>>> import datarobot as dr
>>> job_spec = {
... "intake_settings": {
... "type": "jdbc",
... "data_store_id": "645043933d4fbc3215f17e34",
... "catalog": "SANDBOX",
... "table": "10kDiabetes_output_actuals",
... "schema": "SCORING_CODE_UDF_SCHEMA",
... "credential_id": "645043b61a158045f66fb329"
... },
>>> "monitoring_columns": {
... "predictions_columns": [
... {
... "class_name": "True",
... "column_name": "readmitted_True_PREDICTION"
... },
... {
... "class_name": "False",
... "column_name": "readmitted_False_PREDICTION"
... }
...],
... "association_id_column": "rowID",
... "actuals_value_column": "ACTUALS"
... }
... }
>>> deployment_id = "foobar"
>>> job = dr.BatchMonitoringJob.run(deployment_id, **job_spec)
>>> job.wait_for_completion()

Attributes
deployment [Deployment or string ID] Deployment which will be used for monitoring.

intake_settings [dict] A dict configuring how data is coming from. Supported options:

• type : string, either localFile, s3, azure, gcp, dataset, jdbc snowflake, synapse or big-
query

Note that to pass a dataset, you not only need to specify the type parameter as dataset, but
you must also set the dataset parameter as a dr.Dataset object.

To monitor from a local file, add this parameter to the settings:

• file : A file-like object, string path to a file or a pandas.DataFrame of scoring data.

To monitor from S3, add the next parameters to the settings:

• url : string, the URL to score (e.g.: s3://bucket/key).

• credential_id : string (optional).

2.3. API Reference 195

DataRobot Python API Documentation, Release 3.2.2

• endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default).

To monitor from JDBC, add the next parameters to the settings:

• data_store_id : string, the ID of the external data store connected to the JDBC data source
(see Database Connectivity).

• query : string (optional if table, schema and/or catalog is specified), a self-supplied
SELECT statement of the data set you wish to predict.

• table : string (optional if query is specified), the name of specified database table.

• schema : string (optional if query is specified), the name of specified database schema.

• catalog : string (optional if query is specified), (new in v2.22) the name of specified
database catalog.

• fetch_size : int (optional), Changing the fetchSize can be used to balance throughput and
memory usage.

• credential_id : string (optional) the ID of the credentials holding information about a
user with read-access to the JDBC data source (see Credentials).

output_settings [dict (optional)] A dict configuring how monitored data is to be saved. Sup-
ported options:

• type : string, either localFile, s3, azure, gcp, jdbc, snowflake, synapse or bigquery

To save monitored data to a local file, add parameters to the settings:

• path : string (optional), path to save the scored data as CSV. If a path is not specified,
you must download the scored data yourself with job.download(). If a path is specified,
the call will block until the job is done. if there are no other jobs currently processing for
the targeted prediction instance, uploading, scoring, downloading will happen in parallel
without waiting for a full job to complete. Otherwise, it will still block, but start down-
loading the scored data as soon as it starts generating data. This is the fastest method to
get predictions.

To save monitored data to S3, add the next parameters to the settings:

• url : string, the URL for storing the results (e.g.: s3://bucket/key).

• credential_id : string (optional).

• endpoint_url : string (optional), any non-default endpoint URL for S3 access (omit to
use the default).

To save monitored data to JDBC, add the next parameters to the settings:

• data_store_id : string, the ID of the external data store connected to the JDBC data
source (see Database Connectivity).

• table : string, the name of specified database table.

• schema : string (optional), the name of specified database schema.

• catalog : string (optional), (new in v2.22) the name of specified database catalog.

• statement_type : string, the type of insertion statement to create, one of datarobot.
enums.AVAILABLE_STATEMENT_TYPES.

• update_columns : list(string) (optional), a list of strings containing those column names
to be updated in case statement_type is set to a value related to update or upsert.

196 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• where_columns : list(string) (optional), a list of strings containing those column names
to be selected in case statement_type is set to a value related to insert or update.

• credential_id : string, the ID of the credentials holding information about a user with
write-access to the JDBC data source (see Credentials).

• create_table_if_not_exists : bool (optional), If no existing table is detected, attempt to
create it before writing data with the strategy defined in the statementType parameter.

csv_settings [dict (optional)] CSV intake and output settings. Supported options:

• delimiter : string (optional, default ,), fields are delimited by this character. Use the
string tab to denote TSV (TAB separated values). Must be either a one-character string
or the string tab.

• quotechar : string (optional, default “), fields containing the delimiter must be quoted
using this character.

• encoding : string (optional, default utf-8), encoding for the CSV files. For example (but
not limited to): shift_jis, latin_1 or mskanji.

num_concurrent [int (optional)] Number of concurrent chunks to score simultaneously. De-
faults to the available number of cores of the deployment. Lower it to leave resources for
real-time scoring.

chunk_size [string or int (optional)] Which strategy should be used to determine the chunk
size. Can be either a named strategy or a fixed size in bytes. - auto: use fixed or dynamic
based on flipper. - fixed: use 1MB for explanations, 5MB for regular requests. - dynamic:
use dynamic chunk sizes. - int: use this many bytes per chunk.

abort_on_error [boolean (optional)] Default behavior is to abort the job if too many rows
fail scoring. This will free up resources for other jobs that may score successfully. Set
to false to unconditionally score every row no matter how many errors are encountered.
Defaults to True.

download_timeout [int (optional)] New in version 2.22.

If using localFile output, wait this many seconds for the download to become available.
See download().

download_read_timeout [int (optional, default 660)] New in version 2.22.

If using localFile output, wait this many seconds for the server to respond between chunks.

upload_read_timeout: int (optional, default 600) New in version 2.28.

If using localFile intake, wait this many seconds for the server to respond after whole dataset
upload.

Return type BatchMonitoringJob

cancel(ignore_404_errors=False)
Cancel this job. If this job has not finished running, it will be removed and canceled.

Return type None

get_status()
Get status of batch monitoring job

Returns
BatchMonitoringJob status data Dict with job status

2.3. API Reference 197

DataRobot Python API Documentation, Release 3.2.2

Return type Any

class datarobot.models.BatchMonitoringJobDefinition(id=None, name=None, enabled=None,
schedule=None, batch_monitoring_job=None,
created=None, updated=None,
created_by=None, updated_by=None,
last_failed_run_time=None,
last_successful_run_time=None,
last_started_job_status=None,
last_scheduled_run_time=None)

classmethod get(batch_monitoring_job_definition_id)
Get batch monitoring job definition

Returns
BatchMonitoringJobDefinition Instance of BatchMonitoringJobDefinition

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.get('5a8ac9ab07a57a0001be501f')
>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575c1)

Attributes
batch_monitoring_job_definition_id: str ID of batch monitoring job definition

Return type BatchMonitoringJobDefinition

classmethod list()
Get job all monitoring job definitions

Returns
List[BatchMonitoringJobDefinition] List of job definitions the user has access to see

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.list()
>>> definition
[

BatchMonitoringJobDefinition(60912e09fd1f04e832a575c1),
BatchMonitoringJobDefinition(6086ba053f3ef731e81af3ca)

]

Return type List[BatchMonitoringJobDefinition]

classmethod create(enabled, batch_monitoring_job, name=None, schedule=None)
Creates a new batch monitoring job definition to be run either at scheduled interval or as a manual run.

198 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
BatchMonitoringJobDefinition Instance of BatchMonitoringJobDefinition

Examples

>>> import datarobot as dr
>>> job_spec = {
... "num_concurrent": 4,
... "deployment_id": "foobar",
... "intake_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
... "output_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
...}
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... 16
...],
... "minute": [
... 0
...],
... "day_of_month": [
... 1
...]
...}
>>> definition = BatchMonitoringJobDefinition.create(
... enabled=False,
... batch_monitoring_job=job_spec,
... name="some_definition_name",
... schedule=schedule
...)
>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575c1)

Attributes
enabled [bool (default False)] Whether the definition should be active on a scheduled basis.

If True, schedule is required.

batch_monitoring_job: dict The job specifications for your batch monitoring job. It re-
quires the same job input parameters as used with BatchMonitoringJob

2.3. API Reference 199

DataRobot Python API Documentation, Release 3.2.2

name [string (optional)] The name you want your job to be identified with. Must be unique
across the organization’s existing jobs. If you don’t supply a name, a random one will be
generated for you.

schedule [dict (optional)] The schedule payload defines at what intervals the job should
run, which can be combined in various ways to construct complex scheduling terms if
needed. In all the elements in the objects, you can supply either an asterisk ["*"] denoting
“every” time denomination or an array of integers (e.g. [1, 2, 3]) to define a specific
interval.

The schedule payload is split up in the following items:

Minute:
The minute(s) of the day that the job will run. Allowed values are either ["*"] meaning
every minute of the day or [0 ... 59]

Hour: The hour(s) of the day that the job will run. Allowed values are either ["*"]
meaning every hour of the day or [0 ... 23].

Day of Month: The date(s) of the month that the job will run. Allowed values are either
[1 ... 31] or ["*"] for all days of the month. This field is additive with dayOfWeek,
meaning the job will run both on the date(s) defined in this field and the day specified by
dayOfWeek (for example, dates 1st, 2nd, 3rd, plus every Tuesday). If dayOfMonth is set to
["*"] and dayOfWeek is defined, the scheduler will trigger on every day of the month that
matches dayOfWeek (for example, Tuesday the 2nd, 9th, 16th, 23rd, 30th). Invalid dates
such as February 31st are ignored.

Month: The month(s) of the year that the job will run. Allowed values are either [1 ...
12] or ["*"] for all months of the year. Strings, either 3-letter abbreviations or the full
name of the month, can be used interchangeably (e.g., “jan” or “october”). Months that
are not compatible with dayOfMonth are ignored, for example {"dayOfMonth": [31],
"month":["feb"]}

Day of Week: The day(s) of the week that the job will run. Allowed values are [0 .. 6],
where (Sunday=0), or ["*"], for all days of the week. Strings, either 3-letter abbreviations
or the full name of the day, can be used interchangeably (e.g., “sunday”, “Sunday”, “sun”,
or “Sun”, all map to [0]. This field is additive with dayOfMonth, meaning the job will
run both on the date specified by dayOfMonth and the day defined in this field.

Return type BatchMonitoringJobDefinition

update(enabled, batch_monitoring_job=None, name=None, schedule=None)
Updates a job definition with the changed specs.

Takes the same input as create()

Returns
BatchMonitoringJobDefinition Instance of the updated BatchMonitoringJobDefinition

200 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> job_spec = {
... "num_concurrent": 5,
... "deployment_id": "foobar_new",
... "intake_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
... "output_settings": {
... "url": "s3://foobar/123",
... "type": "s3",
... "format": "csv"
... },
...}
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... "*"
...],
... "minute": [
... 30, 59
...],
... "day_of_month": [
... 1, 2, 6
...]
...}
>>> definition = BatchMonitoringJobDefinition.create(
... enabled=False,
... batch_monitoring_job=job_spec,
... name="updated_definition_name",
... schedule=schedule
...)
>>> definition
BatchMonitoringJobDefinition(60912e09fd1f04e832a575c1)

Attributes
enabled [bool (default False)] Same as enabled in create().

batch_monitoring_job: dict Same as batch_monitoring_job in create().

name [string (optional)] Same as name in create().

schedule [dict] Same as schedule in create().

Return type BatchMonitoringJobDefinition

2.3. API Reference 201

DataRobot Python API Documentation, Release 3.2.2

run_on_schedule(schedule)
Sets the run schedule of an already created job definition.

If the job was previously not enabled, this will also set the job to enabled.

Returns
BatchMonitoringJobDefinition Instance of the updated BatchMonitoringJobDefinition

with the new / updated schedule.

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.create('...')
>>> schedule = {
... "day_of_week": [
... 1
...],
... "month": [
... "*"
...],
... "hour": [
... "*"
...],
... "minute": [
... 30, 59
...],
... "day_of_month": [
... 1, 2, 6
...]
...}
>>> definition.run_on_schedule(schedule)
BatchMonitoringJobDefinition(60912e09fd1f04e832a575c1)

Attributes
schedule [dict] Same as schedule in create().

Return type BatchMonitoringJobDefinition

run_once()
Manually submits a batch monitoring job to the queue, based off of an already created job definition.

Returns
BatchMonitoringJob Instance of BatchMonitoringJob

202 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.create('...')
>>> job = definition.run_once()
>>> job.wait_for_completion()

Return type BatchMonitoringJob

delete()
Deletes the job definition and disables any future schedules of this job if any. If a scheduled job is currently
running, this will not be cancelled.

Examples

>>> import datarobot as dr
>>> definition = dr.BatchMonitoringJobDefinition.get('5a8ac9ab07a57a0001be501f')
>>> definition.delete()

Return type None

2.3.7 Status Check Job

class datarobot.models.StatusCheckJob(job_id, resource_type=None)
Tracks asynchronous task status

Attributes
job_id [str] The ID of the status the job belongs to.

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish. If the time expires, DataRobot

returns the current status.

Returns
status [JobStatusResult] Returns the current status of the job.

Return type JobStatusResult

get_status()
Retrieve JobStatusResult object with the latest job status data from the server.

Return type JobStatusResult
get_result_when_complete(max_wait=600)

Wait for the job to complete, then attempt to convert the resulting json into an object of type
self.resource_type Returns ——- A newly created resource of type self.resource_type

Return type APIObject

2.3. API Reference 203

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.JobStatusResult(status: Optional[str], status_id: Optional[str],
completed_resource_url: Optional[str])

This class represents a result of status check for submitted async jobs.

property status
Alias for field number 0

property status_id
Alias for field number 1

property completed_resource_url
Alias for field number 2

2.3.8 Blueprint

class datarobot.models.Blueprint(id=None, processes=None, model_type=None, project_id=None,
blueprint_category=None, monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None,
recommended_featurelist_id=None, supports_composable_ml=None)

A Blueprint which can be used to fit models

Attributes
id [str] the id of the blueprint

processes [list of str] the processes used by the blueprint

model_type [str] the model produced by the blueprint

project_id [str] the project the blueprint belongs to

blueprint_category [str] (New in version v2.6) Describes the category of the blueprint and the
kind of model it produces.

recommended_featurelist_id: str or null (New in v2.18) The ID of the feature list recom-
mended for this blueprint. If this field is not present, then there is no recommended feature
list.

supports_composable_ml [bool or None] (New in version v2.26) whether this blueprint is sup-
ported in the Composable ML.

classmethod get(project_id, blueprint_id)
Retrieve a blueprint.

Parameters
project_id [str] The project’s id.

blueprint_id [str] Id of blueprint to retrieve.

Returns
blueprint [Blueprint] The queried blueprint.

Return type Blueprint

get_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

204 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type Dict[str, Tuple[List[str], List[str], str]]

get_chart()
Retrieve a chart.

Returns
BlueprintChart The current blueprint chart.

Return type BlueprintChart

get_documents()
Get documentation for tasks used in the blueprint.

Returns
list of BlueprintTaskDocument All documents available for blueprint.

Return type List[BlueprintTaskDocument]

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

class datarobot.models.BlueprintTaskDocument(title=None, task=None, description=None,
parameters=None, links=None, references=None)

Document describing a task from a blueprint.

Attributes
title [str] Title of document.

task [str] Name of the task described in document.

description [str] Task description.

parameters [list of dict(name, type, description)] Parameters that task can receive in human-
readable format.

links [list of dict(name, url)] External links used in document

references [list of dict(name, url)] References used in document. When no link available url
equals None.

2.3. API Reference 205

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.BlueprintChart(nodes, edges)
A Blueprint chart that can be used to understand data flow in blueprint.

Attributes
nodes [list of dict (id, label)] Chart nodes, id unique in chart.

edges [list of tuple (id1, id2)] Directions of data flow between blueprint chart nodes.

classmethod get(project_id, blueprint_id)
Retrieve a blueprint chart.

Parameters
project_id [str] The project’s id.

blueprint_id [str] Id of blueprint to retrieve chart.

Returns
BlueprintChart The queried blueprint chart.

Return type BlueprintChart

to_graphviz()
Get blueprint chart in graphviz DOT format.

Returns
unicode String representation of chart in graphviz DOT language.

Return type str

class datarobot.models.ModelBlueprintChart(nodes, edges)
A Blueprint chart that can be used to understand data flow in model. Model blueprint chart represents reduced
repository blueprint chart with only elements that used to build this particular model.

Attributes
nodes [list of dict (id, label)] Chart nodes, id unique in chart.

edges [list of tuple (id1, id2)] Directions of data flow between blueprint chart nodes.

classmethod get(project_id, model_id)
Retrieve a model blueprint chart.

Parameters
project_id [str] The project’s id.

model_id [str] Id of model to retrieve model blueprint chart.

Returns
ModelBlueprintChart The queried model blueprint chart.

Return type ModelBlueprintChart

to_graphviz()
Get blueprint chart in graphviz DOT format.

Returns
unicode String representation of chart in graphviz DOT language.

206 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type str

2.3.9 Calendar File

class datarobot.CalendarFile(calendar_end_date=None, calendar_start_date=None, created=None,
id=None, name=None, num_event_types=None, num_events=None,
project_ids=None, role=None, multiseries_id_columns=None)

Represents the data for a calendar file.

For more information about calendar files, see the calendar documentation.

Attributes
id [str] The id of the calendar file.

calendar_start_date [str] The earliest date in the calendar.

calendar_end_date [str] The last date in the calendar.

created [str] The date this calendar was created, i.e. uploaded to DR.

name [str] The name of the calendar.

num_event_types [int] The number of different event types.

num_events [int] The number of events this calendar has.

project_ids [list of strings] A list containing the projectIds of the projects using this calendar.

multiseries_id_columns: list of str or None A list of columns in calendar which uniquely
identify events for different series. Currently, only one column is supported. If multiseries
id columns are not provided, calendar is considered to be single series.

role [str] The access role the user has for this calendar.

classmethod create(file_path, calendar_name=None, multiseries_id_columns=None)
Creates a calendar using the given file. For information about calendar files, see the calendar documentation

The provided file must be a CSV in the format:

Date, Event, Series ID, Event Duration
<date>, <event_type>, <series id>, <event duration>
<date>, <event_type>, , <event duration>

A header row is required, and the “Series ID” and “Event Duration” columns are optional.

Once the CalendarFile has been created, pass its ID with the DatetimePartitioningSpecification
when setting the target for a time series project in order to use it.

Parameters
file_path [string] A string representing a path to a local csv file.

calendar_name [string, optional] A name to assign to the calendar. Defaults to the name of
the file if not provided.

multiseries_id_columns [list of str or None] A list of the names of multiseries id columns
to define which series an event belongs to. Currently only one multiseries id column is
supported.

Returns
calendar_file [CalendarFile] Instance with initialized data.

2.3. API Reference 207

DataRobot Python API Documentation, Release 3.2.2

Raises
AsyncProcessUnsuccessfulError Raised if there was an error processing the provided cal-

endar file.

Examples

Creating a calendar with a specified name
cal = dr.CalendarFile.create('/home/calendars/somecalendar.csv',

calendar_name='Some Calendar Name')
cal.id
>>> 5c1d4904211c0a061bc93013
cal.name
>>> Some Calendar Name

Creating a calendar without specifying a name
cal = dr.CalendarFile.create('/home/calendars/somecalendar.csv')
cal.id
>>> 5c1d4904211c0a061bc93012
cal.name
>>> somecalendar.csv

Creating a calendar with multiseries id columns
cal = dr.CalendarFile.create('/home/calendars/somemultiseriescalendar.csv',

calendar_name='Some Multiseries Calendar Name',
multiseries_id_columns=['series_id'])

cal.id
>>> 5da9bb21962d746f97e4daee
cal.name
>>> Some Multiseries Calendar Name
cal.multiseries_id_columns
>>> ['series_id']

Return type CalendarFile

classmethod create_calendar_from_dataset(dataset_id, dataset_version_id=None,
calendar_name=None, multiseries_id_columns=None,
delete_on_error=False)

Creates a calendar using the given dataset. For information about calendar files, see the calendar documen-
tation

The provided dataset have the following format:

Date, Event, Series ID, Event Duration
<date>, <event_type>, <series id>, <event duration>
<date>, <event_type>, , <event duration>

The “Series ID” and “Event Duration” columns are optional.

Once the CalendarFile has been created, pass its ID with the DatetimePartitioningSpecification
when setting the target for a time series project in order to use it.

Parameters
dataset_id [string] The identifier of the dataset from which to create the calendar.

208 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

dataset_version_id [string, optional] The identifier of the dataset version from which to cre-
ate the calendar.

calendar_name [string, optional] A name to assign to the calendar. Defaults to the name of
the dataset if not provided.

multiseries_id_columns [list of str, optional] A list of the names of multiseries id columns
to define which series an event belongs to. Currently only one multiseries id column is
supported.

delete_on_error [boolean, optional] Whether delete calendar file from Catalog if it’s not
valid.

Returns
calendar_file [CalendarFile] Instance with initialized data.

Raises
AsyncProcessUnsuccessfulError Raised if there was an error processing the provided cal-

endar file.

Examples

Creating a calendar from a dataset
dataset = dr.Dataset.create_from_file('/home/calendars/somecalendar.csv')
cal = dr.CalendarFile.create_calendar_from_dataset(

dataset.id, calendar_name='Some Calendar Name'
)
cal.id
>>> 5c1d4904211c0a061bc93013
cal.name
>>> Some Calendar Name

Creating a calendar from a new dataset version
new_dataset_version = dr.Dataset.create_version_from_file(

dataset.id, '/home/calendars/anothercalendar.csv'
)
cal = dr.CalendarFile.create(

new_dataset_version.id, dataset_version_id=new_dataset_version.version_id
)
cal.id
>>> 5c1d4904211c0a061bc93012
cal.name
>>> anothercalendar.csv

Return type CalendarFile

classmethod create_calendar_from_country_code(country_code, start_date, end_date)
Generates a calendar based on the provided country code and dataset start date and end dates.
The provided country code should be uppercase and 2-3 characters long. See CalendarFile.
get_allowed_country_codes for a list of allowed country codes.

Parameters
country_code [string] The country code for the country to use for generating the calendar.

2.3. API Reference 209

DataRobot Python API Documentation, Release 3.2.2

start_date [datetime.datetime] The earliest date to include in the generated calendar.

end_date [datetime.datetime] The latest date to include in the generated calendar.

Returns
calendar_file [CalendarFile] Instance with initialized data.

Return type CalendarFile

classmethod get_allowed_country_codes(offset=None, limit=None)
Retrieves the list of allowed country codes that can be used for generating the preloaded calendars.

Parameters
offset [int] Optional, defaults to 0. This many results will be skipped.

limit [int] Optional, defaults to 100, maximum 1000. At most this many results are returned.

Returns
list A list dicts, each of which represents an allowed country codes. Each item has the fol-

lowing structure:

• name : (str) The name of the country.

• code : (str) The code for this country. This is the value that should be supplied to
CalendarFile.create_calendar_from_country_code.

Return type List[CountryCode]

classmethod get(calendar_id)
Gets the details of a calendar, given the id.

Parameters
calendar_id [str] The identifier of the calendar.

Returns
calendar_file [CalendarFile] The requested calendar.

Raises
DataError Raised if the calendar_id is invalid, i.e. the specified CalendarFile does not exist.

Examples

cal = dr.CalendarFile.get(some_calendar_id)
cal.id
>>> some_calendar_id

Return type CalendarFile

classmethod list(project_id=None, batch_size=None)
Gets the details of all calendars this user has view access for.

Parameters
project_id [str, optional] If provided, will filter for calendars associated only with the spec-

ified project.

210 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

batch_size [int, optional] The number of calendars to retrieve in a single API call. If speci-
fied, the client may make multiple calls to retrieve the full list of calendars. If not specified,
an appropriate default will be chosen by the server.

Returns
calendar_list [list of CalendarFile] A list of CalendarFile objects.

Examples

calendars = dr.CalendarFile.list()
len(calendars)
>>> 10

Return type List[CalendarFile]

classmethod delete(calendar_id)
Deletes the calendar specified by calendar_id.

Parameters
calendar_id [str] The id of the calendar to delete. The requester must have OWNER access

for this calendar.

Raises
ClientError Raised if an invalid calendar_id is provided.

Examples

Deleting with a valid calendar_id
status_code = dr.CalendarFile.delete(some_calendar_id)
status_code
>>> 204
dr.CalendarFile.get(some_calendar_id)
>>> ClientError: Item not found

Return type None

classmethod update_name(calendar_id, new_calendar_name)
Changes the name of the specified calendar to the specified name. The requester must have at least
READ_WRITE permissions on the calendar.

Parameters
calendar_id [str] The id of the calendar to update.

new_calendar_name [str] The new name to set for the specified calendar.

Returns
status_code [int] 200 for success

Raises
ClientError Raised if an invalid calendar_id is provided.

2.3. API Reference 211

DataRobot Python API Documentation, Release 3.2.2

Examples

response = dr.CalendarFile.update_name(some_calendar_id, some_new_name)
response
>>> 200
cal = dr.CalendarFile.get(some_calendar_id)
cal.name
>>> some_new_name

Return type int

classmethod share(calendar_id, access_list)
Shares the calendar with the specified users, assigning the specified roles.

Parameters
calendar_id [str] The id of the calendar to update

access_list: A list of dr.SharingAccess objects. Specify None for the role to delete a user’s
access from the specified CalendarFile. For more information on specific access levels, see
the sharing documentation.

Returns
status_code [int] 200 for success

Raises
ClientError Raised if unable to update permissions for a user.

AssertionError Raised if access_list is invalid.

Examples

assuming some_user is a valid user, share this calendar with some_user
sharing_list = [dr.SharingAccess(some_user_username,

dr.enums.SHARING_ROLE.READ_WRITE)]
response = dr.CalendarFile.share(some_calendar_id, sharing_list)
response.status_code
>>> 200

delete some_user from this calendar, assuming they have access of some kind␣
→˓already
delete_sharing_list = [dr.SharingAccess(some_user_username,

None)]
response = dr.CalendarFile.share(some_calendar_id, delete_sharing_list)
response.status_code
>>> 200

Attempt to add an invalid user to a calendar
invalid_sharing_list = [dr.SharingAccess(invalid_username,

dr.enums.SHARING_ROLE.READ_WRITE)]
dr.CalendarFile.share(some_calendar_id, invalid_sharing_list)
>>> ClientError: Unable to update access for this calendar

Return type int

212 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get_access_list(calendar_id, batch_size=None)
Retrieve a list of users that have access to this calendar.

Parameters
calendar_id [str] The id of the calendar to retrieve the access list for.

batch_size [int, optional] The number of access records to retrieve in a single API call. If
specified, the client may make multiple calls to retrieve the full list of calendars. If not
specified, an appropriate default will be chosen by the server.

Returns
access_control_list [list of SharingAccess] A list of SharingAccess objects.

Raises
ClientError Raised if user does not have access to calendar or calendar does not exist.

Return type List[SharingAccess]

class datarobot.models.calendar_file.CountryCode() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary
initialized as if via: d = {} for k, v in iterable: d[k] =
v dict(**kwargs) -> new dictionary initialized with
the name=value pairs in the keyword argument list.
For example: dict(one=1, two=2)

2.3.10 Automated Documentation

class datarobot.models.automated_documentation.AutomatedDocument(entity_id=None,
document_type=None,
output_format=None,
locale=None,
template_id=None, id=None,
filepath=None,
created_at=None)

An automated documentation object.

New in version v2.24.

Attributes
document_type [str or None] Type of automated document. You can specify:

MODEL_COMPLIANCE, AUTOPILOT_SUMMARY depending on your account settings. Re-
quired for document generation.

entity_id [str or None] ID of the entity to generate the document for. It can be model ID or
project ID. Required for document generation.

output_format [str or None] Format of the generate document, either docx or html. Required
for document generation.

locale [str or None] Localization of the document, dependent on your account settings. Default
setting is EN_US.

2.3. API Reference 213

DataRobot Python API Documentation, Release 3.2.2

template_id [str or None] Template ID to use for the document outline. Defaults to standard
DataRobot template. See the documentation for ComplianceDocTemplate for more infor-
mation.

id [str or None] ID of the document. Required to download or delete a document.

filepath [str or None] Path to save a downloaded document to. Either include a file path and
name or the file will be saved to the directory from which the script is launched.

created_at [datetime or None] Document creation timestamp.

classmethod list_available_document_types()
Get a list of all available document types and locales.

Returns
List of dicts

Examples

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc_types = dr.AutomatedDocument.list_available_document_types()

Return type List[DocumentOption]

property is_model_compliance_initialized: Tuple[bool, str]
Check if model compliance documentation pre-processing is initialized. Model compliance documentation
pre-processing must be initialized before generating documentation for a custom model.

Returns
Tuple of (boolean, string)

• boolean flag is whether model compliance documentation pre-processing is initialized

• string value is the initialization status

Return type Tuple[bool, str]

initialize_model_compliance()
Initialize model compliance documentation pre-processing. Must be called before generating documenta-
tion for a custom model.

Returns
Tuple of (boolean, string)

• boolean flag is whether model compliance documentation pre-processing is initialized

• string value is the initialization status

214 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

NOTE: entity_id is either a model id or a model package id
doc = dr.AutomatedDocument(

document_type="MODEL_COMPLIANCE",
entity_id="6f50cdb77cc4f8d1560c3ed5",
output_format="docx",
locale="EN_US")

doc.initialize_model_compliance()

Return type Tuple[bool, str]

generate(max_wait=600)
Request generation of an automated document.

Required attributes to request document generation: document_type, entity_id, and output_format.

Returns
requests.models.Response

Examples

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

doc = dr.AutomatedDocument(
document_type="MODEL_COMPLIANCE",
entity_id="6f50cdb77cc4f8d1560c3ed5",
output_format="docx",
locale="EN_US",
template_id="50efc9db8aff6c81a374aeec",
filepath="/Users/username/Documents/example.docx"
)

doc.generate()
doc.download()

Return type Response

download()
Download a generated Automated Document. Document ID is required to download a file.

Returns
requests.models.Response

2.3. API Reference 215

DataRobot Python API Documentation, Release 3.2.2

Examples

Generating and downloading the generated document:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

doc = dr.AutomatedDocument(
document_type="AUTOPILOT_SUMMARY",
entity_id="6050d07d9da9053ebb002ef7",
output_format="docx",
filepath="/Users/username/Documents/Project_Report_1.docx"
)

doc.generate()
doc.download()

Downloading an earlier generated document when you know the document ID:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument(id='5e8b6a34d2426053ab9a39ed')
doc.download()

Notice that filepath was not set for this document. In this case, the file is saved to the directory from
which the script was launched.

Downloading a document chosen from a list of earlier generated documents:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

model_id = "6f5ed3de855962e0a72a96fe"
docs = dr.AutomatedDocument.list_generated_documents(entity_ids=[model_id])
doc = docs[0]
doc.filepath = "/Users/me/Desktop/Recommended_model_doc.docx"
doc.download()

Return type Response

delete()
Delete a document using its ID.

Returns
requests.models.Response

216 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
doc = dr.AutomatedDocument(id="5e8b6a34d2426053ab9a39ed")
doc.delete()

If you don’t know the document ID, you can follow the same workflow to get the ID as in the examples for
the AutomatedDocument.download method.

Return type Response

classmethod list_generated_documents(document_types=None, entity_ids=None,
output_formats=None, locales=None, offset=None,
limit=None)

Get information about all previously generated documents available for your account. The information
includes document ID and type, ID of the entity it was generated for, time of creation, and other information.

Parameters
document_types [List of str or None] Query for one or more document types.

entity_ids [List of str or None] Query generated documents by one or more entity IDs.

output_formats [List of str or None] Query for one or more output formats.

locales [List of str or None] Query generated documents by one or more locales.

offset: int or None Number of items to skip. Defaults to 0 if not provided.

limit: int or None Number of items to return, maximum number of items is 1000.

Returns
List of AutomatedDocument objects, where each object contains attributes described in

AutomatedDocument

Examples

To get a list of all generated documents:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents()

To get a list of all AUTOPILOT_SUMMARY documents:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents(document_types=["AUTOPILOT_
→˓SUMMARY"])

To get a list of 5 recently created automated documents in html format:

2.3. API Reference 217

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents(output_formats=["html"],␣
→˓limit=5)

To get a list of automated documents created for specific entities (projects or models):

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)
docs = AutomatedDocument.list_generated_documents(

entity_ids=["6051d3dbef875eb3be1be036",
"6051d3e1fbe65cd7a5f6fde6",
"6051d3e7f86c04486c2f9584"]

)

Note, that the list of results contains AutomatedDocument objects, which means that you can execute class-
related methods on them. Here’s how you can list, download, and then delete from the server all automated
documents related to a certain entity:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

ids = ["6051d3dbef875eb3be1be036", "5fe1d3d55cd810ebdb60c517f"]
docs = AutomatedDocument.list_generated_documents(entity_ids=ids)
for doc in docs:

doc.download()
doc.delete()

Return type List[AutomatedDocument]

class datarobot.models.automated_documentation.DocumentOption() -> new empty dictionary
dict(mapping) -> new dictionary
initialized from a mapping object's
(key, value) pairs dict(iterable) ->
new dictionary initialized as if via:
d = {} for k, v in iterable: d[k] = v
dict(**kwargs) -> new dictionary
initialized with the name=value
pairs in the keyword argument list.
For example: dict(one=1, two=2)

218 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.11 Class Mapping Aggregation Settings

For multiclass projects with a lot of unique values in target column you can specify the parameters for aggregation of
rare values to improve the modeling performance and decrease the runtime and resource usage of resulting models.

class datarobot.helpers.ClassMappingAggregationSettings(max_unaggregated_class_values=None,
min_class_support=None,
excluded_from_aggregation=None,
aggregation_class_name=None)

Class mapping aggregation settings. For multiclass projects allows fine control over which target values will be
preserved as classes. Classes which aren’t preserved will be - aggregated into a single “catch everything else”
class in case of multiclass - or will be ignored in case of multilabel. All attributes are optional, if not specified -
server side defaults will be used.

Attributes
max_unaggregated_class_values [int, optional] Maximum amount of unique values allowed

before aggregation kicks in.

min_class_support [int, optional] Minimum number of instances necessary for each target
value in the dataset. All values with less instances will be aggregated.

excluded_from_aggregation [list, optional] List of target values that should be guaranteed to
kept as is, regardless of other settings.

aggregation_class_name [str, optional] If some of the values will be aggregated - this is the
name of the aggregation class that will replace them.

2.3.12 Client Configuration

datarobot.client.Client(token=None, endpoint=None, config_path=None, connect_timeout=None,
user_agent_suffix=None, ssl_verify=True, max_retries=None, token_type='Token',
default_use_case=None, enable_api_consumer_tracking=None,
trace_context=None)

Configures the global API client for the Python SDK. The client will be configured in one of the following ways,
in order of priority.

1. From call args iff token and endpoint kwargs are specified;

2. From a YAML file at the path specified in the config_path kwarg;

3. From a YAML file at the path specified in the env var DATAROBOT_CONFIG_FILE;

4. From env vars, iff DATAROBOT_ENDPOINT and DATAROBOT_API_TOKEN are specified;

5. From a YAML file at the path $HOME/.config/datarobot/drconfig.yaml.

Note: All client configuration must be done via a single method; there is no fall back to lower priority methods.

This can also have the side effect of setting a default Use Case for client API requests.

Parameters
token [str, optional] API token

endpoint [str, optional] Base url of API

config_path [str, optional] Alternate location of config file

2.3. API Reference 219

DataRobot Python API Documentation, Release 3.2.2

connect_timeout [int, optional] How long the client should be willing to wait before establishing
a connection with the server.

user_agent_suffix [str, optional] Additional text that is appended to the User-Agent HTTP
header when communicating with the DataRobot REST API. This can be useful for iden-
tifying different applications that are built on top of the DataRobot Python Client, which can
aid debugging and help track usage.

ssl_verify [bool or str, optional] Whether to check SSL certificate. Could be set to path with
certificates of trusted certification authorities.

max_retries [int or datarobot.rest.Retry, optional] Either an integer number of times to retry
connection errors, or a urllib3.util.retry.Retry object to configure retries.

token_type: str, “Token” by default Authentication token type: Token, Bearer. “Bearer” is for
DataRobot OAuth2 token, “Token” for token generated in Developer Tools.

default_use_case: str, optional The entity ID of the default Use Case to use with any requests
made by the client.

enable_api_consumer_tracking: bool, optional Enable and disable user metrics tracking
within the datarobot module. Default: False.

trace_context: str, optional An ID or other string for identifying which code template or AI
Accelerator was used to make a request.

Returns
——- The RESTClientObject instance created.

Return type RESTClientObject

datarobot.client.get_client()
Returns the global HTTP client for the Python SDK, instantiating it if necessary.

Return type RESTClientObject
datarobot.client.set_client(client)

Configure the global HTTP client for the Python SDK. Returns previous instance.

Return type Optional[RESTClientObject]

datarobot.client.client_configuration(*args, **kwargs)
This context manager can be used to temporarily change the global HTTP client.

In multithreaded scenarios, it is highly recommended to use a fresh manager object per thread.

DataRobot does not recommend nesting these contexts.

Parameters
args [Parameters passed to datarobot.client.Client()]

kwargs [Keyword arguments passed to datarobot.client.Client()]

220 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot.client import client_configuration
from datarobot.models import Project

with client_configuration(token="api-key-here", endpoint="https://host-name.com"):
Project.list()

from datarobot.client import Client, client_configuration
from datarobot.models import Project

Client() # Interact with DataRobot using the default configuration.
Project.list()

with client_configuration(config_path="/path/to/a/drconfig.yaml"):
Interact with DataRobot using a different configuration.
Project.list()

class datarobot.rest.RESTClientObject(auth, endpoint, connect_timeout=6.05, verify=True,
user_agent_suffix=None, max_retries=None,
authentication_type=None)

Parameters
connect_timeout timeout for http request and connection

headers headers for outgoing requests

open_in_browser()
Opens the DataRobot app in a web browser, or logs the URL if a browser is not available.

Return type None

2.3.13 Clustering

class datarobot.models.ClusteringModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
is_n_clusters_dynamically_determined=None,
blueprint_id=None, metrics=None, project=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None, n_clusters=None,
has_empty_clusters=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None,
prediction_threshold_read_only=None, model_number=None,
parent_model_id=None, use_project_settings=None,
supports_composable_ml=None)

ClusteringModel extends Model class. It provides provides properties and methods specific to clustering projects.

2.3. API Reference 221

DataRobot Python API Documentation, Release 3.2.2

compute_insights(max_wait=600)
Compute and retrieve cluster insights for model. This method awaits completion of job computing clus-
ter insights and returns results after it is finished. If computation takes longer than specified max_wait
exception will be raised.

Parameters
project_id: str Project to start creation in.

model_id: str Project’s model to start creation in.

max_wait: int Maximum number of seconds to wait before giving up

Returns
List of ClusterInsight

Raises
ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the cluster insights computation has failed or was can-
celled.

AsyncTimeoutError If the cluster insights computation did not resolve in time

Return type List[ClusterInsight]

property insights: List[datarobot.models.cluster_insight.ClusterInsight]
Return actual list of cluster insights if already computed.

Returns
List of ClusterInsight

Return type List[ClusterInsight]

property clusters: List[datarobot.models.cluster.Cluster]
Return actual list of Clusters.

Returns
List of Cluster

Return type List[Cluster]

update_cluster_names(cluster_name_mappings)
Change many cluster names at once based on list of name mappings.

Parameters
cluster_name_mappings: List of tuples Cluster names mapping consisting of current clus-

ter name and old cluster name. Example:

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns

222 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

List of Cluster
Raises

datarobot.errors.ClientError Server rejected update of cluster names. Possible reasons
include: incorrect format of mapping, mapping introduces duplicates.

Return type List[Cluster]

update_cluster_name(current_name, new_name)
Change cluster name from current_name to new_name.

Parameters
current_name: str Current cluster name.

new_name: str New cluster name.

Returns
List of Cluster

Raises
datarobot.errors.ClientError Server rejected update of cluster names.

Return type List[Cluster]

class datarobot.models.cluster.Cluster(**kwargs)
Representation of a single cluster.

Attributes
name: str Current cluster name

percent: float Percent of data contained in the cluster. This value is reported after cluster in-
sights are computed for the model.

classmethod list(project_id, model_id)
Retrieve a list of clusters in the model.

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

Returns
List of clusters

Return type List[Cluster]

classmethod update_multiple_names(project_id, model_id, cluster_name_mappings)
Update many clusters at once based on list of name mappings.

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

cluster_name_mappings: List of tuples Cluster name mappings, consisting of current and
previous names for each cluster. Example:

2.3. API Reference 223

DataRobot Python API Documentation, Release 3.2.2

cluster_name_mappings = [
("current cluster name 1", "new cluster name 1"),
("current cluster name 2", "new cluster name 2")]

Returns
List of clusters

Raises
datarobot.errors.ClientError Server rejected update of cluster names.

ValueError Invalid cluster name mapping provided.

Return type List[Cluster]

classmethod update_name(project_id, model_id, current_name, new_name)
Change cluster name from current_name to new_name

Parameters
project_id: str ID of the project that the model is part of.

model_id: str ID of the model.

current_name: str Current cluster name

new_name: str New cluster name

Returns
List of Cluster

Return type List[Cluster]

class datarobot.models.cluster_insight.ClusterInsight(**kwargs)
Holds data on all insights related to feature as well as breakdown per cluster.

Parameters
feature_name: str Name of a feature from the dataset.

feature_type: str Type of feature.

insights [List of classes (ClusterInsight)] List provides information regarding the importance
of a specific feature in relation to each cluster. Results help understand how the model is
grouping data and what each cluster represents.

feature_impact: float Impact of a feature ranging from 0 to 1.

classmethod compute(project_id, model_id, max_wait=600)
Starts creation of cluster insights for the model and if successful, returns computed ClusterInsights. This
method allows calculation to continue for a specified time and if not complete, cancels the request.

Parameters
project_id: str ID of the project to begin creation of cluster insights for.

model_id: str ID of the project model to begin creation of cluster insights for.

max_wait: int Maximum number of seconds to wait canceling the request.

Returns
List[ClusterInsight]

224 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
ClientError Server rejected creation due to client error. Most likely cause is bad
project_id or model_id.

AsyncFailureError Indicates whether any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError Indicates whether the cluster insights computation failed
or was cancelled.

AsyncTimeoutError Indicates whether the cluster insights computation did not resolve
within the specified time limit (max_wait).

Return type List[ClusterInsight]

2.3.14 Compliance Documentation Templates

class datarobot.models.compliance_doc_template.ComplianceDocTemplate(id, creator_id,
creator_username, name,
org_id=None,
sections=None)

A compliance documentation template. Templates are used to customize contents of AutomatedDocument.

New in version v2.14.

Notes

Each section dictionary has the following schema:

• title : title of the section

• type : type of section. Must be one of “datarobot”, “user” or “table_of_contents”.

Each type of section has a different set of attributes described bellow.

Section of type "datarobot" represent a section owned by DataRobot. DataRobot sections have the following
additional attributes:

• content_id : The identifier of the content in this section. You can get the default template with
get_default for a complete list of possible DataRobot section content ids.

• sections : list of sub-section dicts nested under the parent section.

Section of type "user" represent a section with user-defined content. Those sections may contain text generated
by user and have the following additional fields:

• regularText : regular text of the section, optionally separated by \n to split paragraphs.

• highlightedText : highlighted text of the section, optionally separated by \n to split paragraphs.

• sections : list of sub-section dicts nested under the parent section.

Section of type "table_of_contents" represent a table of contents and has no additional attributes.

Attributes
id [str] the id of the template

name [str] the name of the template.

creator_id [str] the id of the user who created the template

creator_username [str] username of the user who created the template

2.3. API Reference 225

DataRobot Python API Documentation, Release 3.2.2

org_id [str] the id of the organization the template belongs to

sections [list of dicts] the sections of the template describing the structure of the document.
Section schema is described in Notes section above.

classmethod get_default(template_type=None)
Get a default DataRobot template. This template is used for generating compliance documentation when
no template is specified.

Parameters
template_type [str or None] Type of the template. Currently supported values are “normal”

and “time_series”

Returns
template [ComplianceDocTemplate] the default template object with sections attribute

populated with default sections.

Return type ComplianceDocTemplate

classmethod create_from_json_file(name, path)
Create a template with the specified name and sections in a JSON file.

This is useful when working with sections in a JSON file. Example:

default_template = ComplianceDocTemplate.get_default()
default_template.sections_to_json_file('path/to/example.json')
... edit example.json in your editor
my_template = ComplianceDocTemplate.create_from_json_file(

name='my template',
path='path/to/example.json'

)

Parameters
name [str] the name of the template. Must be unique for your user.

path [str] the path to find the JSON file at

Returns
template [ComplianceDocTemplate] the created template

Return type ComplianceDocTemplate

classmethod create(name, sections)
Create a template with the specified name and sections.

Parameters
name [str] the name of the template. Must be unique for your user.

sections [list] list of section objects

Returns
template [ComplianceDocTemplate] the created template

Return type ComplianceDocTemplate

226 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(template_id)
Retrieve a specific template.

Parameters
template_id [str] the id of the template to retrieve

Returns
template [ComplianceDocTemplate] the retrieved template

Return type ComplianceDocTemplate

classmethod list(name_part=None, limit=None, offset=None)
Get a paginated list of compliance documentation template objects.

Parameters
name_part [str or None] Return only the templates with names matching specified string.

The matching is case-insensitive.

limit [int] The number of records to return. The server will use a (possibly finite) default if
not specified.

offset [int] The number of records to skip.

Returns
templates [list of ComplianceDocTemplate] the list of template objects

Return type List[ComplianceDocTemplate]

sections_to_json_file(path, indent=2)
Save sections of the template to a json file at the specified path

Parameters
path [str] the path to save the file to

indent [int] indentation to use in the json file.

Return type None

update(name=None, sections=None)
Update the name or sections of an existing doc template.

Note that default or non-existent templates can not be updated.

Parameters
name [str, optional] the new name for the template

sections [list of dicts] list of sections

Return type None

delete()
Delete the compliance documentation template.

Return type None

2.3. API Reference 227

DataRobot Python API Documentation, Release 3.2.2

2.3.15 Confusion Chart

class datarobot.models.confusion_chart.ConfusionChart(source, data, source_model_id)
Confusion Chart data for model.

Notes

ClassMetrics is a dict containing the following:

• class_name (string) name of the class

• actual_count (int) number of times this class is seen in the validation data

• predicted_count (int) number of times this class has been predicted for the validation data

• f1 (float) F1 score

• recall (float) recall score

• precision (float) precision score

• was_actual_percentages (list of dict) one vs all actual percentages in format specified below.
– other_class_name (string) the name of the other class

– percentage (float) the percentage of the times this class was predicted when is was actually class
(from 0 to 1)

• was_predicted_percentages (list of dict) one vs all predicted percentages in format specified below.

– other_class_name (string) the name of the other class

– percentage (float) the percentage of the times this class was actual predicted (from 0 to 1)

• confusion_matrix_one_vs_all (list of list) 2d list representing 2x2 one vs all matrix.
– This represents the True/False Negative/Positive rates as integer for each class. The data structure

looks like:

– [[True Negative, False Positive], [False Negative, True Positive]]

Attributes
source [str] Confusion Chart data source. Can be ‘validation’, ‘crossValidation’ or ‘holdout’.

raw_data [dict] All of the raw data for the Confusion Chart

confusion_matrix [list of list] The NxN confusion matrix

classes [list] The names of each of the classes

class_metrics [list of dicts] List of dicts with schema described as ClassMetrics above.

source_model_id [str] ID of the model this Confusion chart represents; in some cases, insights
from the parent of a frozen model may be used

228 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.16 Credentials

class datarobot.models.Credential(credential_id=None, name=None, credential_type=None,
creation_date=None, description=None)

classmethod list()
Returns list of available credentials.

Returns
credentials [list of Credential instances] contains a list of available credentials.

Examples

>>> import datarobot as dr
>>> data_sources = dr.Credential.list()
>>> data_sources
[

Credential('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),
Credential('5e42cc4dcf8a5f3256865840', 'my_jdbc_cred', 'jdbc'),

]

Return type List[Credential]

classmethod get(credential_id)
Gets the Credential.

Parameters
credential_id [str] the identifier of the credential.

Returns
credential [Credential] the requested credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.get('5a8ac9ab07a57a0001be501f')
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),

Return type Credential

delete()
Deletes the Credential the store.

Parameters
credential_id [str] the identifier of the credential.

Returns
credential [Credential] the requested credential.

2.3. API Reference 229

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.get('5a8ac9ab07a57a0001be501f')
>>> cred.delete()

Return type None

classmethod create_basic(name, user, password, description=None)
Creates the credentials.

Parameters
name [str] the name to use for this set of credentials.

user [str] the username to store for this set of credentials.

password [str] the password to store for this set of credentials.

description [str, optional] the description to use for this set of credentials.

Returns
credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_basic(
... name='my_basic_cred',
... user='username',
... password='password',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_basic_cred', 'basic'),

Return type Credential

classmethod create_oauth(name, token, refresh_token, description=None)
Creates the OAUTH credentials.

Parameters
name [str] the name to use for this set of credentials.

token: str the OAUTH token

refresh_token: str The OAUTH token

description [str, optional] the description to use for this set of credentials.

Returns
credential [Credential] the created credential.

230 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_oauth(
... name='my_oauth_cred',
... token='XXX',
... refresh_token='YYY',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_oauth_cred', 'oauth'),

Return type Credential

classmethod create_s3(name, aws_access_key_id=None, aws_secret_access_key=None,
aws_session_token=None, description=None)

Creates the S3 credentials.

Parameters
name [str] the name to use for this set of credentials.

aws_access_key_id [str, optional] the AWS access key id.

aws_secret_access_key [str, optional] the AWS secret access key.

aws_session_token [str, optional] the AWS session token.

description [str, optional] the description to use for this set of credentials.

Returns
credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_s3(
... name='my_s3_cred',
... aws_access_key_id='XXX',
... aws_secret_access_key='YYY',
... aws_session_token='ZZZ',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_s3_cred', 's3'),

Return type Credential

classmethod create_azure(name, azure_connection_string, description=None)
Creates the Azure storage credentials.

Parameters
name [str] the name to use for this set of credentials.

azure_connection_string [str] the Azure connection string.

description [str, optional] the description to use for this set of credentials.

2.3. API Reference 231

DataRobot Python API Documentation, Release 3.2.2

Returns
credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_azure(
... name='my_azure_cred',
... azure_connection_string='XXX',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_azure_cred', 'azure'),

Return type Credential

classmethod create_gcp(name, gcp_key=None, description=None)
Creates the GCP credentials.

Parameters
name [str] the name to use for this set of credentials.

gcp_key [str | dict] the GCP key in json format or parsed as dict.

description [str, optional] the description to use for this set of credentials.

Returns
credential [Credential] the created credential.

Examples

>>> import datarobot as dr
>>> cred = dr.Credential.create_gcp(
... name='my_gcp_cred',
... gcp_key='XXX',
...)
>>> cred
Credential('5e429d6ecf8a5f36c5693e03', 'my_gcp_cred', 'gcp'),

Return type Credential

update(name=None, description=None, **kwargs)
Update the credential values of an existing credential. Updates this object in place.

New in version v3.2.

Parameters
name [str] The name to use for this set of credentials.

description [str, optional] The description to use for this set of credentials; if omitted, and
name is not omitted, then it clears any previous description for that name.

kwargs [Keyword arguments specific to the given credential_type that should be updated.]

232 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type None

2.3.17 Custom Models

class datarobot.models.custom_model_version.CustomModelFileItem(id, file_name, file_path,
file_source, created_at=None)

A file item attached to a DataRobot custom model version.

New in version v2.21.

Attributes
id: str The ID of the file item.

file_name: str The name of the file item.

file_path: str The path of the file item.

file_source: str The source of the file item.

created_at: str, optional ISO-8601 formatted timestamp of when the version was created.

class datarobot.CustomInferenceModel(**kwargs)
A custom inference model.

New in version v2.21.

Attributes
id: str The ID of the custom model.

name: str The name of the custom model.

language: str The programming language of the custom inference model. Can be “python”,
“r”, “java” or “other”.

description: str The description of the custom inference model.

target_type: datarobot.TARGET_TYPE Target type of the custom inference model. Val-
ues: [datarobot.TARGET_TYPE.BINARY, datarobot.TARGET_TYPE.REGRESSION,
datarobot.TARGET_TYPE.MULTICLASS, datarobot.TARGET_TYPE.UNSTRUCTURED,
datarobot.TARGET_TYPE.ANOMALY]

target_name: str, optional Target feature name. It is optional(ignored if provided)
for datarobot.TARGET_TYPE.UNSTRUCTURED or datarobot.TARGET_TYPE.ANOMALY
target type.

latest_version: datarobot.CustomModelVersion or None The latest version of the custom
model if the model has a latest version.

deployments_count: int Number of a deployments of the custom models.

target_name: str The custom model target name.

positive_class_label: str For binary classification projects, a label of a positive class.

negative_class_label: str For binary classification projects, a label of a negative class.

prediction_threshold: float For binary classification projects, a threshold used for predictions.

training_data_assignment_in_progress: bool Flag describing if training data assignment is in
progress.

training_dataset_id: str, optional The ID of a dataset assigned to the custom model.

2.3. API Reference 233

DataRobot Python API Documentation, Release 3.2.2

training_dataset_version_id: str, optional The ID of a dataset version assigned to the custom
model.

training_data_file_name: str, optional The name of assigned training data file.

training_data_partition_column: str, optional The name of a partition column in a training
dataset assigned to the custom model.

created_by: str The username of a user who created the custom model.

updated_at: str ISO-8601 formatted timestamp of when the custom model was updated

created_at: str ISO-8601 formatted timestamp of when the custom model was created

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

is_training_data_for_versions_permanently_enabled: bool, optional Whether training data
assignment on the version level is permanently enabled for the model.

classmethod list(is_deployed=None, search_for=None, order_by=None)
List custom inference models available to the user.

New in version v2.21.

Parameters
is_deployed: bool, optional Flag for filtering custom inference models. If set to True, only

deployed custom inference models are returned. If set to False, only not deployed custom
inference models are returned.

search_for: str, optional String for filtering custom inference models - only custom infer-
ence models that contain the string in name or description will be returned. If not specified,
all custom models will be returned

order_by: str, optional Property to sort custom inference models by. Supported properties
are “created” and “updated”. Prefix the attribute name with a dash to sort in descending
order, e.g. order_by=’-created’. By default, the order_by parameter is None which will
result in custom models being returned in order of creation time descending.

Returns
List[CustomInferenceModel] A list of custom inference models.

Raises
datarobot.errors.ClientError If the server responded with 4xx status

datarobot.errors.ServerError If the server responded with 5xx status

Return type List[CustomInferenceModel]

234 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(custom_model_id)
Get custom inference model by id.

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom inference model.

Returns
CustomInferenceModel Retrieved custom inference model.

Raises
datarobot.errors.ClientError The ID the server responded with 4xx status.

datarobot.errors.ServerError The ID the server responded with 5xx status.

Return type CustomInferenceModel

download_latest_version(file_path)
Download the latest custom inference model version.

New in version v2.21.

Parameters
file_path: str Path to create a file with custom model version content.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

classmethod create(name, target_type, target_name=None, language=None, description=None,
positive_class_label=None, negative_class_label=None, prediction_threshold=None,
class_labels=None, class_labels_file=None, network_egress_policy=None,
maximum_memory=None, replicas=None,
is_training_data_for_versions_permanently_enabled=None)

Create a custom inference model.

New in version v2.21.

Parameters
name: str Name of the custom inference model.

target_type: datarobot.TARGET_TYPE Target type of the cus-
tom inference model. Values: [datarobot.TARGET_TYPE.BINARY,
datarobot.TARGET_TYPE.REGRESSION, datarobot.TARGET_TYPE.MULTICLASS,
datarobot.TARGET_TYPE.UNSTRUCTURED]

target_name: str, optional Target feature name. It is optional(ignored if provided) for
datarobot.TARGET_TYPE.UNSTRUCTURED target type.

language: str, optional Programming language of the custom learning model.

description: str, optional Description of the custom learning model.

positive_class_label: str, optional Custom inference model positive class label for binary
classification.

2.3. API Reference 235

DataRobot Python API Documentation, Release 3.2.2

negative_class_label: str, optional Custom inference model negative class label for binary
classification.

prediction_threshold: float, optional Custom inference model prediction threshold.

class_labels: List[str], optional Custom inference model class labels for multiclass classi-
fication. Cannot be used with class_labels_file.

class_labels_file: str, optional Path to file containing newline separated class labels for mul-
ticlass classification. Cannot be used with class_labels.

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC] Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

is_training_data_for_versions_permanently_enabled: bool, optional Permanently en-
able training data assignment on the version level for the current model, instead of training
data assignment on the model level.

Returns
CustomInferenceModel Created a custom inference model.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type CustomInferenceModel

classmethod copy_custom_model(custom_model_id)
Create a custom inference model by copying existing one.

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom inference model to copy.

Returns
CustomInferenceModel Created a custom inference model.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type CustomInferenceModel

236 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

update(name=None, language=None, description=None, target_name=None, positive_class_label=None,
negative_class_label=None, prediction_threshold=None, class_labels=None,
class_labels_file=None, is_training_data_for_versions_permanently_enabled=None)

Update custom inference model properties.

New in version v2.21.

Parameters
name: str, optional New custom inference model name.

language: str, optional New custom inference model programming language.

description: str, optional New custom inference model description.

target_name: str, optional New custom inference model target name.

positive_class_label: str, optional New custom inference model positive class label.

negative_class_label: str, optional New custom inference model negative class label.

prediction_threshold: float, optional New custom inference model prediction threshold.

class_labels: List[str], optional custom inference model class labels for multiclass classifi-
cation Cannot be used with class_labels_file

class_labels_file: str, optional Path to file containing newline separated class labels for mul-
ticlass classification. Cannot be used with class_labels

is_training_data_for_versions_permanently_enabled: bool, optional Permanently en-
able training data assignment on the version level for the current model, instead of training
data assignment on the model level.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

refresh()
Update custom inference model with the latest data from server.

New in version v2.21.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

delete()
Delete custom inference model.

New in version v2.21.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

2.3. API Reference 237

DataRobot Python API Documentation, Release 3.2.2

Return type None

assign_training_data(dataset_id, partition_column=None, max_wait=600)
Assign training data to the custom inference model.

New in version v2.21.

Parameters
dataset_id: str The id of the training dataset to be assigned.

partition_column: str, optional Name of a partition column in the training dataset.

max_wait: int, optional Max time to wait for a training data assignment. If set to None -
method will return without waiting. Defaults to 10 min.

Raises
datarobot.errors.ClientError If the server responded with 4xx status

datarobot.errors.ServerError If the server responded with 5xx status

Return type None

class datarobot.CustomModelTest(**kwargs)
An custom model test.

New in version v2.21.

Attributes
id: str test id

custom_model_image_id: str id of a custom model image

image_type: str the type of the image, either CUSTOM_MODEL_IMAGE_TYPE.CUSTOM_MODEL_IMAGE
if the testing attempt is using a CustomModelImage as its model or CUS-
TOM_MODEL_IMAGE_TYPE.CUSTOM_MODEL_VERSION if the testing attempt is
using a CustomModelVersion with dependency management

overall_status: str a string representing testing status. Status can be - ‘not_tested’: the check
not run - ‘failed’: the check failed - ‘succeeded’: the check succeeded - ‘warning’: the check
resulted in a warning, or in non-critical failure - ‘in_progress’: the check is in progress

detailed_status: dict detailed testing status - maps the testing types to their status and message.
The keys of the dict are one of ‘errorCheck’, ‘nullValueImputation’, ‘longRunningService’,
‘sideEffects’. The values are dict with ‘message’ and ‘status’ keys.

created_by: str a user who created a test

dataset_id: str, optional id of a dataset used for testing

dataset_version_id: str, optional id of a dataset version used for testing

completed_at: str, optional ISO-8601 formatted timestamp of when the test has completed

created_at: str, optional ISO-8601 formatted timestamp of when the version was created

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:

238 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

classmethod create(custom_model_id, custom_model_version_id, dataset_id=None, max_wait=600,
network_egress_policy=None, maximum_memory=None, replicas=None)

Create and start a custom model test.

New in version v2.21.

Parameters
custom_model_id: str the id of the custom model

custom_model_version_id: str the id of the custom model version

dataset_id: str, optional The id of the testing dataset for non-unstructured custom models.
Ignored and not required for unstructured models.

max_wait: int, optional max time to wait for a test completion. If set to None - method will
return without waiting.

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

Returns
CustomModelTest created custom model test

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

classmethod list(custom_model_id)
List custom model tests.

New in version v2.21.

Parameters
custom_model_id: str the id of the custom model

Returns
List[CustomModelTest] a list of custom model tests

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

2.3. API Reference 239

DataRobot Python API Documentation, Release 3.2.2

classmethod get(custom_model_test_id)
Get custom model test by id.

New in version v2.21.

Parameters
custom_model_test_id: str the id of the custom model test

Returns
CustomModelTest retrieved custom model test

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

get_log()
Get log of a custom model test.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

get_log_tail()
Get log tail of a custom model test.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

cancel()
Cancel custom model test that is in progress.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

refresh()
Update custom model test with the latest data from server.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.CustomModelVersion(**kwargs)
A version of a DataRobot custom model.

New in version v2.21.

Attributes

240 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

id: str The ID of the custom model version.

custom_model_id: str The ID of the custom model.

version_minor: int A minor version number of the custom model version.

version_major: int A major version number of the custom model version.

is_frozen: bool A flag if the custom model version is frozen.

items: List[CustomModelFileItem] A list of file items attached to the custom model version.

base_environment_id: str The ID of the environment to use with the model.

base_environment_version_id: str The ID of the environment version to use with the model.

label: str, optional A short human readable string to label the version.

description: str, optional The custom model version description.

created_at: str, optional ISO-8601 formatted timestamp of when the version was created.

dependencies: List[CustomDependency] The parsed dependencies of the custom model ver-
sion if the version has a valid requirements.txt file.

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

required_metadata_values: List[RequiredMetadataValue] Additional parameters required
by the execution environment. The required keys are defined by the fieldNames in the base
environment’s requiredMetadataKeys.

training_data: TrainingData, optional The information about the training data assigned to the
model version.

holdout_data: HoldoutData, optional The information about the holdout data assigned to the
model version.

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type CustomModelVersion

2.3. API Reference 241

DataRobot Python API Documentation, Release 3.2.2

classmethod create_clean(custom_model_id, base_environment_id, is_major_update=True,
folder_path=None, files=None, network_egress_policy=None,
maximum_memory=None, replicas=None, required_metadata_values=None,
training_dataset_id=None, partition_column=None,
holdout_dataset_id=None, keep_training_holdout_data=None,
max_wait=600)

Create a custom model version without files from previous versions.

Create a version with training or holdout data: If training/holdout data related parameters are
provided, the training data is assigned asynchronously. In this case: * if max_wait is not None, the
function returns once the job is finished. * if max_wait is None, the function returns immediately.
Progress can be polled by the user (see examples).

If training data assignment fails, new version is still created, but it is not allowed to create a model
package for the model version and to deploy it. To check for training data assignment error, check
version.training_data.assignment_error[“message”].

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom model.

base_environment_id: str The ID of the base environment to use with the custom model
version.

is_major_update: bool The flag defining if a custom model version will be a minor or a
major version. Default to True

folder_path: str, optional The path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path.

files: list, optional The list of tuples, where values in each tuple are the local filesystem path
and the path the file should be placed in the model. If the list is of strings, then basenames
will be used for tuples. Example: [(“/home/user/Documents/myModel/file1.txt”,
“file1.txt”), (“/home/user/Documents/myModel/folder/file2.txt”,
“folder/file2.txt”)] or [“/home/user/Documents/myModel/file1.txt”,
“/home/user/Documents/myModel/folder/file2.txt”]

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s.

replicas: int, optional A fixed number of replicas that will be deployed in the cluster.

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

training_dataset_id: str, optional The ID of the training dataset to assign to the custom
model.

partition_column: str, optional Name of a partition column in a training dataset assigned
to the custom model. Can only be assigned for structured models.

242 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

holdout_dataset_id: str, optional The ID of the holdout dataset to assign to the custom
model. Can only be assigned for unstructured models.

keep_training_holdout_data: bool, optional If the version should inherit training and
holdout data from the previous version. Defaults to True. This field is only applicable if
the model has training data for versions enabled, otherwise the field value will be ignored.

max_wait: int, optional Max time to wait for training data assignment. If set to None -
method will return without waiting. Defaults to 10 minutes.

Returns
CustomModelVersion Created custom model version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

datarobot.errors.InvalidUsageError If wrong parameters are provided.

datarobot.errors.TrainingDataAssignmentError If training data assignment fails.

Examples

Create a version with blocking (default max_wait=600) training data assignment:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(

custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",

)
except TrainingDataAssignmentError as e:

print(e)

Create a version with non-blocking training data assignment:

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",
max_wait=None,

)

while version.training_data.assignment_in_progress:
time.sleep(10)

(continues on next page)

2.3. API Reference 243

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

version.refresh()
if version.training_data.assignment_error:

print(version.training_data.assignment_error["message"])

Return type CustomModelVersion

classmethod create_from_previous(custom_model_id, base_environment_id, is_major_update=True,
folder_path=None, files=None, files_to_delete=None,
network_egress_policy=None, maximum_memory=None,
replicas=None, required_metadata_values=None,
training_dataset_id=None, partition_column=None,
holdout_dataset_id=None, keep_training_holdout_data=None,
max_wait=600)

Create a custom model version containing files from a previous version.

Create a version with training/holdout data: If training/holdout data related parameters are pro-
vided, the training data is assigned asynchronously. In this case: * if max_wait is not None, func-
tion returns once job is finished. * if max_wait is None, function returns immediately, progress
can be polled by the user, see examples.

If training data assignment fails, new version is still created, but it is not allowed to create a model
package for the model version and to deploy it. To check for training data assignment error, check
version.training_data.assignment_error[“message”].

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom model.

base_environment_id: str The ID of the base environment to use with the custom model
version.

is_major_update: bool, optional The flag defining if a custom model version will be a mi-
nor or a major version. Defaults to True.

folder_path: str, optional The path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path.

files: list, optional The list of tuples, where values in each tuple are the local filesystem
path and the path the file should be placed in the model. If list is of strings, then base-
names will be used for tuples Example: [(“/home/user/Documents/myModel/file1.txt”,
“file1.txt”), (“/home/user/Documents/myModel/folder/file2.txt”,
“folder/file2.txt”)] or [“/home/user/Documents/myModel/file1.txt”,
“/home/user/Documents/myModel/folder/file2.txt”]

files_to_delete: list, optional The list of a file items ids to be deleted. Example:
[“5ea95f7a4024030aba48e4f9”, “5ea6b5da402403181895cc51”]

network_egress_policy: datarobot.NETWORK_EGRESS_POLICY, optional
Determines whether the given custom model is isolated, or can access the
public network. Values: [datarobot.NETWORK_EGRESS_POLICY.NONE,
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS,
datarobot.NETWORK_EGRESS_POLICY.PUBLIC]. Note:
datarobot.NETWORK_EGRESS_POLICY.DR_API_ACCESS value is only supported
by the SaaS (cloud) environment.

244 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

maximum_memory: int, optional The maximum memory that might be allocated by the
custom-model. If exceeded, the custom-model will be killed by k8s

replicas: int, optional A fixed number of replicas that will be deployed in the cluster

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

training_dataset_id: str, optional The ID of the training dataset to assign to the custom
model.

partition_column: str, optional Name of a partition column in a training dataset assigned
to the custom model. Can only be assigned for structured models.

holdout_dataset_id: str, optional The ID of the holdout dataset to assign to the custom
model. Can only be assigned for unstructured models.

keep_training_holdout_data: bool, optional If the version should inherit training and
holdout data from the previous version. Defaults to True. This field is only applicable if
the model has training data for versions enabled, otherwise the field value will be ignored.

max_wait: int, optional Max time to wait for training data assignment. If set to None -
method will return without waiting. Defaults to 10 minutes.

Returns
CustomModelVersion created custom model version

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

datarobot.errors.InvalidUsageError If wrong parameters are provided.

datarobot.errors.TrainingDataAssignmentError If training data assignment fails.

Examples

Create a version with blocking (default max_wait=600) training data assignment:

import datarobot as dr
from datarobot.errors import TrainingDataAssignmentError

dr.Client(token=my_token, endpoint=endpoint)

try:
version = dr.CustomModelVersion.create_from_previous(

custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",

)
except TrainingDataAssignmentError as e:

print(e)

Create a version with non-blocking training data assignment:

2.3. API Reference 245

DataRobot Python API Documentation, Release 3.2.2

import datarobot as dr

dr.Client(token=my_token, endpoint=endpoint)

version = dr.CustomModelVersion.create_from_previous(
custom_model_id="6444482e5583f6ee2e572265",
base_environment_id="642209acc563893014a41e24",
training_dataset_id="6421f2149a4f9b1bec6ad6dd",
max_wait=None,

)

while version.training_data.assignment_in_progress:
time.sleep(10)
version.refresh()

if version.training_data.assignment_error:
print(version.training_data.assignment_error["message"])

Return type CustomModelVersion

classmethod list(custom_model_id)
List custom model versions.

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom model.

Returns
List[CustomModelVersion] A list of custom model versions.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type List[CustomModelVersion]

classmethod get(custom_model_id, custom_model_version_id)
Get custom model version by id.

New in version v2.21.

Parameters
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The id of the custom model version to retrieve.

Returns
CustomModelVersion Retrieved custom model version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

246 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type CustomModelVersion

download(file_path)
Download custom model version.

New in version v2.21.

Parameters
file_path: str Path to create a file with custom model version content.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

update(description=None, required_metadata_values=None)
Update custom model version properties.

New in version v2.21.

Parameters
description: str, optional New custom model version description.

required_metadata_values: List[RequiredMetadataValue], optional Additional param-
eters required by the execution environment. The required keys are defined by the field-
Names in the base environment’s requiredMetadataKeys.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

refresh()
Update custom model version with the latest data from server.

New in version v2.21.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

get_feature_impact(with_metadata=False)
Get custom model feature impact.

New in version v2.23.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

Returns

2.3. API Reference 247

DataRobot Python API Documentation, Release 3.2.2

feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type List[Dict[str, Any]]

calculate_feature_impact(max_wait=600)
Calculate custom model feature impact.

New in version v2.23.

Parameters
max_wait: int, optional Max time to wait for feature impact calculation. If set to None -

method will return without waiting. Defaults to 10 min

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type None

class datarobot.models.execution_environment.RequiredMetadataKey(**kwargs)
Definition of a metadata key that custom models using this environment must define

New in version v2.25.

Attributes
field_name: str The required field key. This value will be added as an environment variable

when running custom models.

display_name: str A human readable name for the required field.

class datarobot.models.CustomModelVersionConversion(**kwargs)
A conversion of a DataRobot custom model version.

New in version v2.27.

Attributes
id: str The ID of the custom model version conversion.

custom_model_version_id: str The ID of the custom model version.

created: str ISO-8601 timestamp of when the custom model conversion created.

main_program_item_id: str or None The ID of the main program item.

log_message: str or None The conversion output log message.

generated_metadata: dict or None The dict contains two items: ‘outputDataset’ & ‘output-
Columns’.

conversion_succeeded: bool Whether the conversion succeeded or not.

conversion_in_progress: bool Whether a given conversion is in progress or not.

should_stop: bool Whether the user asked to stop a conversion.

248 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod run_conversion(custom_model_id, custom_model_version_id, main_program_item_id,
max_wait=None)

Initiate a new custom model version conversion.

Parameters
custom_model_id [str] The associated custom model ID.

custom_model_version_id [str] The associated custom model version ID.

main_program_item_id [str] The selected main program item ID. This should be one of the
SAS items in the associated custom model version.

max_wait: int or None Max wait time in seconds. If None, then don’t wait.

Returns
conversion_id [str] The ID of the newly created conversion entity.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type str

classmethod stop_conversion(custom_model_id, custom_model_version_id, conversion_id)
Stop a conversion that is in progress.

Parameters
custom_model_id [str] The ID of the associated custom model.

custom_model_version_id [str] The ID of the associated custom model version.

conversion_id THe ID of a conversion that is in-progress.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type Response

classmethod get(custom_model_id, custom_model_version_id, conversion_id)
Get custom model version conversion by id.

New in version v2.27.

Parameters
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The ID of the custom model version.

conversion_id: str The ID of the conversion to retrieve.

Returns
CustomModelVersionConversion Retrieved custom model version conversion.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

2.3. API Reference 249

DataRobot Python API Documentation, Release 3.2.2

datarobot.errors.ServerError If the server responded with 5xx status.

Return type CustomModelVersionConversion

classmethod get_latest(custom_model_id, custom_model_version_id)
Get latest custom model version conversion for a given custom model version.

New in version v2.27.

Parameters
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The ID of the custom model version.

Returns
CustomModelVersionConversion or None Retrieved latest conversion for a given custom

model version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type Optional[CustomModelVersionConversion]

classmethod list(custom_model_id, custom_model_version_id)
Get custom model version conversions list per custom model version.

New in version v2.27.

Parameters
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The ID of the custom model version.

Returns
List[CustomModelVersionConversion] Retrieved conversions for a given custom model

version.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type List[CustomModelVersionConversion]

class datarobot.CustomModelVersionDependencyBuild(**kwargs)
Metadata about a DataRobot custom model version’s dependency build

New in version v2.22.

Attributes
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The ID of the custom model version.

build_status: str The status of the custom model version’s dependency build.

started_at: str ISO-8601 formatted timestamp of when the build was started.

250 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

completed_at: str, optional ISO-8601 formatted timestamp of when the build has completed.

classmethod get_build_info(custom_model_id, custom_model_version_id)
Retrieve information about a custom model version’s dependency build

New in version v2.22.

Parameters
custom_model_id: str The ID of the custom model.

custom_model_version_id: str The ID of the custom model version.

Returns
CustomModelVersionDependencyBuild The dependency build information.

Return type CustomModelVersionDependencyBuild

classmethod start_build(custom_model_id, custom_model_version_id, max_wait=600)
Start the dependency build for a custom model version dependency build

New in version v2.22.

Parameters
custom_model_id: str The ID of the custom model

custom_model_version_id: str the ID of the custom model version

max_wait: int, optional Max time to wait for a build completion. If set to None - method
will return without waiting.

Return type Optional[CustomModelVersionDependencyBuild]

get_log()
Get log of a custom model version dependency build.

New in version v2.22.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type str

cancel()
Cancel custom model version dependency build that is in progress.

New in version v2.22.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

2.3. API Reference 251

DataRobot Python API Documentation, Release 3.2.2

refresh()
Update custom model version dependency build with the latest data from server.

New in version v2.22.

Raises
datarobot.errors.ClientError If the server responded with 4xx status.

datarobot.errors.ServerError If the server responded with 5xx status.

Return type None

class datarobot.ExecutionEnvironment(**kwargs)
An execution environment entity.

New in version v2.21.

Attributes
id: str the id of the execution environment

name: str the name of the execution environment

description: str, optional the description of the execution environment

programming_language: str, optional the programming language of the execution environ-
ment. Can be “python”, “r”, “java” or “other”

is_public: bool, optional public accessibility of environment, visible only for admin user

created_at: str, optional ISO-8601 formatted timestamp of when the execution environment
version was created

latest_version: ExecutionEnvironmentVersion, optional the latest version of the execution
environment

classmethod create(name, description=None, programming_language=None,
required_metadata_keys=None)

Create an execution environment.

New in version v2.21.

Parameters
name: str execution environment name

description: str, optional execution environment description

programming_language: str, optional programming language of the environment to be
created. Can be “python”, “r”, “java” or “other”. Default value - “other”

required_metadata_keys: List[RequiredMetadataKey] Definition of a metadata keys that
custom models using this environment must define

Returns
ExecutionEnvironment created execution environment

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

252 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod list(search_for=None)
List execution environments available to the user.

New in version v2.21.

Parameters
search_for: str, optional the string for filtering execution environment - only execution en-

vironments that contain the string in name or description will be returned.

Returns
List[ExecutionEnvironment] a list of execution environments.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

classmethod get(execution_environment_id)
Get execution environment by it’s id.

New in version v2.21.

Parameters
execution_environment_id: str ID of the execution environment to retrieve

Returns
ExecutionEnvironment retrieved execution environment

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

delete()
Delete execution environment.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

update(name=None, description=None, required_metadata_keys=None)
Update execution environment properties.

New in version v2.21.

Parameters
name: str, optional new execution environment name

description: str, optional new execution environment description

required_metadata_keys: List[RequiredMetadataKey] Definition of a metadata keys that
custom models using this environment must define

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

2.3. API Reference 253

DataRobot Python API Documentation, Release 3.2.2

refresh()
Update execution environment with the latest data from server.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.ExecutionEnvironmentVersion(**kwargs)
A version of a DataRobot execution environment.

New in version v2.21.

Attributes
id: str the id of the execution environment version

environment_id: str the id of the execution environment the version belongs to

build_status: str the status of the execution environment version build

label: str, optional the label of the execution environment version

description: str, optional the description of the execution environment version

created_at: str, optional ISO-8601 formatted timestamp of when the execution environment
version was created

docker_context_size: int, optional The size of the uploaded Docker context in bytes if available
or None if not

docker_image_size: int, optional The size of the built Docker image in bytes if available or
None if not

classmethod create(execution_environment_id, docker_context_path, label=None, description=None,
max_wait=600)

Create an execution environment version.

New in version v2.21.

Parameters
execution_environment_id: str the id of the execution environment

docker_context_path: str the path to a docker context archive or folder

label: str, optional short human readable string to label the version

description: str, optional execution environment version description

max_wait: int, optional max time to wait for a final build status (“success” or “failed”). If
set to None - method will return without waiting.

Returns
ExecutionEnvironmentVersion created execution environment version

Raises
datarobot.errors.AsyncTimeoutError if version did not reach final state during timeout

seconds

datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

254 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod list(execution_environment_id, build_status=None)
List execution environment versions available to the user.

New in version v2.21.

Parameters
execution_environment_id: str the id of the execution environment

build_status: str, optional build status of the execution environment version to filter by.
See datarobot.enums.EXECUTION_ENVIRONMENT_VERSION_BUILD_STATUS
for valid options

Returns
List[ExecutionEnvironmentVersion] a list of execution environment versions.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

classmethod get(execution_environment_id, version_id)
Get execution environment version by id.

New in version v2.21.

Parameters
execution_environment_id: str the id of the execution environment

version_id: str the id of the execution environment version to retrieve

Returns
ExecutionEnvironmentVersion retrieved execution environment version

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

download(file_path)
Download execution environment version.

New in version v2.21.

Parameters
file_path: str path to create a file with execution environment version content

Returns
ExecutionEnvironmentVersion retrieved execution environment version

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

get_build_log()
Get execution environment version build log and error.

New in version v2.21.

Returns

2.3. API Reference 255

DataRobot Python API Documentation, Release 3.2.2

Tuple[str, str] retrieved execution environment version build log and error. If there is no
build error - None is returned.

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

refresh()
Update execution environment version with the latest data from server.

New in version v2.21.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

class datarobot.models.custom_model_version.HoldoutData(dataset_id=None,
dataset_version_id=None,
dataset_name=None,
partition_column=None)

Holdout data assigned to a DataRobot custom model version.

New in version v3.2.

Attributes
dataset_id: str The ID of the dataset.

dataset_version_id: str The ID of the dataset version.

dataset_name: str The name of the dataset.

partition_column: str The name of the partitions column.

class datarobot.models.custom_model_version.TrainingData(dataset_id=None,
dataset_version_id=None,
dataset_name=None,
assignment_in_progress=None,
assignment_error=None)

Training data assigned to a DataRobot custom model version.

New in version v3.2.

Attributes
dataset_id: str The ID of the dataset.

dataset_version_id: str The ID of the dataset version.

dataset_name: str The name of the dataset.

assignment_in_progress: bool The status of the assignment in progress.

assignment_error: dict The assignment error message.

256 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.18 Custom Tasks

class datarobot.CustomTask(id, target_type, latest_version, created_at, updated_at, name, description,
language, created_by, calibrate_predictions=None)

A custom task. This can be in a partial state or a complete state. When the latest_version is None, the empty task
has been initialized with some metadata. It is not yet use-able for actual training. Once the first CustomTaskVer-
sion has been created, you can put the CustomTask in UserBlueprints to train Models in Projects

New in version v2.26.

Attributes
id: str id of the custom task

name: str name of the custom task

language: str programming language of the custom task. Can be “python”, “r”, “java” or
“other”

description: str description of the custom task

target_type: datarobot.enums.CUSTOM_TASK_TARGET_TYPE the target type of the
custom task. One of:

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.BINARY

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.REGRESSION

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.MULTICLASS

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.ANOMALY

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.TRANSFORM

latest_version: datarobot.CustomTaskVersion or None latest version of the custom task if
the task has a latest version. If the latest version is None, the custom task is not ready for
use in user blueprints. You must create its first CustomTaskVersion before you can use the
CustomTask

created_by: str The username of the user who created the custom task.

updated_at: str An ISO-8601 formatted timestamp of when the custom task was updated.

created_at: str ISO-8601 formatted timestamp of when the custom task was created

calibrate_predictions: bool whether anomaly predictions should be calibrated to
be between 0 and 1 by DR. only applies to custom estimators with target type
datarobot.enums.CUSTOM_TASK_TARGET_TYPE.ANOMALY

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type CustomTask

2.3. API Reference 257

DataRobot Python API Documentation, Release 3.2.2

classmethod list(order_by=None, search_for=None)
List custom tasks available to the user.

New in version v2.26.

Parameters
search_for: str, optional string for filtering custom tasks - only tasks that contain the string

in name or description will be returned. If not specified, all custom task will be returned

order_by: str, optional property to sort custom tasks by. Supported properties are “cre-
ated” and “updated”. Prefix the attribute name with a dash to sort in descending order,
e.g. order_by=’-created’. By default, the order_by parameter is None which will result in
custom tasks being returned in order of creation time descending

Returns
List[CustomTask] a list of custom tasks.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[CustomTask]

classmethod get(custom_task_id)
Get custom task by id.

New in version v2.26.

Parameters
custom_task_id: str id of the custom task

Returns
CustomTask retrieved custom task

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

Return type CustomTask

classmethod copy(custom_task_id)
Create a custom task by copying existing one.

New in version v2.26.

Parameters
custom_task_id: str id of the custom task to copy

Returns
CustomTask

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

258 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type CustomTask

classmethod create(name, target_type, language=None, description=None, calibrate_predictions=None,
**kwargs)

Creates only the metadata for a custom task. This task will not be use-able until you have created a Cus-
tomTaskVersion attached to this task.

New in version v2.26.

Parameters
name: str name of the custom task

target_type: datarobot.enums.CUSTOM_TASK_TARGET_TYPE the target typed
based on the following values. Anything else will raise an error

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.BINARY

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.REGRESSION

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.MULTICLASS

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.ANOMALY

• datarobot.enums.CUSTOM_TASK_TARGET_TYPE.TRANSFORM

language: str, optional programming language of the custom task. Can be “python”, “r”,
“java” or “other”

description: str, optional description of the custom task

calibrate_predictions: bool, optional whether anomaly predictions should be
calibrated to be between 0 and 1 by DR. if None, uses default value
from DR app (True). only applies to custom estimators with target type
datarobot.enums.CUSTOM_TASK_TARGET_TYPE.ANOMALY

Returns
CustomTask

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

Return type CustomTask

update(name=None, language=None, description=None, **kwargs)
Update custom task properties.

New in version v2.26.

Parameters
name: str, optional new custom task name

language: str, optional new custom task programming language

description: str, optional new custom task description

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

2.3. API Reference 259

DataRobot Python API Documentation, Release 3.2.2

Return type None

refresh()
Update custom task with the latest data from server.

New in version v2.26.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type None

delete()
Delete custom task.

New in version v2.26.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type None

download_latest_version(file_path)
Download the latest custom task version.

New in version v2.26.

Parameters
file_path: str the full path of the target zip file

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

Return type None

get_access_list()
Retrieve access control settings of this custom task.

New in version v2.27.

Returns
list of [class:SharingAccess <datarobot.SharingAccess>]

Return type List[SharingAccess]

share(access_list)
Update the access control settings of this custom task.

New in version v2.27.

Parameters
access_list [list of SharingAccess] A list of SharingAccess to update.

260 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Examples

Transfer access to the custom task from old_user@datarobot.com to new_user@datarobot.com

import datarobot as dr

new_access = dr.SharingAccess(new_user@datarobot.com,
dr.enums.SHARING_ROLE.OWNER, can_share=True)

access_list = [dr.SharingAccess(old_user@datarobot.com, None), new_access]

dr.CustomTask.get('custom-task-id').share(access_list)

Return type None

class datarobot.models.custom_task_version.CustomTaskFileItem(id, file_name, file_path, file_source,
created_at=None)

A file item attached to a DataRobot custom task version.

New in version v2.26.

Attributes
id: str id of the file item

file_name: str name of the file item

file_path: str path of the file item

file_source: str source of the file item

created_at: str ISO-8601 formatted timestamp of when the version was created

class datarobot.CustomTaskVersion(id, custom_task_id, version_major, version_minor, label, created_at,
is_frozen, items, description=None, base_environment_id=None,
maximum_memory=None, base_environment_version_id=None,
dependencies=None, required_metadata_values=None,
arguments=None)

A version of a DataRobot custom task.

New in version v2.26.

Attributes
id: str id of the custom task version

custom_task_id: str id of the custom task

version_minor: int a minor version number of custom task version

version_major: int a major version number of custom task version

label: str short human readable string to label the version

created_at: str ISO-8601 formatted timestamp of when the version was created

is_frozen: bool a flag if the custom task version is frozen

2.3. API Reference 261

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

items: List[CustomTaskFileItem] a list of file items attached to the custom task version

description: str, optional custom task version description

base_environment_id: str, optional id of the environment to use with the task

base_environment_version_id: str, optional id of the environment version to use with the task

dependencies: List[CustomDependency] the parsed dependencies of the custom task version
if the version has a valid requirements.txt file

required_metadata_values: List[RequiredMetadataValue] Additional parameters required
by the execution environment. The required keys are defined by the fieldNames in the base
environment’s requiredMetadataKeys.

arguments: List[UserBlueprintTaskArgument] A list of custom task version arguments.

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

classmethod create_clean(custom_task_id, base_environment_id, maximum_memory=None,
is_major_update=True, folder_path=None,
required_metadata_values=None)

Create a custom task version without files from previous versions.

New in version v2.26.

Parameters
custom_task_id: str the id of the custom task

base_environment_id: str the id of the base environment to use with the custom task ver-
sion

is_major_update: bool, optional if the current version is 2.3, True would set the new ver-
sion at 3.0. False would set the new version at 2.4. Default to True

folder_path: str, optional the path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

maximum_memory: int A number in bytes about how much memory custom tasks’ infer-
ence containers can run with.

Returns
CustomTaskVersion created custom task version

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

262 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod create_from_previous(custom_task_id, base_environment_id, is_major_update=True,
folder_path=None, files_to_delete=None,
required_metadata_values=None, maximum_memory=None)

Create a custom task version containing files from a previous version.

New in version v2.26.

Parameters
custom_task_id: str the id of the custom task

base_environment_id: str the id of the base environment to use with the custom task ver-
sion

is_major_update: bool, optional if the current version is 2.3, True would set the new ver-
sion at 3.0. False would set the new version at 2.4. Default to True

folder_path: str, optional the path to a folder containing files to be uploaded. Each file in
the folder is uploaded under path relative to a folder path

files_to_delete: list, optional the list of a file items ids to be deleted Example:
[“5ea95f7a4024030aba48e4f9”, “5ea6b5da402403181895cc51”]

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

maximum_memory: int A number in bytes about how much memory custom tasks’ infer-
ence containers can run with.

Returns
CustomTaskVersion created custom task version

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

classmethod list(custom_task_id)
List custom task versions.

New in version v2.26.

Parameters
custom_task_id: str the id of the custom task

Returns
List[CustomTaskVersion] a list of custom task versions

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

classmethod get(custom_task_id, custom_task_version_id)
Get custom task version by id.

New in version v2.26.

Parameters
custom_task_id: str the id of the custom task

2.3. API Reference 263

DataRobot Python API Documentation, Release 3.2.2

custom_task_version_id: str the id of the custom task version to retrieve

Returns
CustomTaskVersion retrieved custom task version

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

download(file_path)
Download custom task version.

New in version v2.26.

Parameters
file_path: str path to create a file with custom task version content

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

update(description=None, required_metadata_values=None)
Update custom task version properties.

New in version v2.26.

Parameters
description: str new custom task version description

required_metadata_values: List[RequiredMetadataValue] Additional parameters re-
quired by the execution environment. The required keys are defined by the fieldNames in
the base environment’s requiredMetadataKeys.

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

refresh()
Update custom task version with the latest data from server.

New in version v2.26.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

start_dependency_build()
Start the dependency build for a custom task version and return build status. .. versionadded:: v2.27

Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.

start_dependency_build_and_wait(max_wait)
Start the dependency build for a custom task version and wait while pulling status. .. versionadded:: v2.27

Parameters

264 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait: int max time to wait for a build completion

Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

datarobot.errors.AsyncTimeoutError Raised if the dependency build is not finished after
max_wait.

cancel_dependency_build()
Cancel custom task version dependency build that is in progress. .. versionadded:: v2.27

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

get_dependency_build()
Retrieve information about a custom task version’s dependency build. .. versionadded:: v2.27

Returns
CustomTaskVersionDependencyBuild DTO of custom task version dependency build.

download_dependency_build_log(file_directory='.')
Get log of a custom task version dependency build. .. versionadded:: v2.27

Parameters
file_directory: str (optional, default is “.”) Directory path where downloaded file is to

save.

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

2.3.19 Database Connectivity

class datarobot.DataDriver(id=None, creator=None, base_names=None, class_name=None,
canonical_name=None)

A data driver

Attributes
id [str] the id of the driver.

class_name [str] the Java class name for the driver.

canonical_name [str] the user-friendly name of the driver.

creator [str] the id of the user who created the driver.

base_names [list of str] a list of the file name(s) of the jar files.

classmethod list()
Returns list of available drivers.

Returns

2.3. API Reference 265

DataRobot Python API Documentation, Release 3.2.2

drivers [list of DataDriver instances] contains a list of available drivers.

Examples

>>> import datarobot as dr
>>> drivers = dr.DataDriver.list()
>>> drivers
[DataDriver('mysql'), DataDriver('RedShift'), DataDriver('PostgreSQL')]

Return type List[DataDriver]

classmethod get(driver_id)
Gets the driver.

Parameters
driver_id [str] the identifier of the driver.

Returns
driver [DataDriver] the required driver.

Examples

>>> import datarobot as dr
>>> driver = dr.DataDriver.get('5ad08a1889453d0001ea7c5c')
>>> driver
DataDriver('PostgreSQL')

Return type DataDriver

classmethod create(class_name, canonical_name, files)
Creates the driver. Only available to admin users.

Parameters
class_name [str] the Java class name for the driver.

canonical_name [str] the user-friendly name of the driver.

files [list of str] a list of the file paths on file system file_path(s) for the driver.

Returns
driver [DataDriver] the created driver.

Raises
ClientError raised if user is not granted for Can manage JDBC database drivers feature

266 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> driver = dr.DataDriver.create(
... class_name='org.postgresql.Driver',
... canonical_name='PostgreSQL',
... files=['/tmp/postgresql-42.2.2.jar']
...)
>>> driver
DataDriver('PostgreSQL')

Return type DataDriver

update(class_name=None, canonical_name=None)
Updates the driver. Only available to admin users.

Parameters
class_name [str] the Java class name for the driver.

canonical_name [str] the user-friendly name of the driver.

Raises
ClientError raised if user is not granted for Can manage JDBC database drivers feature

Examples

>>> import datarobot as dr
>>> driver = dr.DataDriver.get('5ad08a1889453d0001ea7c5c')
>>> driver.canonical_name
'PostgreSQL'
>>> driver.update(canonical_name='postgres')
>>> driver.canonical_name
'postgres'

Return type None

delete()
Removes the driver. Only available to admin users.

Raises
ClientError raised if user is not granted for Can manage JDBC database drivers feature

Return type None

class datarobot.Connector(id=None, creator_id=None, configuration_id=None, base_name=None,
canonical_name=None)

A connector

Attributes
id [str] the id of the connector.

creator_id [str] the id of the user who created the connector.

2.3. API Reference 267

DataRobot Python API Documentation, Release 3.2.2

base_name [str] the file name of the jar file.

canonical_name [str] the user-friendly name of the connector.

configuration_id [str] the id of the configuration of the connector.

classmethod list()
Returns list of available connectors.

Returns
connectors [list of Connector instances] contains a list of available connectors.

Examples

>>> import datarobot as dr
>>> connectors = dr.Connector.list()
>>> connectors
[Connector('ADLS Gen2 Connector'), Connector('S3 Connector')]

Return type List[Connector]

classmethod get(connector_id)
Gets the connector.

Parameters
connector_id [str] the identifier of the connector.

Returns
connector [Connector] the required connector.

Examples

>>> import datarobot as dr
>>> connector = dr.Connector.get('5fe1063e1c075e0245071446')
>>> connector
Connector('ADLS Gen2 Connector')

Return type Connector

classmethod create(file_path)
Creates the connector from a jar file. Only available to admin users.

Parameters
file_path [str] the file path on file system file_path(s) for the connector.

Returns
connector [Connector] the created connector.

Raises
ClientError raised if user is not granted for Can manage connectors feature

268 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> connector = dr.Connector.create('/tmp/connector-adls-gen2.jar')
>>> connector
Connector('ADLS Gen2 Connector')

Return type Connector

update(file_path)
Updates the connector with new jar file. Only available to admin users.

Parameters
file_path [str] the file path on file system file_path(s) for the connector.

Returns
connector [Connector] the updated connector.

Raises
ClientError raised if user is not granted for Can manage connectors feature

Examples

>>> import datarobot as dr
>>> connector = dr.Connector.get('5fe1063e1c075e0245071446')
>>> connector.base_name
'connector-adls-gen2.jar'
>>> connector.update('/tmp/connector-s3.jar')
>>> connector.base_name
'connector-s3.jar'

Return type Connector

delete()
Removes the connector. Only available to admin users.

Raises
ClientError raised if user is not granted for Can manage connectors feature

Return type None

class datarobot.DataStore(data_store_id=None, data_store_type=None, canonical_name=None,
creator=None, updated=None, params=None, role=None)

A data store. Represents database

Attributes
id [str] The id of the data store.

data_store_type [str] The type of data store.

canonical_name [str] The user-friendly name of the data store.

creator [str] The id of the user who created the data store.

2.3. API Reference 269

DataRobot Python API Documentation, Release 3.2.2

updated [datetime.datetime] The time of the last update

params [DataStoreParameters] A list specifying data store parameters.

role [str] Your access role for this data store.

classmethod list()
Returns list of available data stores.

Returns
data_stores [list of DataStore instances] contains a list of available data stores.

Examples

>>> import datarobot as dr
>>> data_stores = dr.DataStore.list()
>>> data_stores
[DataStore('Demo'), DataStore('Airlines')]

Return type List[DataStore]

classmethod get(data_store_id)
Gets the data store.

Parameters
data_store_id [str] the identifier of the data store.

Returns
data_store [DataStore] the required data store.

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5a8ac90b07a57a0001be501e')
>>> data_store
DataStore('Demo')

Return type DataStore

classmethod create(data_store_type, canonical_name, driver_id, jdbc_url)
Creates the data store.

Parameters
data_store_type [str] the type of data store.

canonical_name [str] the user-friendly name of the data store.

driver_id [str] the identifier of the DataDriver.

jdbc_url [str] the full JDBC url, for example jdbc:postgresql://my.dbaddress.org:5432/my_db.

Returns
data_store [DataStore] the created data store.

270 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.create(
... data_store_type='jdbc',
... canonical_name='Demo DB',
... driver_id='5a6af02eb15372000117c040',
... jdbc_url='jdbc:postgresql://my.db.address.org:5432/perftest'
...)
>>> data_store
DataStore('Demo DB')

Return type DataStore

update(canonical_name=None, driver_id=None, jdbc_url=None)
Updates the data store.

Parameters
canonical_name [str] optional, the user-friendly name of the data store.

driver_id [str] optional, the identifier of the DataDriver.

jdbc_url [str] optional, the full JDBC url, for example
jdbc:postgresql://my.dbaddress.org:5432/my_db.

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae')
>>> data_store
DataStore('Demo DB')
>>> data_store.update(canonical_name='Demo DB updated')
>>> data_store
DataStore('Demo DB updated')

Return type None

delete()
Removes the DataStore

Return type None

test(username=None, password=None, credential_id=None, use_kerberos=None, credential_data=None)
Tests database connection.

Changed in version v3.2: Added credential_id, use_kerberos and credential_data optional params and
made username and password optional.

Parameters
username [str] optional, the username for database authentication.

password [str] optional, the password for database authentication. The password is en-
crypted at server side and never saved / stored

2.3. API Reference 271

DataRobot Python API Documentation, Release 3.2.2

credential_id [str] optional, id of the set of credentials to use instead of username and pass-
word

use_kerberos [bool] optional, whether to use Kerberos for data store authentication

credential_data [dict] optional, the credentials to authenticate with the database, to use in-
stead of user/password or credential ID

Returns
message [dict] message with status.

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae')
>>> data_store.test(username='db_username', password='db_password')
{'message': 'Connection successful'}

Return type TestResponse

schemas(username, password)
Returns list of available schemas.

Parameters
username [str] the username for database authentication.

password [str] the password for database authentication. The password is encrypted at server
side and never saved / stored

Returns
response [dict] dict with database name and list of str - available schemas

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae')
>>> data_store.schemas(username='db_username', password='db_password')
{'catalog': 'perftest', 'schemas': ['demo', 'information_schema', 'public']}

Return type SchemasResponse

tables(username, password, schema=None)
Returns list of available tables in schema.

Parameters
username [str] optional, the username for database authentication.

password [str] optional, the password for database authentication. The password is en-
crypted at server side and never saved / stored

schema [str] optional, the schema name.

Returns

272 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

response [dict] dict with catalog name and tables info

Examples

>>> import datarobot as dr
>>> data_store = dr.DataStore.get('5ad5d2afef5cd700014d3cae')
>>> data_store.tables(username='db_username', password='db_password', schema=
→˓'demo')
{'tables': [{'type': 'TABLE', 'name': 'diagnosis', 'schema': 'demo'}, {'type':
→˓'TABLE',
'name': 'kickcars', 'schema': 'demo'}, {'type': 'TABLE', 'name': 'patient',
'schema': 'demo'}, {'type': 'TABLE', 'name': 'transcript', 'schema': 'demo'}],
'catalog': 'perftest'}

Return type TablesResponse

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type DataStore

get_access_list()
Retrieve what users have access to this data store

New in version v2.14.

Returns
list of [class:SharingAccess <datarobot.SharingAccess>]

Return type List[SharingAccess]

get_shared_roles()
Retrieve what users have access to this data store

New in version v3.2.

Returns
list of [class:SharingRole <datarobot.models.sharing.SharingRole>]

Return type List[SharingRole]

share(access_list)
Modify the ability of users to access this data store

New in version v2.14.

Parameters

2.3. API Reference 273

DataRobot Python API Documentation, Release 3.2.2

access_list [list of SharingRole] the modifications to make.

Raises
datarobot.ClientError [] if you do not have permission to share this data store, if the user

you’re sharing with doesn’t exist, if the same user appears multiple times in the access_list,
or if these changes would leave the data store without an owner.

Examples

The SharingRole class is needed in order to share a Data Store with one or more users.

For example, suppose you had a list of user IDs you wanted to share this DataStore with. You could use a
loop to generate a list of SharingRole objects for them, and bulk share this Data Store.

>>> import datarobot as dr
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_ids = ["60912e09fd1f04e832a575c1", "639ce542862e9b1b1bfa8f1b",
→˓"63e185e7cd3a5f8e190c6393"]
>>> sharing_roles = []
>>> for user_id in user_ids:
... new_sharing_role = SharingRole(
... role=SHARING_ROLE.CONSUMER,
... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
... id=user_id,
... can_share=True,
...)
... sharing_roles.append(new_sharing_role)
>>> dr.DataStore.get('my-data-store-id').share(access_list)

Similarly, a SharingRole instance can be used to remove a user’s access if the role is set to
SHARING_ROLE.NO_ROLE, like in this example:

>>> import datarobot as dr
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_to_remove = "foo.bar@datarobot.com"
... remove_sharing_role = SharingRole(
... role=SHARING_ROLE.NO_ROLE,
... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
... username=user_to_remove,
... can_share=False,
...)
>>> dr.DataStore.get('my-data-store-id').share(roles=[remove_sharing_role])

Return type None

class datarobot.DataSource(data_source_id=None, data_source_type=None, canonical_name=None,
creator=None, updated=None, params=None, role=None)

A data source. Represents data request

Attributes

274 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

id [str] the id of the data source.

type [str] the type of data source.

canonical_name [str] the user-friendly name of the data source.

creator [str] the id of the user who created the data source.

updated [datetime.datetime] the time of the last update.

params [DataSourceParameters] a list specifying data source parameters.

role [str or None] if a string, represents a particular level of access and should be one of
datarobot.enums.SHARING_ROLE. For more information on the specific access levels, see
the sharing documentation. If None, can be passed to a share function to revoke access for
a specific user.

classmethod list()
Returns list of available data sources.

Returns
data_sources [list of DataSource instances] contains a list of available data sources.

Examples

>>> import datarobot as dr
>>> data_sources = dr.DataSource.list()
>>> data_sources
[DataSource('Diagnostics'), DataSource('Airlines 100mb'), DataSource('Airlines␣
→˓10mb')]

Return type List[DataSource]

classmethod get(data_source_id)
Gets the data source.

Parameters
data_source_id [str] the identifier of the data source.

Returns
data_source [DataSource] the requested data source.

Examples

>>> import datarobot as dr
>>> data_source = dr.DataSource.get('5a8ac9ab07a57a0001be501f')
>>> data_source
DataSource('Diagnostics')

Return type TypeVar(TDataSource, bound= DataSource)

classmethod create(data_source_type, canonical_name, params)
Creates the data source.

Parameters

2.3. API Reference 275

DataRobot Python API Documentation, Release 3.2.2

data_source_type [str] the type of data source.

canonical_name [str] the user-friendly name of the data source.

params [DataSourceParameters] a list specifying data source parameters.

Returns
data_source [DataSource] the created data source.

Examples

>>> import datarobot as dr
>>> params = dr.DataSourceParameters(
... data_store_id='5a8ac90b07a57a0001be501e',
... query='SELECT * FROM airlines10mb WHERE "Year" >= 1995;'
...)
>>> data_source = dr.DataSource.create(
... data_source_type='jdbc',
... canonical_name='airlines stats after 1995',
... params=params
...)
>>> data_source
DataSource('airlines stats after 1995')

Return type TypeVar(TDataSource, bound= DataSource)

update(canonical_name=None, params=None)
Creates the data source.

Parameters
canonical_name [str] optional, the user-friendly name of the data source.

params [DataSourceParameters] optional, the identifier of the DataDriver.

Examples

>>> import datarobot as dr
>>> data_source = dr.DataSource.get('5ad840cc613b480001570953')
>>> data_source
DataSource('airlines stats after 1995')
>>> params = dr.DataSourceParameters(
... query='SELECT * FROM airlines10mb WHERE "Year" >= 1990;'
...)
>>> data_source.update(
... canonical_name='airlines stats after 1990',
... params=params
...)
>>> data_source
DataSource('airlines stats after 1990')

Return type None

276 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

delete()
Removes the DataSource

Return type None

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(TDataSource, bound= DataSource)

get_access_list()
Retrieve what users have access to this data source

New in version v2.14.

Returns
list of [class:SharingAccess <datarobot.SharingAccess>]

Return type List[SharingAccess]

share(access_list)
Modify the ability of users to access this data source

New in version v2.14.

Parameters
access_list: list of [class:SharingAccess <datarobot.SharingAccess>] The modifications to

make.

Raises
datarobot.ClientError: If you do not have permission to share this data source, if the user

you’re sharing with doesn’t exist, if the same user appears multiple times in the access_list,
or if these changes would leave the data source without an owner.

Examples

Transfer access to the data source from old_user@datarobot.com to new_user@datarobot.com

from datarobot.enums import SHARING_ROLE
from datarobot.models.data_source import DataSource
from datarobot.models.sharing import SharingAccess

new_access = SharingAccess(
"new_user@datarobot.com",
SHARING_ROLE.OWNER,
can_share=True,

)
(continues on next page)

2.3. API Reference 277

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

access_list = [
SharingAccess("old_user@datarobot.com", SHARING_ROLE.OWNER, can_share=True),
new_access,

]

DataSource.get('my-data-source-id').share(access_list)

Return type None

create_dataset(username=None, password=None, do_snapshot=None,
persist_data_after_ingestion=None, categories=None, credential_id=None,
use_kerberos=None)

Create a Dataset from this data source.

New in version v2.22.

Parameters
username: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
requires an additional permission, Enable Create Snapshot Data Source.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still
will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

credential_id: string, optional The ID of the set of credentials to use instead of user and
password. Note that with this change, username and password will become optional.

use_kerberos: bool, optional If unset, uses the server default: False. If true, use kerberos
authentication for database authentication.

Returns
response: Dataset The Dataset created from the uploaded data

Return type Dataset

class datarobot.DataSourceParameters(data_store_id=None, table=None, schema=None,
partition_column=None, query=None, fetch_size=None)

Data request configuration

Attributes
data_store_id [str] the id of the DataStore.

table [str] optional, the name of specified database table.

278 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

schema [str] optional, the name of the schema associated with the table.

partition_column [str] optional, the name of the partition column.

query [str] optional, the user specified SQL query.

fetch_size [int] optional, a user specified fetch size in the range [1, 20000]. By default a fetchSize
will be assigned to balance throughput and memory usage

2.3.20 Datasets

class datarobot.models.Dataset(dataset_id, version_id, name, categories, created_at,
is_data_engine_eligible, is_latest_version, is_snapshot, processing_state,
created_by=None, data_persisted=None, size=None, row_count=None,
recipe_id=None)

Represents a Dataset returned from the api/v2/datasets/ endpoints.

Attributes
id: string The ID of this dataset

name: string The name of this dataset in the catalog

is_latest_version: bool Whether this dataset version is the latest version of this dataset

version_id: string The object ID of the catalog_version the dataset belongs to

categories: list(string) An array of strings describing the intended use of the dataset. The sup-
ported options are “TRAINING” and “PREDICTION”.

created_at: string The date when the dataset was created

created_by: string, optional Username of the user who created the dataset

is_snapshot: bool Whether the dataset version is an immutable snapshot of data which has pre-
viously been retrieved and saved to Data_robot

data_persisted: bool, optional If true, user is allowed to view extended data profile (which
includes data statistics like min/max/median/mean, histogram, etc.) and download data. If
false, download is not allowed and only the data schema (feature names and types) will be
available.

is_data_engine_eligible: bool Whether this dataset can be a data source of a data engine query.

processing_state: string Current ingestion process state of the dataset

row_count: int, optional The number of rows in the dataset.

size: int, optional The size of the dataset as a CSV in bytes.

get_uri()

Returns
url [str] Permanent static hyperlink to this dataset in AI Catalog.

Return type str

classmethod upload(source)
This method covers Dataset creation from local materials (file & DataFrame) and a URL.

Parameters

2.3. API Reference 279

DataRobot Python API Documentation, Release 3.2.2

source: str, pd.DataFrame or file object Pass a URL, filepath, file or DataFrame to create
and return a Dataset.

Returns
response: Dataset The Dataset created from the uploaded data source.

Raises
InvalidUsageError If the source parameter cannot be determined to be a URL, filepath, file

or DataFrame.

Examples

Upload a local file
dataset_one = Dataset.upload("./data/examples.csv")

Create a dataset via URL
dataset_two = Dataset.upload(

"https://raw.githubusercontent.com/curran/data/gh-pages/dbpedia/cities/data.
→˓csv"
)

Create dataset with a pandas Dataframe
dataset_three = Dataset.upload(my_df)

Create dataset using a local file
with open("./data/examples.csv", "rb") as file_pointer:

dataset_four = Dataset.create_from_file(filelike=file_pointer)

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_file(cls, file_path=None, filelike=None, categories=None,
read_timeout=600, max_wait=600, *, use_cases=None)

A blocking call that creates a new Dataset from a file. Returns when the dataset has been successfully
uploaded and processed.

Warning: This function does not clean up it’s open files. If you pass a filelike, you are responsible for
closing it. If you pass a file_path, this will create a file object from the file_path but will not close it.

Parameters
file_path: string, optional The path to the file. This will create a file object pointing to that

file but will not close it.

filelike: file, optional An open and readable file object.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case ids or a single Use Case id to add this new Dataset
to. Must be a kwarg.

280 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
response: Dataset A fully armed and operational Dataset

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_in_memory_data(cls, data_frame=None, records=None, categories=None,
read_timeout=600, max_wait=600, fname=None, *,
use_cases=None)

A blocking call that creates a new Dataset from in-memory data. Returns when the dataset has been suc-
cessfully uploaded and processed.

The data can be either a pandas DataFrame or a list of dictionaries with identical keys.

Parameters
data_frame: DataFrame, optional The data frame to upload

records: list[dict], optional A list of dictionaries with identical keys to upload

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful

fname: string, optional The file name, “data.csv” by default

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns
response: Dataset The Dataset created from the uploaded data.

Raises
InvalidUsageError If neither a DataFrame or list of records is passed.

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_url(cls, url, do_snapshot=None, persist_data_after_ingestion=None,
categories=None, max_wait=600, *, use_cases=None)

A blocking call that creates a new Dataset from data stored at a url. Returns when the dataset has been
successfully uploaded and processed.

Parameters
url: string The URL to use as the source of data for the dataset being created.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
may be disabled by the permission, Disable AI Catalog Snapshots.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still

2.3. API Reference 281

DataRobot Python API Documentation, Release 3.2.2

will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

max_wait: int, optional Time in seconds after which dataset creation is considered unsuc-
cessful.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns
response: Dataset The Dataset created from the uploaded data

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_data_source(cls, data_source_id, username=None, password=None,
do_snapshot=None, persist_data_after_ingestion=None,
categories=None, credential_id=None, use_kerberos=None,
credential_data=None, max_wait=600, *, use_cases=None)

A blocking call that creates a new Dataset from data stored at a DataSource. Returns when the dataset has
been successfully uploaded and processed.

New in version v2.22.

Parameters
data_source_id: string The ID of the DataSource to use as the source of data.

username: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored.

do_snapshot: bool, optional If unset, uses the server default: True. If true, creates a snap-
shot dataset; if false, creates a remote dataset. Creating snapshots from non-file sources
requires may be disabled by the permission, Disable AI Catalog Snapshots.

persist_data_after_ingestion: bool, optional If unset, uses the server default: True. If true,
will enforce saving all data (for download and sampling) and will allow a user to view
extended data profile (which includes data statistics like min/max/median/mean, histogram,
etc.). If false, will not enforce saving data. The data schema (feature names and types) still
will be available. Specifying this parameter to false and doSnapshot to true will result in
an error.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

credential_id: string, optional The ID of the set of credentials to use instead of user and
password. Note that with this change, username and password will become optional.

use_kerberos: bool, optional If unset, uses the server default: False. If true, use kerberos
authentication for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

282 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns
response: Dataset The Dataset created from the uploaded data

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_from_query_generator(cls, generator_id, dataset_id=None,
dataset_version_id=None, max_wait=600, *,
use_cases=None)

A blocking call that creates a new Dataset from the query generator. Returns when the dataset has
been successfully processed. If optional parameters are not specified the query is applied to the
dataset_id and dataset_version_id stored in the query generator. If specified they will override the stored
dataset_id/dataset_version_id, e.g. to prep a prediction dataset.

Parameters
generator_id: str The id of the query generator to use.

dataset_id: str, optional The id of the dataset to apply the query to.

dataset_version_id: str, optional The id of the dataset version to apply the query to. If not
specified the latest version associated with dataset_id (if specified) is used.

max_wait [int] optional, the maximum number of seconds to wait before giving up.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case IDs or a single Use Case ID to add this new dataset
to. Must be a kwarg.

Returns
response: Dataset The Dataset created from the query generator

Return type TypeVar(TDataset, bound= Dataset)

classmethod get(dataset_id)
Get information about a dataset.

Parameters
dataset_id [string] the id of the dataset

Returns
dataset [Dataset] the queried dataset

Return type TypeVar(TDataset, bound= Dataset)

classmethod delete(dataset_id)
Soft deletes a dataset. You cannot get it or list it or do actions with it, except for un-deleting it.

Parameters
dataset_id: string The id of the dataset to mark for deletion

Returns

2.3. API Reference 283

DataRobot Python API Documentation, Release 3.2.2

None

Return type None

classmethod un_delete(dataset_id)
Un-deletes a previously deleted dataset. If the dataset was not deleted, nothing happens.

Parameters
dataset_id: string The id of the dataset to un-delete

Returns
None

Return type None

classmethod list(category=None, filter_failed=None, order_by=None, use_cases=None)
List all datasets a user can view.

Parameters
category: string, optional Optional. If specified, only dataset versions that have the spec-

ified category will be included in the results. Categories identify the intended use of the
dataset; supported categories are “TRAINING” and “PREDICTION”.

filter_failed: bool, optional If unset, uses the server default: False. Whether datasets that
failed during import should be excluded from the results. If True invalid datasets will be
excluded.

order_by: string, optional If unset, uses the server default: “-created”. Sorting order which
will be applied to catalog list, valid options are: - “created” – ascending order by creation
datetime; - “-created” – descending order by creation datetime.

use_cases: Union[UseCase, List[UseCase], str, List[str]], optional Filter available
datasets by a specific Use Case or Cases. Accepts either the entity or the ID.

Returns
list[Dataset] a list of datasets the user can view

Return type List[TypeVar(TDataset, bound= Dataset)]

classmethod iterate(offset=None, limit=None, category=None, order_by=None, filter_failed=None,
use_cases=None)

Get an iterator for the requested datasets a user can view. This lazily retrieves results. It does not get the
next page from the server until the current page is exhausted.

Parameters
offset: int, optional If set, this many results will be skipped

limit: int, optional Specifies the size of each page retrieved from the server. If unset, uses
the server default.

category: string, optional Optional. If specified, only dataset versions that have the spec-
ified category will be included in the results. Categories identify the intended use of the
dataset; supported categories are “TRAINING” and “PREDICTION”.

filter_failed: bool, optional If unset, uses the server default: False. Whether datasets that
failed during import should be excluded from the results. If True invalid datasets will be
excluded.

284 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

order_by: string, optional If unset, uses the server default: “-created”. Sorting order which
will be applied to catalog list, valid options are: - “created” – ascending order by creation
datetime; - “-created” – descending order by creation datetime.

use_cases: Union[UseCase, List[UseCase], str, List[str]], optional Filter available
datasets by a specific Use Case or Cases. Accepts either the entity or the ID.

Yields
Dataset An iterator of the datasets the user can view

Return type Generator[TypeVar(TDataset, bound= Dataset), None, None]

update()
Updates the Dataset attributes in place with the latest information from the server.

Returns
None

Return type None

modify(name=None, categories=None)
Modifies the Dataset name and/or categories. Updates the object in place.

Parameters
name: string, optional The new name of the dataset

categories: list[string], optional A list of strings describing the intended use of the dataset.
The supported options are “TRAINING” and “PREDICTION”. If any categories were
previously specified for the dataset, they will be overwritten.

Returns
None

Return type None

share(access_list, apply_grant_to_linked_objects=False)
Modify the ability of users to access this dataset

Parameters
access_list: list of [class:SharingAccess <datarobot.SharingAccess>] The modifications to

make.

apply_grant_to_linked_objects: bool If true for any users being granted access to the
dataset, grant the user read access to any linked objects such as DataSources and Data-
Stores that may be used by this dataset. Ignored if no such objects are relevant for dataset,
defaults to False.

Raises
datarobot.ClientError: If you do not have permission to share this dataset, if the user you’re

sharing with doesn’t exist, if the same user appears multiple times in the access_list, or if
these changes would leave the dataset without an owner.

2.3. API Reference 285

DataRobot Python API Documentation, Release 3.2.2

Examples

Transfer access to the dataset from old_user@datarobot.com to new_user@datarobot.com

from datarobot.enums import SHARING_ROLE
from datarobot.models.dataset import Dataset
from datarobot.models.sharing import SharingAccess

new_access = SharingAccess(
"new_user@datarobot.com",
SHARING_ROLE.OWNER,
can_share=True,

)
access_list = [

SharingAccess(
"old_user@datarobot.com",
SHARING_ROLE.OWNER,
can_share=True,
can_use_data=True,

),
new_access,

]

Dataset.get('my-dataset-id').share(access_list)

Return type None

get_details()
Gets the details for this Dataset

Returns
DatasetDetails

Return type DatasetDetails

get_all_features(order_by=None)
Get a list of all the features for this dataset.

Parameters
order_by: string, optional If unset, uses the server default: ‘name’. How the features should

be ordered. Can be ‘name’ or ‘featureType’.

Returns
list[DatasetFeature]

Return type List[DatasetFeature]

iterate_all_features(offset=None, limit=None, order_by=None)
Get an iterator for the requested features of a dataset. This lazily retrieves results. It does not get the next
page from the server until the current page is exhausted.

Parameters
offset: int, optional If set, this many results will be skipped.

286 Chapter 2. Table of contents

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

limit: int, optional Specifies the size of each page retrieved from the server. If unset, uses
the server default.

order_by: string, optional If unset, uses the server default: ‘name’. How the features should
be ordered. Can be ‘name’ or ‘featureType’.

Yields
DatasetFeature

Return type Generator[DatasetFeature, None, None]

get_featurelists()
Get DatasetFeaturelists created on this Dataset

Returns
feature_lists: list[DatasetFeaturelist]

Return type List[DatasetFeaturelist]

create_featurelist(name, features)
Create a new dataset featurelist

Parameters
name [str] the name of the modeling featurelist to create. Names must be unique within the

dataset, or the server will return an error.

features [list of str] the names of the features to include in the dataset featurelist. Each feature
must be a dataset feature.

Returns
featurelist [DatasetFeaturelist] the newly created featurelist

Examples

dataset = Dataset.get('1234deadbeeffeeddead4321')
dataset_features = dataset.get_all_features()
selected_features = [feat.name for feat in dataset_features][:5] # select␣
→˓first five
new_flist = dataset.create_featurelist('Simple Features', selected_features)

Return type DatasetFeaturelist

get_file(file_path=None, filelike=None)
Retrieves all the originally uploaded data in CSV form. Writes it to either the file or a filelike object that
can write bytes.

Only one of file_path or filelike can be provided and it must be provided as a keyword argument (i.e.
file_path=’path-to-write-to’). If a file-like object is provided, the user is responsible for closing it when
they are done.

The user must also have permission to download data.

Parameters
file_path: string, optional The destination to write the file to.

2.3. API Reference 287

DataRobot Python API Documentation, Release 3.2.2

filelike: file, optional A file-like object to write to. The object must be able to write bytes.
The user is responsible for closing the object

Returns
None

Return type None

get_as_dataframe(low_memory=False)
Retrieves all the originally uploaded data in a pandas DataFrame.

New in version v3.0.

Parameters
low_memory: bool, optional If True, use local files to reduce memory usage which will be

slower.

Returns
pd.DataFrame

Return type DataFrame

get_projects()
Retrieves the Dataset’s projects as ProjectLocation named tuples.

Returns
locations: list[ProjectLocation]

Return type List[ProjectLocation]

create_project(project_name=None, user=None, password=None, credential_id=None,
use_kerberos=None, credential_data=None, *, use_cases=None)

Create a datarobot.models.Project from this dataset

Parameters
project_name: string, optional The name of the project to be created. If not specified, will

be “Untitled Project” for database connections, otherwise the project name will be based
on the file used.

user: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored

credential_id: string, optional The ID of the set of credentials to use instead of user and
password.

use_kerberos: bool, optional Server default is False. If true, use kerberos authentication
for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

use_cases: list[UseCase] | UseCase | list[string] | string, optional A list of UseCase ob-
jects, UseCase object, list of Use Case ids or a single Use Case id to add this new Dataset
to. Must be a kwarg.

288 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
Project

Return type Project

classmethod create_version_from_file(dataset_id, file_path=None, filelike=None, categories=None,
read_timeout=600, max_wait=600)

A blocking call that creates a new Dataset version from a file. Returns when the new dataset version has
been successfully uploaded and processed.

Warning: This function does not clean up it’s open files. If you pass a filelike, you are responsible for
closing it. If you pass a file_path, this will create a file object from the file_path but will not close it.

New in version v2.23.

Parameters
dataset_id: string The ID of the dataset for which new version to be created

file_path: string, optional The path to the file. This will create a file object pointing to that
file but will not close it.

filelike: file, optional An open and readable file object.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful

Returns
response: Dataset A fully armed and operational Dataset version

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_version_from_in_memory_data(dataset_id, data_frame=None, records=None,
categories=None, read_timeout=600,
max_wait=600)

A blocking call that creates a new Dataset version for a dataset from in-memory data. Returns when the
dataset has been successfully uploaded and processed.

The data can be either a pandas DataFrame or a list of dictionaries with identical keys.

New in version v2.23.

Parameters
dataset_id: string The ID of the dataset for which new version to be created

data_frame: DataFrame, optional The data frame to upload

records: list[dict], optional A list of dictionaries with identical keys to upload

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

read_timeout: int, optional The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

2.3. API Reference 289

DataRobot Python API Documentation, Release 3.2.2

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful

Returns
response: Dataset The Dataset version created from the uploaded data

Raises
InvalidUsageError If neither a DataFrame or list of records is passed.

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_version_from_url(dataset_id, url, categories=None, max_wait=600)
A blocking call that creates a new Dataset from data stored at a url for a given dataset. Returns when the
dataset has been successfully uploaded and processed.

New in version v2.23.

Parameters
dataset_id: string The ID of the dataset for which new version to be created

url: string The URL to use as the source of data for the dataset being created.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful

Returns
response: Dataset The Dataset version created from the uploaded data

Return type TypeVar(TDataset, bound= Dataset)

classmethod create_version_from_data_source(dataset_id, data_source_id, username=None,
password=None, categories=None,
credential_id=None, use_kerberos=None,
credential_data=None, max_wait=600)

A blocking call that creates a new Dataset from data stored at a DataSource. Returns when the dataset has
been successfully uploaded and processed.

New in version v2.23.

Parameters
dataset_id: string The ID of the dataset for which new version to be created

data_source_id: string The ID of the DataSource to use as the source of data.

username: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored.

categories: list[string], optional An array of strings describing the intended use of the
dataset. The current supported options are “TRAINING” and “PREDICTION”.

credential_id: string, optional The ID of the set of credentials to use instead of user and
password. Note that with this change, username and password will become optional.

290 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

use_kerberos: bool, optional If unset, uses the server default: False. If true, use kerberos
authentication for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

max_wait: int, optional Time in seconds after which project creation is considered unsuc-
cessful

Returns
response: Dataset The Dataset version created from the uploaded data

Return type TypeVar(TDataset, bound= Dataset)

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

class datarobot.DatasetDetails(dataset_id, version_id, categories, created_by, created_at,
data_source_type, error, is_latest_version, is_snapshot,
is_data_engine_eligible, last_modification_date, last_modifier_full_name,
name, uri, processing_state, data_persisted=None,
data_engine_query_id=None, data_source_id=None, description=None,
eda1_modification_date=None, eda1_modifier_full_name=None,
feature_count=None, feature_count_by_type=None, row_count=None,
size=None, tags=None, recipe_id=None, is_wrangling_eligible=None)

Represents a detailed view of a Dataset. The to_dataset method creates a Dataset from this details view.

Attributes
dataset_id: string The ID of this dataset

name: string The name of this dataset in the catalog

is_latest_version: bool Whether this dataset version is the latest version of this dataset

2.3. API Reference 291

DataRobot Python API Documentation, Release 3.2.2

version_id: string The object ID of the catalog_version the dataset belongs to

categories: list(string) An array of strings describing the intended use of the dataset. The sup-
ported options are “TRAINING” and “PREDICTION”.

created_at: string The date when the dataset was created

created_by: string Username of the user who created the dataset

is_snapshot: bool Whether the dataset version is an immutable snapshot of data which has pre-
viously been retrieved and saved to Data_robot

data_persisted: bool, optional If true, user is allowed to view extended data profile (which
includes data statistics like min/max/median/mean, histogram, etc.) and download data. If
false, download is not allowed and only the data schema (feature names and types) will be
available.

is_data_engine_eligible: bool Whether this dataset can be a data source of a data engine query.

processing_state: string Current ingestion process state of the dataset

row_count: int, optional The number of rows in the dataset.

size: int, optional The size of the dataset as a CSV in bytes.

data_engine_query_id: string, optional ID of the source data engine query

data_source_id: string, optional ID of the datasource used as the source of the dataset

data_source_type: string the type of the datasource that was used as the source of the dataset

description: string, optional the description of the dataset

eda1_modification_date: string, optional the ISO 8601 formatted date and time when the
EDA1 for the dataset was updated

eda1_modifier_full_name: string, optional the user who was the last to update EDA1 for the
dataset

error: string details of exception raised during ingestion process, if any

feature_count: int, optional total number of features in the dataset

feature_count_by_type: list[FeatureTypeCount] number of features in the dataset grouped by
feature type

last_modification_date: string the ISO 8601 formatted date and time when the dataset was last
modified

last_modifier_full_name: string full name of user who was the last to modify the dataset

tags: list[string] list of tags attached to the item

uri: string the uri to datasource like: - ‘file_name.csv’ - ‘jdbc:DATA_SOURCE_GIVEN_
NAME/SCHEMA.TABLE_NAME’ - ‘jdbc:DATA_SOURCE_GIVEN_NAME/<query>’
- for query based datasources - ‘https://s3.amazonaws.com/datarobot_test/
kickcars-sample-200.csv’ - etc.

classmethod get(dataset_id)
Get details for a Dataset from the server

Parameters
dataset_id: str The id for the Dataset from which to get details

Returns

292 Chapter 2. Table of contents

jdbc:DATA_SOURCE_GIVEN_NAME/SCHEMA.TABLE_NAME
jdbc:DATA_SOURCE_GIVEN_NAME/SCHEMA.TABLE_NAME
jdbc:DATA_SOURCE_GIVEN_NAME
https://s3.amazonaws.com/datarobot_test/kickcars-sample-200.csv
https://s3.amazonaws.com/datarobot_test/kickcars-sample-200.csv

DataRobot Python API Documentation, Release 3.2.2

DatasetDetails

Return type TypeVar(TDatasetDetails, bound= DatasetDetails)

to_dataset()
Build a Dataset object from the information in this object

Returns
Dataset

Return type Dataset

class datarobot.models.dataset.ProjectLocation(url, id)

property id
Alias for field number 1

property url
Alias for field number 0

2.3.21 Data Engine Query Generator

class datarobot.DataEngineQueryGenerator(**generator_kwargs)
DataEngineQueryGenerator is used to set up time series data prep.

New in version v2.27.

Attributes
id: str id of the query generator

query: str text of the generated Spark SQL query

datasets: list(QueryGeneratorDataset) datasets associated with the query generator

generator_settings: QueryGeneratorSettings the settings used to define the query

generator_type: str “TimeSeries” is the only supported type

classmethod create(generator_type, datasets, generator_settings)
Creates a query generator entity.

New in version v2.27.

Parameters
generator_type [str] Type of data engine query generator

datasets [List[QueryGeneratorDataset]] Source datasets in the Data Engine workspace.

generator_settings [dict] Data engine generator settings of the given generator_type.

Returns
query_generator [DataEngineQueryGenerator] The created generator

2.3. API Reference 293

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
from datarobot.models.data_engine_query_generator import (

QueryGeneratorDataset,
QueryGeneratorSettings,

)
dataset = QueryGeneratorDataset(

alias='My_Awesome_Dataset_csv',
dataset_id='61093144cabd630828bca321',
dataset_version_id=1,

)
settings = QueryGeneratorSettings(

datetime_partition_column='date',
time_unit='DAY',
time_step=1,
default_numeric_aggregation_method='sum',
default_categorical_aggregation_method='mostFrequent',

)
g = dr.DataEngineQueryGenerator.create(

generator_type='TimeSeries',
datasets=[dataset],
generator_settings=settings,

)
g.id
>>>'54e639a18bd88f08078ca831'
g.generator_type
>>>'TimeSeries'

classmethod get(generator_id)
Gets information about a query generator.

Parameters
generator_id [str] The identifier of the query generator you want to load.

Returns
query_generator [DataEngineQueryGenerator] The queried generator

Examples

import datarobot as dr
g = dr.DataEngineQueryGenerator.get(generator_id='54e639a18bd88f08078ca831')
g.id
>>>'54e639a18bd88f08078ca831'
g.generator_type
>>>'TimeSeries'

create_dataset(dataset_id=None, dataset_version_id=None, max_wait=600)
A blocking call that creates a new Dataset from the query generator. Returns when the dataset has
been successfully processed. If optional parameters are not specified the query is applied to the
dataset_id and dataset_version_id stored in the query generator. If specified they will override the stored
dataset_id/dataset_version_id, i.e. to prep a prediction dataset.

294 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
dataset_id: str, optional The id of the unprepped dataset to apply the query to

dataset_version_id: str, optional The version_id of the unprepped dataset to apply the
query to

Returns
response: Dataset The Dataset created from the query generator

prepare_prediction_dataset_from_catalog(project_id, dataset_id, dataset_version_id=None,
max_wait=600,
relax_known_in_advance_features_check=None)

Apply time series data prep to a catalog dataset and upload it to the project as a PredictionDataset.

New in version v3.1.

Parameters
project_id [str] The id of the project to which you upload the prediction dataset.

dataset_id [str] The identifier of the dataset.

dataset_version_id [str, optional] The version id of the dataset to use.

max_wait [int, optional] Optional, the maximum number of seconds to wait before giving
up.

relax_known_in_advance_features_check [bool, optional] For time series projects only. If
True, missing values in the known in advance features are allowed in the forecast window
at the prediction time. If omitted or False, missing values are not allowed.

Returns
dataset [PredictionDataset] The newly uploaded dataset.

Return type PredictionDataset

prepare_prediction_dataset(sourcedata, project_id, max_wait=600,
relax_known_in_advance_features_check=None)

Apply time series data prep and upload the PredictionDataset to the project.

New in version v3.1.

Parameters
sourcedata [str, file or pandas.DataFrame] Data to be used for predictions. If it is a string, it

can be either a path to a local file, or raw file content. If using a file on disk, the filename
must consist of ASCII characters only.

project_id [str] The id of the project to which you upload the prediction dataset.

max_wait [int, optional] The maximum number of seconds to wait for the uploaded dataset
to be processed before raising an error.

relax_known_in_advance_features_check [bool, optional] For time series projects only. If
True, missing values in the known in advance features are allowed in the forecast window
at the prediction time. If omitted or False, missing values are not allowed.

Returns
——-
dataset [PredictionDataset] The newly uploaded dataset.

2.3. API Reference 295

DataRobot Python API Documentation, Release 3.2.2

Raises
InputNotUnderstoodError Raised if sourcedata isn’t one of supported types.

AsyncFailureError Raised if polling for the status of an async process resulted in a response
with an unsupported status code.

AsyncProcessUnsuccessfulError Raised if project creation was unsuccessful (i.e. the
server reported an error in uploading the dataset).

AsyncTimeoutError Raised if processing the uploaded dataset took more time than speci-
fied by the max_wait parameter.

Return type PredictionDataset

2.3.22 Data Store

class datarobot.models.data_store.TestResponse() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary initialized
as if via: d = {} for k, v in iterable: d[k] = v
dict(**kwargs) -> new dictionary initialized with the
name=value pairs in the keyword argument list. For
example: dict(one=1, two=2)

class datarobot.models.data_store.SchemasResponse() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary
initialized as if via: d = {} for k, v in iterable: d[k]
= v dict(**kwargs) -> new dictionary initialized
with the name=value pairs in the keyword
argument list. For example: dict(one=1, two=2)

class datarobot.models.data_store.TablesResponse() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary
initialized as if via: d = {} for k, v in iterable: d[k] =
v dict(**kwargs) -> new dictionary initialized with
the name=value pairs in the keyword argument list.
For example: dict(one=1, two=2)

2.3.23 Datetime Trend Plots

class datarobot.models.datetime_trend_plots.AccuracyOverTimePlotsMetadata(project_id,
model_id,
forecast_distance,
resolutions,
backtest_metadata,
holdout_metadata,
backtest_statuses,
holdout_statuses)

Accuracy over Time metadata for datetime model.

296 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

New in version v2.25.

Notes

Backtest/holdout status is a dict containing the following:

• training: string Status backtest/holdout training. One of datarobot.enums.
DATETIME_TREND_PLOTS_STATUS

• validation: string Status backtest/holdout validation. One of datarobot.enums.
DATETIME_TREND_PLOTS_STATUS

Backtest/holdout metadata is a dict containing the following:

• training: dict Start and end dates for the backtest/holdout training.

• validation: dict Start and end dates for the backtest/holdout validation.

Each dict in the training and validation in backtest/holdout metadata is structured like:

• start_date: datetime.datetime or None The datetime of the start of the chart data (inclusive). None if
chart data is not computed.

• end_date: datetime.datetime or None The datetime of the end of the chart data (exclusive). None if chart
data is not computed.

Attributes
project_id: string The project ID.

model_id: string The model ID.

forecast_distance: int or None The forecast distance for which the metadata was retrieved.
None for OTV projects.

resolutions: list of string A list of datarobot.enums.DATETIME_TREND_PLOTS_RESOLUTION,
which represents available time resolutions for which plots can be retrieved.

backtest_metadata: list of dict List of backtest metadata dicts. The list index of metadata dict
is the backtest index. See backtest/holdout metadata info in Notes for more details.

holdout_metadata: dict Holdout metadata dict. See backtest/holdout metadata info in Notes
for more details.

backtest_statuses: list of dict List of backtest statuses dict. The list index of status dict is the
backtest index. See backtest/holdout status info in Notes for more details.

holdout_statuses: dict Holdout status dict. See backtest/holdout status info in Notes for more
details.

class datarobot.models.datetime_trend_plots.AccuracyOverTimePlot(project_id, model_id,
start_date, end_date,
resolution, bins, statistics,
calendar_events)

Accuracy over Time plot for datetime model.

New in version v2.25.

2.3. API Reference 297

DataRobot Python API Documentation, Release 3.2.2

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

• actual: float or None Average actual value of the target in the bin. None if there are no entries in the bin.

• predicted: float or None Average prediction of the model in the bin. None if there are no entries in the
bin.

• frequency: int or None Indicates number of values averaged in bin.

Statistics is a dict containing the following:

• durbin_watson: float or None The Durbin-Watson statistic for the chart data. Value is between 0 and
4. Durbin-Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1
in the residuals (prediction errors) from a regression analysis. More info https://wikipedia.org/wiki/
Durbin%E2%80%93Watson_statistic

Calendar event is a dict containing the following:

• name: string Name of the calendar event.

• date: datetime Date of the calendar event.

• series_id: string or None The series ID for the event. If this event does not specify a series ID, then this
will be None, indicating that the event applies to all series.

Attributes
project_id: string The project ID.

model_id: string The model ID.

resolution: string The resolution that is used for binning. One of datarobot.enums.
DATETIME_TREND_PLOTS_RESOLUTION

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

statistics: dict Statistics for plot. See statistics info in Notes for more details.

calendar_events: list of dict List of calendar events for the plot. See calendar events info in
Notes for more details.

class datarobot.models.datetime_trend_plots.AccuracyOverTimePlotPreview(project_id, model_id,
start_date, end_date,
bins)

Accuracy over Time plot preview for datetime model.

New in version v2.25.

298 Chapter 2. Table of contents

https://wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic
https://wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic

DataRobot Python API Documentation, Release 3.2.2

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

• actual: float or None Average actual value of the target in the bin. None if there are no entries in the bin.

• predicted: float or None Average prediction of the model in the bin. None if there are no entries in the
bin.

Attributes
project_id: string The project ID.

model_id: string The model ID.

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

class datarobot.models.datetime_trend_plots.ForecastVsActualPlotsMetadata(project_id,
model_id,
resolutions,
backtest_metadata,
holdout_metadata,
backtest_statuses,
holdout_statuses)

Forecast vs Actual plots metadata for datetime model.

New in version v2.25.

Notes

Backtest/holdout status is a dict containing the following:

• training: dict Dict containing each of datarobot.enums.DATETIME_TREND_PLOTS_STATUS as dict
key, and list of forecast distances for particular status as dict value.

• validation: dict Dict containing each of datarobot.enums.DATETIME_TREND_PLOTS_STATUS as dict
key, and list of forecast distances for particular status as dict value.

Backtest/holdout metadata is a dict containing the following:

• training: dict Start and end dates for the backtest/holdout training.

• validation: dict Start and end dates for the backtest/holdout validation.

Each dict in the training and validation in backtest/holdout metadata is structured like:

• start_date: datetime.datetime or None The datetime of the start of the chart data (inclusive). None if
chart data is not computed.

• end_date: datetime.datetime or None The datetime of the end of the chart data (exclusive). None if chart
data is not computed.

Attributes
project_id: string The project ID.

2.3. API Reference 299

DataRobot Python API Documentation, Release 3.2.2

model_id: string The model ID.

resolutions: list of string A list of datarobot.enums.DATETIME_TREND_PLOTS_RESOLUTION,
which represents available time resolutions for which plots can be retrieved.

backtest_metadata: list of dict List of backtest metadata dicts. The list index of metadata dict
is the backtest index. See backtest/holdout metadata info in Notes for more details.

holdout_metadata: dict Holdout metadata dict. See backtest/holdout metadata info in Notes
for more details.

backtest_statuses: list of dict List of backtest statuses dict. The list index of status dict is the
backtest index. See backtest/holdout status info in Notes for more details.

holdout_statuses: dict Holdout status dict. See backtest/holdout status info in Notes for more
details.

class datarobot.models.datetime_trend_plots.ForecastVsActualPlot(project_id, model_id,
forecast_distances, start_date,
end_date, resolution, bins,
calendar_events)

Forecast vs Actual plot for datetime model.

New in version v2.25.

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

• actual: float or None Average actual value of the target in the bin. None if there are no entries in the bin.

• forecasts: list of float A list of average forecasts for the model for each forecast distance. Empty if there
are no forecasts in the bin. Each index in the forecasts list maps to forecastDistances list index.

• error: float or None Average absolute residual value of the bin. None if there are no entries in the bin.

• normalized_error: float or None Normalized average absolute residual value of the bin. None if there
are no entries in the bin.

• frequency: int or None Indicates number of values averaged in bin.

Calendar event is a dict containing the following:

• name: string Name of the calendar event.

• date: datetime Date of the calendar event.

• series_id: string or None The series ID for the event. If this event does not specify a series ID, then this
will be None, indicating that the event applies to all series.

Attributes
project_id: string The project ID.

model_id: string The model ID.

forecast_distances: list of int A list of forecast distances that were retrieved.

resolution: string The resolution that is used for binning. One of datarobot.enums.
DATETIME_TREND_PLOTS_RESOLUTION

300 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

calendar_events: list of dict List of calendar events for the plot. See calendar events info in
Notes for more details.

class datarobot.models.datetime_trend_plots.ForecastVsActualPlotPreview(project_id, model_id,
start_date, end_date,
bins)

Forecast vs Actual plot preview for datetime model.

New in version v2.25.

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

• actual: float or None Average actual value of the target in the bin. None if there are no entries in the bin.

• predicted: float or None Average prediction of the model in the bin. None if there are no entries in the
bin.

Attributes
project_id: string The project ID.

model_id: string The model ID.

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

class datarobot.models.datetime_trend_plots.AnomalyOverTimePlotsMetadata(project_id, model_id,
resolutions,
backtest_metadata,
holdout_metadata,
backtest_statuses,
holdout_statuses)

Anomaly over Time metadata for datetime model.

New in version v2.25.

2.3. API Reference 301

DataRobot Python API Documentation, Release 3.2.2

Notes

Backtest/holdout status is a dict containing the following:

• training: string Status backtest/holdout training. One of datarobot.enums.
DATETIME_TREND_PLOTS_STATUS

• validation: string Status backtest/holdout validation. One of datarobot.enums.
DATETIME_TREND_PLOTS_STATUS

Backtest/holdout metadata is a dict containing the following:

• training: dict Start and end dates for the backtest/holdout training.

• validation: dict Start and end dates for the backtest/holdout validation.

Each dict in the training and validation in backtest/holdout metadata is structured like:

• start_date: datetime.datetime or None The datetime of the start of the chart data (inclusive). None if
chart data is not computed.

• end_date: datetime.datetime or None The datetime of the end of the chart data (exclusive). None if chart
data is not computed.

Attributes
project_id: string The project ID.

model_id: string The model ID.

resolutions: list of string A list of datarobot.enums.DATETIME_TREND_PLOTS_RESOLUTION,
which represents available time resolutions for which plots can be retrieved.

backtest_metadata: list of dict List of backtest metadata dicts. The list index of metadata dict
is the backtest index. See backtest/holdout metadata info in Notes for more details.

holdout_metadata: dict Holdout metadata dict. See backtest/holdout metadata info in Notes
for more details.

backtest_statuses: list of dict List of backtest statuses dict. The list index of status dict is the
backtest index. See backtest/holdout status info in Notes for more details.

holdout_statuses: dict Holdout status dict. See backtest/holdout status info in Notes for more
details.

class datarobot.models.datetime_trend_plots.AnomalyOverTimePlot(project_id, model_id, start_date,
end_date, resolution, bins,
calendar_events)

Anomaly over Time plot for datetime model.

New in version v2.25.

302 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

• predicted: float or None Average prediction of the model in the bin. None if there are no entries in the
bin.

• frequency: int or None Indicates number of values averaged in bin.

Calendar event is a dict containing the following:

• name: string Name of the calendar event.

• date: datetime Date of the calendar event.

• series_id: string or None The series ID for the event. If this event does not specify a series ID, then this
will be None, indicating that the event applies to all series.

Attributes
project_id: string The project ID.

model_id: string The model ID.

resolution: string The resolution that is used for binning. One of datarobot.enums.
DATETIME_TREND_PLOTS_RESOLUTION

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

calendar_events: list of dict List of calendar events for the plot. See calendar events info in
Notes for more details.

class datarobot.models.datetime_trend_plots.AnomalyOverTimePlotPreview(project_id, model_id,
prediction_threshold,
start_date, end_date,
bins)

Anomaly over Time plot preview for datetime model.

New in version v2.25.

Notes

Bin is a dict containing the following:

• start_date: datetime.datetime The datetime of the start of the bin (inclusive).

• end_date: datetime.datetime The datetime of the end of the bin (exclusive).

Attributes
project_id: string The project ID.

model_id: string The model ID.

prediction_threshold: float Only bins with predictions exceeding this threshold are returned in
the response.

2.3. API Reference 303

DataRobot Python API Documentation, Release 3.2.2

start_date: datetime.datetime The datetime of the start of the chart data (inclusive).

end_date: datetime.datetime The datetime of the end of the chart data (exclusive).

bins: list of dict List of plot bins. See bin info in Notes for more details.

2.3.24 Deployment

class datarobot.models.Deployment(id, label=None, description=None, status=None,
default_prediction_server=None, model=None, capabilities=None,
prediction_usage=None, permissions=None, service_health=None,
model_health=None, accuracy_health=None, importance=None,
fairness_health=None, governance=None, owners=None,
prediction_environment=None)

A deployment created from a DataRobot model.

Attributes
id [str] the id of the deployment

label [str] the label of the deployment

description [str] the description of the deployment

status [str] (New in version v2.29) deployment status

default_prediction_server [dict] Information about the default prediction server for the deploy-
ment. Accepts the following values:

• id: str. Prediction server ID.

• url: str, optional. Prediction server URL.

• datarobot-key: str. Corresponds the to the PredictionServer’s “snake_cased”
datarobot_key parameter that allows you to verify and access the prediction server.

importance [str, optional] deployment importance

model [dict] information on the model of the deployment

capabilities [dict] information on the capabilities of the deployment

prediction_usage [dict] information on the prediction usage of the deployment

permissions [list] (New in version v2.18) user’s permissions on the deployment

service_health [dict] information on the service health of the deployment

model_health [dict] information on the model health of the deployment

accuracy_health [dict] information on the accuracy health of the deployment

fairness_health [dict] information on the fairness health of a deployment

governance [dict] information on approval and change requests of a deployment

owners [dict] information on the owners of a deployment

prediction_environment [dict] information on the prediction environment of a deployment

classmethod create_from_learning_model(model_id, label, description=None,
default_prediction_server_id=None, importance=None,
prediction_threshold=None, status=None)

Create a deployment from a DataRobot model.

New in version v2.17.

304 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
model_id [str] id of the DataRobot model to deploy

label [str] a human-readable label of the deployment

description [str, optional] a human-readable description of the deployment

default_prediction_server_id [str, optional] an identifier of a prediction server to be used
as the default prediction server

importance [str, optional] deployment importance

prediction_threshold [float, optional] threshold used for binary classification in predictions

status [str, optional] deployment status

Returns
deployment [Deployment] The created deployment

Examples

from datarobot import Project, Deployment
project = Project.get('5506fcd38bd88f5953219da0')
model = project.get_models()[0]
deployment = Deployment.create_from_learning_model(model.id, 'New Deployment')
deployment
>>> Deployment('New Deployment')

Return type TypeVar(TDeployment, bound= Deployment)

classmethod create_from_custom_model_version(custom_model_version_id, label,
description=None,
default_prediction_server_id=None,
max_wait=600, importance=None)

Create a deployment from a DataRobot custom model image.

Parameters
custom_model_version_id [str] id of the DataRobot custom model version to deploy The

version must have a base_environment_id.

label [str] a human readable label of the deployment

description [str, optional] a human readable description of the deployment

default_prediction_server_id [str, optional] an identifier of a prediction server to be used
as the default prediction server

max_wait [int, optional] seconds to wait for successful resolution of a deployment creation
job. Deployment supports making predictions only after a deployment creating job has
successfully finished

importance [str, optional] deployment importance

Returns
deployment [Deployment] The created deployment

Return type TypeVar(TDeployment, bound= Deployment)

2.3. API Reference 305

DataRobot Python API Documentation, Release 3.2.2

classmethod list(order_by=None, search=None, filters=None)
List all deployments a user can view.

New in version v2.17.

Parameters
order_by [str, optional] (New in version v2.18) the order to sort the deployment list by, de-

faults to label

Allowed attributes to sort by are:

• label

• serviceHealth

• modelHealth

• accuracyHealth

• recentPredictions

• lastPredictionTimestamp

If the sort attribute is preceded by a hyphen, deployments will be sorted in descending
order, otherwise in ascending order.

For health related sorting, ascending means failing, warning, passing, unknown.

search [str, optional] (New in version v2.18) case insensitive search against deployment’s
label and description.

filters [datarobot.models.deployment.DeploymentListFilters, optional] (New in version
v2.20) an object containing all filters that you’d like to apply to the resulting list of de-
ployments. See DeploymentListFilters for details on usage.

Returns
deployments [list] a list of deployments the user can view

Examples

from datarobot import Deployment
deployments = Deployment.list()
deployments
>>> [Deployment('New Deployment'), Deployment('Previous Deployment')]

from datarobot import Deployment
from datarobot.enums import DEPLOYMENT_SERVICE_HEALTH_STATUS
filters = DeploymentListFilters(

role='OWNER',
service_health=[DEPLOYMENT_SERVICE_HEALTH.FAILING]

)
filtered_deployments = Deployment.list(filters=filters)
filtered_deployments
>>> [Deployment('Deployment I Own w/ Failing Service Health')]

Return type List[TypeVar(TDeployment, bound= Deployment)]

306 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(deployment_id)
Get information about a deployment.

New in version v2.17.

Parameters
deployment_id [str] the id of the deployment

Returns
deployment [Deployment] the queried deployment

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.id
>>>'5c939e08962d741e34f609f0'
deployment.label
>>>'New Deployment'

Return type TypeVar(TDeployment, bound= Deployment)

predict_batch(source, passthrough_columns=None, download_timeout=None,
download_read_timeout=None, upload_read_timeout=None)

A convenience method for making predictions with csv file or pandas DataFrame using a batch prediction
job.

For advanced usage, use datarobot.models.BatchPredictionJob directly.

New in version v3.0.

Parameters
source: str, pd.DataFrame or file object Pass a filepath, file, or DataFrame for making

batch predictions.

passthrough_columns [list[string] (optional)] Keep these columns from the scoring dataset
in the scored dataset. This is useful for correlating predictions with source data.

download_timeout: int, optional Wait this many seconds for the download to become avail-
able. See datarobot.models.BatchPredictionJob.score().

download_read_timeout: int, optional Wait this many seconds for the server to respond
between chunks. See datarobot.models.BatchPredictionJob.score().

upload_read_timeout: int, optional Wait this many seconds for the server to respond after
a whole dataset upload. See datarobot.models.BatchPredictionJob.score().

Returns
pd.DataFrame Prediction results in a pandas DataFrame.

Raises
InvalidUsageError If the source parameter cannot be determined to be a filepath, file, or

DataFrame.

2.3. API Reference 307

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot.models.deployment import Deployment

deployment = Deployment.get("<MY_DEPLOYMENT_ID>")
prediction_results_as_dataframe = deployment.predict_batch(

source="./my_local_file.csv",
)

Return type DataFrame

get_uri()

Returns
url [str] Deployment’s overview URI

Return type str

update(label=None, description=None, importance=None)
Update the label and description of this deployment.

New in version v2.19.

Return type None

delete()
Delete this deployment.

New in version v2.17.

Return type None

activate(max_wait=600)
Activates this deployment. When succeeded, deployment status become active.

New in version v2.29.

Parameters
max_wait [int, optional] The maximum time to wait for deployment activation to complete

before erroring

Return type None

deactivate(max_wait=600)
Deactivates this deployment. When succeeded, deployment status become inactive.

New in version v2.29.

Parameters
max_wait [int, optional] The maximum time to wait for deployment deactivation to complete

before erroring

Return type None

replace_model(new_model_id, reason, max_wait=600)

308 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Replace the model used in this deployment. To confirm model replacement eligibility, use
validate_replacement_model() beforehand.

New in version v2.17.

Model replacement is an asynchronous process, which means some preparatory work may be performed
after the initial request is completed. This function will not return until all preparatory work is fully finished.

Predictions made against this deployment will start using the new model as soon as the request is completed.
There will be no interruption for predictions throughout the process.

Parameters
new_model_id [str] The id of the new model to use. If replacing the deployment’s model

with a CustomInferenceModel, a specific CustomModelVersion ID must be used.

reason [MODEL_REPLACEMENT_REASON] The reason for the model replacement.
Must be one of ‘ACCURACY’, ‘DATA_DRIFT’, ‘ERRORS’, ‘SCHEDULED_REFRESH’,
‘SCORING_SPEED’, or ‘OTHER’. This value will be stored in the model history to keep
track of why a model was replaced

max_wait [int, optional] (new in version 2.22) The maximum time to wait for model replace-
ment job to complete before erroring

Examples

from datarobot import Deployment
from datarobot.enums import MODEL_REPLACEMENT_REASON
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
deployment.model['id'], deployment.model['type']
>>>('5c0a979859b00004ba52e431', 'Decision Tree Classifier (Gini)')

deployment.replace_model('5c0a969859b00004ba52e41b', MODEL_REPLACEMENT_REASON.
→˓ACCURACY)
deployment.model['id'], deployment.model['type']
>>>('5c0a969859b00004ba52e41b', 'Support Vector Classifier (Linear Kernel)')

Return type None

validate_replacement_model(new_model_id)
Validate a model can be used as the replacement model of the deployment.

New in version v2.17.

Parameters
new_model_id [str] the id of the new model to validate

Returns
status [str] status of the validation, will be one of ‘passing’, ‘warning’ or ‘failing’. If the

status is passing or warning, use replace_model() to perform a model replacement. If
the status is failing, refer to checks for more detail on why the new model cannot be used
as a replacement.

message [str] message for the validation result

checks [dict] explain why the new model can or cannot replace the deployment’s current
model

2.3. API Reference 309

DataRobot Python API Documentation, Release 3.2.2

Return type Tuple[str, str, Dict[str, Any]]

get_features()
Retrieve the list of features needed to make predictions on this deployment.

Returns
features: list a list of feature dict

Notes

Each feature dict contains the following structure:

• name : str, feature name

• feature_type : str, feature type

• importance : float, numeric measure of the relationship strength between the feature and target (in-
dependent of model or other features)

• date_format : str or None, the date format string for how this feature was interpreted, null if not a
date feature, compatible with https://docs.python.org/2/library/time.html#time.strftime.

• known_in_advance : bool, whether the feature was selected as known in advance in a time series
model, false for non-time series models.

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
features = deployment.get_features()
features[0]['feature_type']
>>>'Categorical'
features[0]['importance']
>>>0.133

Return type List[FeatureDict]

submit_actuals(data, batch_size=10000)
Submit actuals for processing. The actuals submitted will be used to calculate accuracy metrics.

Parameters
data: list or pandas.DataFrame
batch_size: the max number of actuals in each request
If `data` is a list, each item should be a dict-like object with the following keys and
values; if `data` is a pandas.DataFrame, it should contain the following columns:
- association_id: str, a unique identifier used with a prediction, max length 128 charac-

ters

- actual_value: str or int or float, the actual value of a prediction; should be numeric for
deployments with regression models or string for deployments with classification model

- was_acted_on: bool, optional, indicates if the prediction was acted on in a way that
could have affected the actual outcome

310 Chapter 2. Table of contents

https://docs.python.org/2/library/time.html#time.strftime

DataRobot Python API Documentation, Release 3.2.2

- timestamp: datetime or string in RFC3339 format, optional. If the datetime provided
does not have a timezone, we assume it is UTC.

Raises
ValueError if input data is not a list of dict-like objects or a pandas.DataFrame if input data

is empty

Examples

from datarobot import Deployment, AccuracyOverTime
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
data = [{

'association_id': '439917',
'actual_value': 'True',
'was_acted_on': True

}]
deployment.submit_actuals(data)

Return type None

submit_actuals_from_catalog_async(dataset_id, actual_value_column, association_id_column,
dataset_version_id=None, timestamp_column=None,
was_acted_on_column=None)

Submit actuals from AI Catalog for processing. The actuals submitted will be used to calculate accuracy
metrics.

Parameters
dataset_id: str, The ID of the source dataset.

dataset_version_id: str, optional The ID of the dataset version to apply the query to. If not
specified, the latest version associated with dataset_id is used.

association_id_column: str, The name of the column that contains a unique identifier used
with a prediction.

actual_value_column: str, The name of the column that contains the actual value of a pre-
diction.

was_acted_on_column: str, optional, The name of the column that indicates if the predic-
tion was acted on in a way that could have affected the actual outcome.

timestamp_column: str, optional, The name of the column that contains datetime or string
in RFC3339 format.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Raises
ValueError if dataset_id not provided if actual_value_column not provided if associa-

tion_id_column not provided

2.3. API Reference 311

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
status_check_job = deployment.submit_actuals_from_catalog_async(data)

Return type StatusCheckJob

get_predictions_by_forecast_date_settings()
Retrieve predictions by forecast date settings of this deployment.

New in version v2.27.

Returns
settings [dict] Predictions by forecast date settings of the deployment is a dict with the fol-

lowing format:

enabled [bool] Is ‘’True” if predictions by forecast date is enabled for this deployment. To
update this setting, see update_predictions_by_forecast_date_settings()

column_name [string] The column name in prediction datasets to be used as forecast date.

datetime_format [string] The datetime format of the forecast date column in prediction
datasets.

Return type ForecastDateSettings

update_predictions_by_forecast_date_settings(enable_predictions_by_forecast_date,
forecast_date_column_name=None,
forecast_date_format=None, max_wait=600)

Update predictions by forecast date settings of this deployment.

New in version v2.27.

Updating predictions by forecast date setting is an asynchronous process, which means some preparatory
work may be performed after the initial request is completed. This function will not return until all prepara-
tory work is fully finished.

Parameters
enable_predictions_by_forecast_date [bool] set to ‘’True” if predictions by forecast date

is to be turned on or set to ‘’False” if predictions by forecast date is to be turned off.

forecast_date_column_name: string, optional The column name in prediction datasets to
be used as forecast date. If ‘’enable_predictions_by_forecast_date” is set to ‘’False”, then
the parameter will be ignored.

forecast_date_format: string, optional The datetime format of the forecast date column in
prediction datasets. If ‘’enable_predictions_by_forecast_date” is set to ‘’False”, then the
parameter will be ignored.

max_wait [int, optional] seconds to wait for successful

312 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

To set predictions by forecast date settings to the same default settings you␣
→˓see when using
the DataRobot web application, you use your 'Deployment' object like this:
deployment.update_predictions_by_forecast_date_settings(

enable_predictions_by_forecast_date=True,
forecast_date_column_name="date (actual)",
forecast_date_format="%Y-%m-%d",

)

Return type None

get_challenger_models_settings()
Retrieve challenger models settings of this deployment.

New in version v2.27.

Returns
settings [dict] Challenger models settings of the deployment is a dict with the following

format:

enabled [bool] Is ‘’True” if challenger models is enabled for this de-
ployment. To update existing ‘’challenger_models” settings, see
update_challenger_models_settings()

Return type ChallengerModelsSettings

update_challenger_models_settings(challenger_models_enabled, max_wait=600)
Update challenger models settings of this deployment.

New in version v2.27.

Updating challenger models setting is an asynchronous process, which means some preparatory work may
be performed after the initial request is completed. This function will not return until all preparatory work
is fully finished.

Parameters
challenger_models_enabled [bool] set to ‘’True” if challenger models is to be turned on or

set to ‘’False” if challenger models is to be turned off

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_segment_analysis_settings()
Retrieve segment analysis settings of this deployment.

New in version v2.27.

Returns
settings [dict] Segment analysis settings of the deployment containing two items with keys
enabled and attributes, which are further described below.

enabled [bool] Set to ‘’True” if segment analysis is enabled for this deployment. To update
existing setting, see update_segment_analysis_settings()

2.3. API Reference 313

DataRobot Python API Documentation, Release 3.2.2

attributes [list] To create or update existing segment analysis attributes, see
update_segment_analysis_settings()

Return type SegmentAnalysisSettings

update_segment_analysis_settings(segment_analysis_enabled, segment_analysis_attributes=None,
max_wait=600)

Update segment analysis settings of this deployment.

New in version v2.27.

Updating segment analysis setting is an asynchronous process, which means some preparatory work may
be performed after the initial request is completed. This function will not return until all preparatory work
is fully finished.

Parameters
segment_analysis_enabled [bool] set to ‘’True” if segment analysis is to be turned on or set

to ‘’False” if segment analysis is to be turned off

segment_analysis_attributes: list, optional A list of strings that gives the segment at-
tributes selected for tracking.

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_bias_and_fairness_settings()
Retrieve bias and fairness settings of this deployment.

..versionadded:: v3.2.0

Returns
settings [dict in the following format:]

protected_features [List[str]] A list of features to mark as protected.

preferable_target_value [bool] A target value that should be treated as a positive outcome
for the prediction.

fairness_metric_set [str] Can be one of <datarobot.enums.FairnessMetricsSet>. A set of
fairness metrics to use for calculating fairness.

fairness_threshold [float] Threshold value of the fairness metric. Cannot be less than 0
or greater than 1.

Return type Optional[BiasAndFairnessSettings]

update_bias_and_fairness_settings(protected_features, fairness_metric_set, fairness_threshold,
preferable_target_value, max_wait=600)

Update bias and fairness settings of this deployment.

..versionadded:: v3.2.0

Updating bias and fairness setting is an asynchronous process, which means some preparatory work may
be performed after the initial request is completed. This function will not return until all preparatory work
is fully finished.

Parameters
protected_features [List[str]] A list of features to mark as protected.

314 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

preferable_target_value [bool] A target value that should be treated as a positive outcome
for the prediction.

fairness_metric_set [str] Can be one of <datarobot.enums.FairnessMetricsSet>. The fair-
ness metric used to calculate the fairness scores.

fairness_threshold [float] Threshold value of the fairness metric. Cannot be less than 0 or
greater than 1.

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_drift_tracking_settings()
Retrieve drift tracking settings of this deployment.

New in version v2.17.

Returns
settings [dict] Drift tracking settings of the deployment containing two nested dicts with key
target_drift and feature_drift, which are further described below.

Target drift setting contains:

enabled [bool] If target drift tracking is enabled for this deployment. To create or update
existing ‘’target_drift” settings, see update_drift_tracking_settings()

Feature drift setting contains:

enabled [bool] If feature drift tracking is enabled for this deployment. To create or update
existing ‘’feature_drift” settings, see update_drift_tracking_settings()

Return type DriftTrackingSettings

update_drift_tracking_settings(target_drift_enabled=None, feature_drift_enabled=None,
max_wait=600)

Update drift tracking settings of this deployment.

New in version v2.17.

Updating drift tracking setting is an asynchronous process, which means some preparatory work may be
performed after the initial request is completed. This function will not return until all preparatory work is
fully finished.

Parameters
target_drift_enabled [bool, optional] if target drift tracking is to be turned on

feature_drift_enabled [bool, optional] if feature drift tracking is to be turned on

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_association_id_settings()
Retrieve association ID setting for this deployment.

New in version v2.19.

Returns
association_id_settings [dict in the following format:]

2.3. API Reference 315

DataRobot Python API Documentation, Release 3.2.2

column_names [list[string], optional] name of the columns to be used as association ID,

required_in_prediction_requests [bool, optional] whether the association ID column is
required in prediction requests

Return type str

update_association_id_settings(column_names=None, required_in_prediction_requests=None,
max_wait=600)

Update association ID setting for this deployment.

New in version v2.19.

Parameters
column_names [list[string], optional] name of the columns to be used as association ID,

currently only support a list of one string

required_in_prediction_requests [bool, optional] whether the association ID column is re-
quired in prediction requests

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_predictions_data_collection_settings()
Retrieve predictions data collection settings of this deployment.

New in version v2.21.

Returns
predictions_data_collection_settings [dict in the following format:]

enabled [bool] If predictions data collection is enabled for this deploy-
ment. To update existing ‘’predictions_data_collection” settings, see
update_predictions_data_collection_settings()

Return type Dict[str, bool]

update_predictions_data_collection_settings(enabled, max_wait=600)
Update predictions data collection settings of this deployment.

New in version v2.21.

Updating predictions data collection setting is an asynchronous process, which means some preparatory
work may be performed after the initial request is completed. This function will not return until all prepara-
tory work is fully finished.

Parameters
enabled: bool if predictions data collection is to be turned on

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_prediction_warning_settings()
Retrieve prediction warning settings of this deployment.

New in version v2.19.

316 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
settings [dict in the following format:]

enabled [bool] If target prediction_warning is enabled for this deploy-
ment. To create or update existing ‘’prediction_warning” settings, see
update_prediction_warning_settings()

custom_boundaries [dict or None]

If None default boundaries for a model are used. Otherwise has following keys:
upper [float] All predictions greater than provided value are considered anomalous

lower [float] All predictions less than provided value are considered anomalous

Return type PredictionWarningSettings

update_prediction_warning_settings(prediction_warning_enabled, use_default_boundaries=None,
lower_boundary=None, upper_boundary=None,
max_wait=600)

Update prediction warning settings of this deployment.

New in version v2.19.

Parameters
prediction_warning_enabled [bool] If prediction warnings should be turned on.

use_default_boundaries [bool, optional] If default boundaries of the model should be used
for the deployment.

upper_boundary [float, optional] All predictions greater than provided value will be con-
sidered anomalous

lower_boundary [float, optional] All predictions less than provided value will be considered
anomalous

max_wait [int, optional] seconds to wait for successful resolution

Return type None

get_prediction_intervals_settings()
Retrieve prediction intervals settings for this deployment.

New in version v2.19.

Returns
dict in the following format:

enabled [bool] Whether prediction intervals are enabled for this deployment

percentiles [list[int]] List of enabled prediction intervals’ sizes for this deployment. Cur-
rently we only support one percentile at a time.

2.3. API Reference 317

DataRobot Python API Documentation, Release 3.2.2

Notes

Note that prediction intervals are only supported for time series deployments.

Return type PredictionIntervalsSettings
update_prediction_intervals_settings(percentiles, enabled=True, max_wait=600)

Update prediction intervals settings for this deployment.

New in version v2.19.

Parameters
percentiles [list[int]] The prediction intervals percentiles to enable for this deployment. Cur-

rently we only support setting one percentile at a time.

enabled [bool, optional (defaults to True)] Whether to enable showing prediction intervals
in the results of predictions requested using this deployment.

max_wait [int, optional] seconds to wait for successful resolution

Raises
AssertionError If percentiles is in an invalid format

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the prediction intervals calculation job has failed or has
been cancelled.

AsyncTimeoutError If the prediction intervals calculation job did not resolve in time

Notes

Updating prediction intervals settings is an asynchronous process, which means some preparatory work
may be performed before the settings request is completed. This function will not return until all work is
fully finished.

Note that prediction intervals are only supported for time series deployments.

Return type None

get_service_stats(model_id=None, start_time=None, end_time=None, execution_time_quantile=None,
response_time_quantile=None, slow_requests_threshold=None)

Retrieves values of many service stat metrics aggregated over a time period.

New in version v2.18.

Parameters
model_id [str, optional] the id of the model

start_time [datetime, optional] start of the time period

end_time [datetime, optional] end of the time period

execution_time_quantile [float, optional] quantile for executionTime, defaults to 0.5

response_time_quantile [float, optional] quantile for responseTime, defaults to 0.5

slow_requests_threshold [float, optional] threshold for slowRequests, defaults to 1000

Returns
service_stats [ServiceStats] the queried service stats metrics information

318 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type ServiceStats

get_service_stats_over_time(metric=None, model_id=None, start_time=None, end_time=None,
bucket_size=None, quantile=None, threshold=None)

Retrieves values of a single service stat metric over a time period.

New in version v2.18.

Parameters
metric [SERVICE_STAT_METRIC, optional] the service stat metric to retrieve

model_id [str, optional] the id of the model

start_time [datetime, optional] start of the time period

end_time [datetime, optional] end of the time period

bucket_size [str, optional] time duration of a bucket, in ISO 8601 time duration format

quantile [float, optional] quantile for ‘executionTime’ or ‘responseTime’, ignored when
querying other metrics

threshold [int, optional] threshold for ‘slowQueries’, ignored when querying other metrics

Returns
service_stats_over_time [ServiceStatsOverTime] the queried service stats metric over time

information

Return type ServiceStatsOverTime

get_target_drift(model_id=None, start_time=None, end_time=None, metric=None)
Retrieve target drift information over a certain time period.

New in version v2.21.

Parameters
model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

metric [str] (New in version v2.22) metric used to calculate the drift score

Returns
target_drift [TargetDrift] the queried target drift information

Return type TargetDrift

get_feature_drift(model_id=None, start_time=None, end_time=None, metric=None)
Retrieve drift information for deployment’s features over a certain time period.

New in version v2.21.

Parameters
model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

2.3. API Reference 319

DataRobot Python API Documentation, Release 3.2.2

metric [str] (New in version v2.22) The metric used to calculate the drift score. Allowed
values include psi, kl_divergence, dissimilarity, hellinger, and js_divergence.

Returns
feature_drift_data [[FeatureDrift]] the queried feature drift information

Return type List[FeatureDrift]

get_predictions_over_time(model_ids=None, start_time=None, end_time=None, bucket_size=None,
target_classes=None, include_percentiles=False)

Retrieve stats of deployment’s prediction response over a certain time period.

New in version v3.2.

Parameters
model_ids [list[str]] ID of models to retrieve prediction stats

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [BUCKET_SIZE] time duration of each bucket

target_classes [list[str]] class names of target, only for deployments with multiclass target

include_percentiles [bool] if the returned data includes percentiles, only for a deployment
with a binary and regression target

Returns
predictions_over_time [PredictionsOverTime] the queried predictions over time informa-

tion

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
predictions_over_time = deployment.get_predictions_over_time()
predictions_over_time.buckets[0]['mean_predicted_value']
>>>0.3772
predictions_over_time.buckets[0]['row_count']
>>>2000

Return type PredictionsOverTime

get_accuracy(model_id=None, start_time=None, end_time=None, start=None, end=None,
target_classes=None)

Retrieves values of many accuracy metrics aggregated over a time period.

New in version v2.18.

Parameters
model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

320 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

target_classes [list[str], optional] Optional list of target class strings

Returns
accuracy [Accuracy] the queried accuracy metrics information

Return type Accuracy

get_accuracy_over_time(metric=None, model_id=None, start_time=None, end_time=None,
bucket_size=None, target_classes=None)

Retrieves values of a single accuracy metric over a time period.

New in version v2.18.

Parameters
metric [ACCURACY_METRIC] the accuracy metric to retrieve

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [str] time duration of a bucket, in ISO 8601 time duration format

target_classes [list[str], optional] Optional list of target class strings

Returns
accuracy_over_time [AccuracyOverTime] the queried accuracy metric over time informa-

tion

Return type AccuracyOverTime

get_fairness_scores_over_time(start_time=None, end_time=None, bucket_size=None,
model_id=None, protected_feature=None, fairness_metric=None)

Retrieves values of a single fairness score over a time period.

New in version v3.2.

Parameters
model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [str] time duration of a bucket, in ISO 8601 time duration format

protected_feature [str] name of protected feature

fairness_metric [str] A consolidation of the fairness metrics by the use case.

Returns
fairness_scores_over_time [FairnessScoresOverTime] the queried fairness score over time

information

Return type FairnessScoresOverTime

2.3. API Reference 321

DataRobot Python API Documentation, Release 3.2.2

update_secondary_dataset_config(secondary_dataset_config_id, credential_ids=None)
Update the secondary dataset config used by Feature discovery model for a given deployment.

New in version v2.23.

Parameters
secondary_dataset_config_id: str Id of the secondary dataset config

credential_ids: list or None List of DatasetsCredentials used by the secondary datasets

Examples

from datarobot import Deployment
deployment = Deployment(deployment_id='5c939e08962d741e34f609f0')
config = deployment.update_secondary_dataset_config('5df109112ca582033ff44084')
config
>>> '5df109112ca582033ff44084'

Return type str

get_secondary_dataset_config()
Get the secondary dataset config used by Feature discovery model for a given deployment.

New in version v2.23.

Returns
secondary_dataset_config [SecondaryDatasetConfigurations] Id of the secondary dataset

config

Examples

from datarobot import Deployment
deployment = Deployment(deployment_id='5c939e08962d741e34f609f0')
deployment.update_secondary_dataset_config('5df109112ca582033ff44084')
config = deployment.get_secondary_dataset_config()
config
>>> '5df109112ca582033ff44084'

Return type str

get_prediction_results(model_id=None, start_time=None, end_time=None, actuals_present=None,
offset=None, limit=None)

Retrieve a list of prediction results of the deployment.

New in version v2.24.

Parameters
model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

322 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

actuals_present [bool] filters predictions results to only those who have actuals present or
with missing actuals

offset [int] this many results will be skipped

limit [int] at most this many results are returned

Returns
prediction_results: list[dict] a list of prediction results

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
results = deployment.get_prediction_results()

Return type List[Dict[str, Any]]

download_prediction_results(filepath, model_id=None, start_time=None, end_time=None,
actuals_present=None, offset=None, limit=None)

Download prediction results of the deployment as a CSV file.

New in version v2.24.

Parameters
filepath [str] path of the csv file

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

actuals_present [bool] filters predictions results to only those who have actuals present or
with missing actuals

offset [int] this many results will be skipped

limit [int] at most this many results are returned

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
results = deployment.download_prediction_results('path_to_prediction_results.csv
→˓')

Return type None

download_scoring_code(filepath, source_code=False, include_agent=False,
include_prediction_explanations=False, include_prediction_intervals=False)

Retrieve scoring code of the current deployed model.

New in version v2.24.

Parameters

2.3. API Reference 323

DataRobot Python API Documentation, Release 3.2.2

filepath [str] path of the scoring code file

source_code [bool] whether source code or binary of the scoring code will be retrieved

include_agent [bool] whether the scoring code retrieved will include tracking agent

include_prediction_explanations [bool] whether the scoring code retrieved will include
prediction explanations

include_prediction_intervals [bool] whether the scoring code retrieved will support pre-
diction intervals

Notes

When setting include_agent or include_predictions_explanations or include_prediction_intervals to True,
it can take a considerably longer time to download the scoring code.

Examples

from datarobot import Deployment
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
results = deployment.download_scoring_code('path_to_scoring_code.jar')

Return type None

delete_monitoring_data(model_id, start_time=None, end_time=None, max_wait=600)
Delete deployment monitoring data.

Parameters
model_id [str] id of the model to delete monitoring data

start_time [datetime, optional] start of the time period to delete monitoring data

end_time [datetime, optional] end of the time period to delete monitoring data

max_wait [int, optional] seconds to wait for successful resolution

Return type None

list_shared_roles(id=None, name=None, share_recipient_type=None, limit=100, offset=0)
Get a list of users, groups and organizations that have an access to this user blueprint

Parameters
id: str, Optional Only return the access control information for a organization, group or user

with this ID.

name: string, Optional Only return the access control information for a organization, group
or user with this name.

share_recipient_type: enum(‘user’, ‘group’, ‘organization’), Optional Only returns re-
sults with the given recipient type.

limit: int (Default=0) At most this many results are returned.

offset: int (Default=0) This many results will be skipped.

Returns

324 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

list(DeploymentSharedRole)

Return type List[DeploymentSharedRole]

update_shared_roles(roles)
Share a deployment with a user, group, or organization

Parameters
roles: list(or(GrantAccessControlWithUsernameValidator, GrantAccessControlWithIdValidator))

Array of GrantAccessControl objects, up to maximum 100 objects.

Return type None

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

class datarobot.models.deployment.DeploymentListFilters(role=None, service_health=None,
model_health=None,
accuracy_health=None,
execution_environment_type=None,
importance=None)

class datarobot.models.deployment.ServiceStats(period=None, metrics=None, model_id=None)
Deployment service stats information.

Attributes
model_id [str] the model used to retrieve service stats metrics

period [dict] the time period used to retrieve service stats metrics

metrics [dict] the service stats metrics

2.3. API Reference 325

DataRobot Python API Documentation, Release 3.2.2

classmethod get(deployment_id, model_id=None, start_time=None, end_time=None,
execution_time_quantile=None, response_time_quantile=None,
slow_requests_threshold=None)

Retrieve value of service stat metrics over a certain time period.

New in version v2.18.

Parameters
deployment_id [str] the id of the deployment

model_id [str, optional] the id of the model

start_time [datetime, optional] start of the time period

end_time [datetime, optional] end of the time period

execution_time_quantile [float, optional] quantile for executionTime, defaults to 0.5

response_time_quantile [float, optional] quantile for responseTime, defaults to 0.5

slow_requests_threshold [float, optional] threshold for slowRequests, defaults to 1000

Returns
service_stats [ServiceStats] the queried service stats metrics

Return type ServiceStats

class datarobot.models.deployment.ServiceStatsOverTime(buckets=None, summary=None,
metric=None, model_id=None)

Deployment service stats over time information.

Attributes
model_id [str] the model used to retrieve accuracy metric

metric [str] the service stat metric being retrieved

buckets [dict] how the service stat metric changes over time

summary [dict] summary for the service stat metric

classmethod get(deployment_id, metric=None, model_id=None, start_time=None, end_time=None,
bucket_size=None, quantile=None, threshold=None)

Retrieve information about how a service stat metric changes over a certain time period.

New in version v2.18.

Parameters
deployment_id [str] the id of the deployment

metric [SERVICE_STAT_METRIC, optional] the service stat metric to retrieve

model_id [str, optional] the id of the model

start_time [datetime, optional] start of the time period

end_time [datetime, optional] end of the time period

bucket_size [str, optional] time duration of a bucket, in ISO 8601 time duration format

quantile [float, optional] quantile for ‘executionTime’ or ‘responseTime’, ignored when
querying other metrics

threshold [int, optional] threshold for ‘slowQueries’, ignored when querying other metrics

326 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
service_stats_over_time [ServiceStatsOverTime] the queried service stat over time infor-

mation

Return type ServiceStatsOverTime

property bucket_values: OrderedDict[str, Union[int, float, None]]
The metric value for all time buckets, keyed by start time of the bucket.

Returns
bucket_values: OrderedDict

class datarobot.models.deployment.TargetDrift(period=None, metric=None, model_id=None,
target_name=None, drift_score=None,
sample_size=None, baseline_sample_size=None)

Deployment target drift information.

Attributes
model_id [str] the model used to retrieve target drift metric

period [dict] the time period used to retrieve target drift metric

metric [str] the data drift metric

target_name [str] name of the target

drift_score [float] target drift score

sample_size [int] count of data points for comparison

baseline_sample_size [int] count of data points for baseline

classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, metric=None)
Retrieve target drift information over a certain time period.

New in version v2.21.

Parameters
deployment_id [str] the id of the deployment

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

metric [str] (New in version v2.22) metric used to calculate the drift score

Returns
target_drift [TargetDrift] the queried target drift information

2.3. API Reference 327

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot import Deployment, TargetDrift
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
target_drift = TargetDrift.get(deployment.id)
target_drift.period['end']
>>>'2019-08-01 00:00:00+00:00'
target_drift.drift_score
>>>0.03423
accuracy.target_name
>>>'readmitted'

Return type TargetDrift

class datarobot.models.deployment.FeatureDrift(period=None, metric=None, model_id=None,
name=None, drift_score=None, feature_impact=None,
sample_size=None, baseline_sample_size=None)

Deployment feature drift information.

Attributes
model_id [str] the model used to retrieve feature drift metric

period [dict] the time period used to retrieve feature drift metric

metric [str] the data drift metric

name [str] name of the feature

drift_score [float] feature drift score

sample_size [int] count of data points for comparison

baseline_sample_size [int] count of data points for baseline

classmethod list(deployment_id, model_id=None, start_time=None, end_time=None, metric=None)
Retrieve drift information for deployment’s features over a certain time period.

New in version v2.21.

Parameters
deployment_id [str] the id of the deployment

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

metric [str] (New in version v2.22) metric used to calculate the drift score

Returns
feature_drift_data [[FeatureDrift]] the queried feature drift information

328 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot import Deployment, TargetDrift
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
feature_drift = FeatureDrift.list(deployment.id)[0]
feature_drift.period
>>>'2019-08-01 00:00:00+00:00'
feature_drift.drift_score
>>>0.252
feature_drift.name
>>>'age'

Return type List[FeatureDrift]

class datarobot.models.deployment.PredictionsOverTime(baselines=None, buckets=None)
Deployment predictions over time information.

Attributes
baselines [List] target baseline for each model queried

buckets [List] predictions over time bucket for each model and bucket queried

classmethod get(deployment_id, model_ids=None, start_time=None, end_time=None, bucket_size=None,
target_classes=None, include_percentiles=False)

Retrieve information for deployment’s prediction response over a certain time period.

New in version v3.2.

Parameters
deployment_id [str] the id of the deployment

model_ids [list[str]] ID of models to retrieve prediction stats

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [BUCKET_SIZE] time duration of each bucket

target_classes [list[str]] class names of target, only for deployments with multiclass target

include_percentiles [bool] if the returned data includes percentiles, only for a deployment
with a binary and regression target

Returns
predictions_over_time [PredictionsOverTime] the queried predictions over time informa-

tion

Return type PredictionsOverTime

class datarobot.models.deployment.Accuracy(period=None, metrics=None, model_id=None)
Deployment accuracy information.

Attributes
model_id [str] the model used to retrieve accuracy metrics

period [dict] the time period used to retrieve accuracy metrics

metrics [dict] the accuracy metrics

2.3. API Reference 329

DataRobot Python API Documentation, Release 3.2.2

classmethod get(deployment_id, model_id=None, start_time=None, end_time=None,
target_classes=None)

Retrieve values of accuracy metrics over a certain time period.

New in version v2.18.

Parameters
deployment_id [str] the id of the deployment

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

target_classes [list[str], optional] Optional list of target class strings

Returns
accuracy [Accuracy] the queried accuracy metrics information

Examples

from datarobot import Deployment, Accuracy
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
accuracy = Accuracy.get(deployment.id)
accuracy.period['end']
>>>'2019-08-01 00:00:00+00:00'
accuracy.metric['LogLoss']['value']
>>>0.7533
accuracy.metric_values['LogLoss']
>>>0.7533

Return type Accuracy

property metric_values: Dict[str, Optional[int]]
The value for all metrics, keyed by metric name.

Returns
metric_values: Dict

Return type Dict[str, Optional[int]]

property metric_baselines: Dict[str, Optional[int]]
The baseline value for all metrics, keyed by metric name.

Returns
metric_baselines: Dict

Return type Dict[str, Optional[int]]

property percent_changes: Dict[str, Optional[int]]
The percent change of value over baseline for all metrics, keyed by metric name.

Returns
percent_changes: Dict

330 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type Dict[str, Optional[int]]

class datarobot.models.deployment.AccuracyOverTime(buckets=None, summary=None, baseline=None,
metric=None, model_id=None)

Deployment accuracy over time information.

Attributes
model_id [str] the model used to retrieve accuracy metric

metric [str] the accuracy metric being retrieved

buckets [dict] how the accuracy metric changes over time

summary [dict] summary for the accuracy metric

baseline [dict] baseline for the accuracy metric

classmethod get(deployment_id, metric=None, model_id=None, start_time=None, end_time=None,
bucket_size=None, target_classes=None)

Retrieve information about how an accuracy metric changes over a certain time period.

New in version v2.18.

Parameters
deployment_id [str] the id of the deployment

metric [ACCURACY_METRIC] the accuracy metric to retrieve

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [str] time duration of a bucket, in ISO 8601 time duration format

target_classes [list[str], optional] Optional list of target class strings

Returns
accuracy_over_time [AccuracyOverTime] the queried accuracy metric over time informa-

tion

Examples

from datarobot import Deployment, AccuracyOverTime
from datarobot.enums import ACCURACY_METRICS
deployment = Deployment.get(deployment_id='5c939e08962d741e34f609f0')
accuracy_over_time = AccuracyOverTime.get(deployment.id, metric=ACCURACY_METRIC.
→˓LOGLOSS)
accuracy_over_time.metric
>>>'LogLoss'
accuracy_over_time.metric_values
>>>{datetime.datetime(2019, 8, 1): 0.73, datetime.datetime(2019, 8, 2): 0.55}

Return type AccuracyOverTime

2.3. API Reference 331

DataRobot Python API Documentation, Release 3.2.2

classmethod get_as_dataframe(deployment_id, metrics=None, model_id=None, start_time=None,
end_time=None, bucket_size=None)

Retrieve information about how a list of accuracy metrics change over a certain time period as pandas
DataFrame.

In the returned DataFrame, the columns corresponds to the metrics being retrieved; the rows are labeled
with the start time of each bucket.

Parameters
deployment_id [str] the id of the deployment

metrics [[ACCURACY_METRIC]] the accuracy metrics to retrieve

model_id [str] the id of the model

start_time [datetime] start of the time period

end_time [datetime] end of the time period

bucket_size [str] time duration of a bucket, in ISO 8601 time duration format

Returns
accuracy_over_time: pd.DataFrame

Return type DataFrame

property bucket_values: Dict[datetime.datetime, int]
The metric value for all time buckets, keyed by start time of the bucket.

Returns
bucket_values: Dict

Return type Dict[datetime, int]

property bucket_sample_sizes: Dict[datetime.datetime, int]
The sample size for all time buckets, keyed by start time of the bucket.

Returns
bucket_sample_sizes: Dict

Return type Dict[datetime, int]

class datarobot.models.deployment.bias_and_fairness.FairnessScoresOverTime(summary=None,
buckets=None,
pro-
tected_feature=None,
fair-
ness_threshold=None,
model_id=None,
model_package_id=None,
favor-
able_target_outcome=None)

Deployment fairness over time information.

Attributes
buckets [List] fairness over time bucket for each model and bucket queried

332 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

summary [dict] summary for the fairness score

protected_feature [str] name of protected feature

fairnessThreshold [float] threshold used to compute fairness results

modelId [str] model id for which fairness is computed

modelPackageId [str] model package id for which fairness is computed

favorableTargetOutcome [bool] preferable class of the target

classmethod get(deployment_id, model_id=None, start_time=None, end_time=None, bucket_size=None,
fairness_metric=None, protected_feature=None)

Retrieve information for deployment’s fairness score response over a certain time period.

New in version FUTURE.

Parameters
deployment_id [str] the id of the deployment

model_id [str] id of models to retrieve fairness score stats

start_time [datetime] start of the time period

end_time [datetime] end of the time period

protected_feature [str] name of the protected feature

fairness_metric [str] A consolidation of the fairness metrics by the use case.

bucket_size [BUCKET_SIZE] time duration of each bucket

Returns
fairness_scores_over_time [FairnessScoresOverTime] the queried fairness score over time

information

Return type FairnessScoresOverTime

class datarobot.models.deployment.DeploymentSharedRole(id, name, role, share_recipient_type,
**kwargs)

Parameters
share_recipient_type: enum(‘user’, ‘group’, ‘organization’) Describes the recipient type, ei-

ther user, group, or organization.

role: str, one of enum(‘CONSUMER’, ‘USER’, ‘OWNER’) The role of the org/group/user
on this deployment.

id: str The ID of the recipient organization, group or user.

name: string The name of the recipient organization, group or user.

class datarobot.models.deployment.DeploymentGrantSharedRoleWithId(id, role,
share_recipient_type='user',
**kwargs)

Parameters
share_recipient_type: enum(‘user’, ‘group’, ‘organization’) Describes the recipient type, ei-

ther user, group, or organization.

2.3. API Reference 333

DataRobot Python API Documentation, Release 3.2.2

role: enum(‘OWNER’, ‘USER’, ‘OBSERVER’, ‘NO_ROLE’) The role of the recipient on
this entity. One of OWNER, USER, OBSERVER, NO_ROLE. If NO_ROLE is specified,
any existing role for the recipient will be removed.

id: str The ID of the recipient.

class datarobot.models.deployment.DeploymentGrantSharedRoleWithUsername(role, username,
**kwargs)

Parameters
role: string The role of the recipient on this entity. One of OWNER, USER, CONSUMER,

NO_ROLE. If NO_ROLE is specified, any existing role for the user will be removed.

username: string Username of the user to update the access role for.

class datarobot.models.deployment.deployment.FeatureDict() -> new empty dictionary dict(mapping)
-> new dictionary initialized from a
mapping object's (key, value) pairs
dict(iterable) -> new dictionary initialized
as if via: d = {} for k, v in iterable: d[k] =
v dict(**kwargs) -> new dictionary
initialized with the name=value pairs in
the keyword argument list. For example:
dict(one=1, two=2)

class datarobot.models.deployment.deployment.ForecastDateSettings() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from a
mapping object's (key, value)
pairs dict(iterable) -> new
dictionary initialized as if via:
d = {} for k, v in iterable: d[k]
= v dict(**kwargs) -> new
dictionary initialized with the
name=value pairs in the
keyword argument list. For
example: dict(one=1, two=2)

334 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.deployment.deployment.ChallengerModelsSettings() -> new empty
dictionary dict(mapping)
-> new dictionary
initialized from a
mapping object's (key,
value) pairs dict(iterable)
-> new dictionary
initialized as if via: d =
{} for k, v in iterable:
d[k] = v dict(**kwargs)
-> new dictionary
initialized with the
name=value pairs in the
keyword argument list.
For example:
dict(one=1, two=2)

class datarobot.models.deployment.deployment.SegmentAnalysisSettings() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from
a mapping object's (key,
value) pairs dict(iterable)
-> new dictionary
initialized as if via: d = {}
for k, v in iterable: d[k] =
v dict(**kwargs) -> new
dictionary initialized with
the name=value pairs in
the keyword argument list.
For example: dict(one=1,
two=2)

class datarobot.models.deployment.deployment.BiasAndFairnessSettings() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from
a mapping object's (key,
value) pairs dict(iterable)
-> new dictionary
initialized as if via: d = {}
for k, v in iterable: d[k] =
v dict(**kwargs) -> new
dictionary initialized with
the name=value pairs in
the keyword argument list.
For example: dict(one=1,
two=2)

2.3. API Reference 335

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.deployment.deployment.DriftTrackingSettings() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from a
mapping object's (key, value)
pairs dict(iterable) -> new
dictionary initialized as if
via: d = {} for k, v in
iterable: d[k] = v
dict(**kwargs) -> new
dictionary initialized with the
name=value pairs in the
keyword argument list. For
example: dict(one=1,
two=2)

class datarobot.models.deployment.deployment.PredictionWarningSettings() -> new empty
dictionary
dict(mapping) -> new
dictionary initialized
from a mapping object's
(key, value) pairs
dict(iterable) -> new
dictionary initialized as
if via: d = {} for k, v in
iterable: d[k] = v
dict(**kwargs) -> new
dictionary initialized
with the name=value
pairs in the keyword
argument list. For
example: dict(one=1,
two=2)

class datarobot.models.deployment.deployment.PredictionIntervalsSettings() -> new empty
dictionary
dict(mapping) ->
new dictionary
initialized from a
mapping object's
(key, value) pairs
dict(iterable) -> new
dictionary initialized
as if via: d = {} for k,
v in iterable: d[k] =
v dict(**kwargs) ->
new dictionary
initialized with the
name=value pairs in
the keyword
argument list. For
example:
dict(one=1, two=2)

336 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.25 External Baseline Validation

class datarobot.models.external_baseline_validation.ExternalBaselineValidationInfo(baseline_validation_job_id,
project_id,
cata-
log_version_id,
target,
date-
time_partition_column,
is_external_baseline_dataset_valid,
multi-
series_id_columns=None,
hold-
out_start_date=None,
hold-
out_end_date=None,
back-
tests=None,
fore-
cast_window_start=None,
fore-
cast_window_end=None,
mes-
sage=None)

An object containing information about external time series baseline predictions validation results.

Attributes
baseline_validation_job_id [str] the identifier of the baseline validation job

project_id [str] the identifier of the project

catalog_version_id [str] the identifier of the catalog version used in the validation job

target [str] the name of the target feature

datetime_partition_column [str] the name of the column whose values as dates are used to
assign a row to a particular partition

is_external_baseline_dataset_valid [bool] whether the external baseline dataset passes the val-
idation check

multiseries_id_columns [list of str or null] a list of the names of multiseries id columns to define
series within the training data. Currently only one multiseries id column is supported.

holdout_start_date [str or None] the start date of holdout scoring data

holdout_end_date [str or None] the end date of holdout scoring data

backtests [list of dicts containing validation_start_date and validation_end_date or None] the
configurd backtets of the time series project

forecast_window_start [int] offset into the future to define how far forward relative to the fore-
cast point the forecast window should start.

forecast_window_end [int] offset into the future to define how far forward relative to the forecast
point the forecast window should end.

message [str or None] the description of the issue with external baseline validation job

2.3. API Reference 337

DataRobot Python API Documentation, Release 3.2.2

classmethod get(project_id, validation_job_id)
Get information about external baseline validation job

Parameters
project_id [string] the identifier of the project

validation_job_id [string] the identifier of the external baseline validation job

Returns
info: ExternalBaselineValidationInfo information about external baseline validation job

Return type ExternalBaselineValidationInfo

2.3.26 External Scores and Insights

class datarobot.ExternalScores(project_id, scores, model_id=None, dataset_id=None,
actual_value_column=None)

Metric scores on prediction dataset with target or actual value column in unsupervised case. Contains project
metrics for supervised and special classification metrics set for unsupervised projects.

New in version v2.21.

Examples

List all scores for a dataset

import datarobot as dr
scores = dr.Scores.list(project_id, dataset_id=dataset_id)

Attributes
project_id: str id of the project the model belongs to

model_id: str id of the model

dataset_id: str id of the prediction dataset with target or actual value column for unsupervised
case

actual_value_column: str, optional For unsupervised projects only. Actual value column
which was used to calculate the classification metrics and insights on the prediction dataset.

scores: list of dicts in a form of {‘label’: metric_name, ‘value’: score} Scores on the
dataset.

classmethod create(project_id, model_id, dataset_id, actual_value_column=None)
Compute an external dataset insights for the specified model.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model for which insights is requested

dataset_id [str] id of the dataset for which insights is requested

actual_value_column [str, optional] actual values column label, for unsupervised projects
only

Returns

338 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

job [Job] an instance of created async job

Return type Job

classmethod list(project_id, model_id=None, dataset_id=None, offset=0, limit=100)
Fetch external scores list for the project and optionally for model and dataset.

Parameters
project_id: str id of the project

model_id: str, optional if specified, only scores for this model will be retrieved

dataset_id: str, optional if specified, only scores for this dataset will be retrieved

offset: int, optional this many results will be skipped, default: 0

limit: int, optional at most this many results are returned, default: 100, max 1000. To return
all results, specify 0

Returns
A list of [py:class:External Scores <datarobot.ExternalScores> objects]

Return type List[ExternalScores]

classmethod get(project_id, model_id, dataset_id)
Retrieve external scores for the project, model and dataset.

Parameters
project_id: str id of the project

model_id: str if specified, only scores for this model will be retrieved

dataset_id: str if specified, only scores for this dataset will be retrieved

Returns
External Scores object

Return type ExternalScores

class datarobot.ExternalLiftChart(dataset_id, bins)
Lift chart for the model and prediction dataset with target or actual value column in unsupervised case.

New in version v2.21.

LiftChartBin is a dict containing the following:

• actual (float) Sum of actual target values in bin

• predicted (float) Sum of predicted target values in bin

• bin_weight (float) The weight of the bin. For weighted projects, it is the sum of the weights of the rows
in the bin. For unweighted projects, it is the number of rows in the bin.

Attributes
dataset_id: str id of the prediction dataset with target or actual value column for unsupervised

case

bins: list of dict List of dicts with schema described as LiftChartBin above.

2.3. API Reference 339

DataRobot Python API Documentation, Release 3.2.2

classmethod list(project_id, model_id, dataset_id=None, offset=0, limit=100)
Retrieve list of the lift charts for the model.

Parameters
project_id: str id of the project

model_id: str if specified, only lift chart for this model will be retrieved

dataset_id: str, optional if specified, only lift chart for this dataset will be retrieved

offset: int, optional this many results will be skipped, default: 0

limit: int, optional at most this many results are returned, default: 100, max 1000. To return
all results, specify 0

Returns
A list of [py:class:ExternalLiftChart <datarobot.ExternalLiftChart> objects]

Return type List[ExternalLiftChart]

classmethod get(project_id, model_id, dataset_id)
Retrieve lift chart for the model and prediction dataset.

Parameters
project_id: str project id

model_id: str model id

dataset_id: str prediction dataset id with target or actual value column for unsupervised case

Returns
ExternalLiftChart object

Return type ExternalLiftChart

class datarobot.ExternalRocCurve(dataset_id, roc_points, negative_class_predictions,
positive_class_predictions)

ROC curve data for the model and prediction dataset with target or actual value column in unsupervised case.

New in version v2.21.

Attributes
dataset_id: str id of the prediction dataset with target or actual value column for unsupervised

case

roc_points: list of dict List of precalculated metrics associated with thresholds for ROC curve.

negative_class_predictions: list of float List of predictions from example for negative class

positive_class_predictions: list of float List of predictions from example for positive class

classmethod list(project_id, model_id, dataset_id=None, offset=0, limit=100)
Retrieve list of the roc curves for the model.

Parameters
project_id: str id of the project

model_id: str if specified, only lift chart for this model will be retrieved

dataset_id: str, optional if specified, only lift chart for this dataset will be retrieved

340 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

offset: int, optional this many results will be skipped, default: 0

limit: int, optional at most this many results are returned, default: 100, max 1000. To return
all results, specify 0

Returns
A list of [py:class:ExternalRocCurve <datarobot.ExternalRocCurve> objects]

Return type List[ExternalRocCurve]

classmethod get(project_id, model_id, dataset_id)
Retrieve ROC curve chart for the model and prediction dataset.

Parameters
project_id: str project id

model_id: str model id

dataset_id: str prediction dataset id with target or actual value column for unsupervised case

Returns
ExternalRocCurve object

Return type ExternalRocCurve

2.3.27 Feature

class datarobot.models.Feature(id, project_id=None, name=None, feature_type=None, importance=None,
low_information=None, unique_count=None, na_count=None,
date_format=None, min=None, max=None, mean=None, median=None,
std_dev=None, time_series_eligible=None,
time_series_eligibility_reason=None, time_step=None, time_unit=None,
target_leakage=None, feature_lineage_id=None, key_summary=None,
multilabel_insights=None)

A feature from a project’s dataset

These are features either included in the originally uploaded dataset or added to it via feature transformations. In
time series projects, these will be distinct from the ModelingFeature s created during partitioning; otherwise,
they will correspond to the same features. For more information about input and modeling features, see the time
series documentation.

The min, max, mean, median, and std_dev attributes provide information about the distribution of the feature
in the EDA sample data. For non-numeric features or features created prior to these summary statistics becoming
available, they will be None. For features where the summary statistics are available, they will be in a format
compatible with the data type, i.e. date type features will have their summary statistics expressed as ISO-8601
formatted date strings.

Attributes
id [int] the id for the feature - note that name is used to reference the feature instead of id

project_id [str] the id of the project the feature belongs to

name [str] the name of the feature

feature_type [str] the type of the feature, e.g. ‘Categorical’, ‘Text’

2.3. API Reference 341

DataRobot Python API Documentation, Release 3.2.2

importance [float or None] numeric measure of the strength of relationship between the feature
and target (independent of any model or other features); may be None for non-modeling
features such as partition columns

low_information [bool] whether a feature is considered too uninformative for modeling (e.g.
because it has too few values)

unique_count [int] number of unique values

na_count [int or None] number of missing values

date_format [str or None] For Date features, the date format string for how this feature was
interpreted, compatible with https://docs.python.org/2/library/time.html#time.strftime . For
other feature types, None.

min [str, int, float, or None] The minimum value of the source data in the EDA sample

max [str, int, float, or None] The maximum value of the source data in the EDA sample

mean [str, int, or, float] The arithmetic mean of the source data in the EDA sample

median [str, int, float, or None] The median of the source data in the EDA sample

std_dev [str, int, float, or None] The standard deviation of the source data in the EDA sample

time_series_eligible [bool] Whether this feature can be used as the datetime partition column
in a time series project.

time_series_eligibility_reason [str] Why the feature is ineligible for the datetime partition col-
umn in a time series project, or ‘suitable’ when it is eligible.

time_step [int or None] For time series eligible features, a positive integer determining the in-
terval at which windows can be specified. If used as the datetime partition column on a time
series project, the feature derivation and forecast windows must start and end at an integer
multiple of this value. None for features that are not time series eligible.

time_unit [str or None] For time series eligible features, the time unit covered by a single time
step, e.g. ‘HOUR’, or None for features that are not time series eligible.

target_leakage [str] Whether a feature is considered to have target leakage or not. A value of
‘SKIPPED_DETECTION’ indicates that target leakage detection was not run on the feature.
‘FALSE’ indicates no leakage, ‘MODERATE’ indicates a moderate risk of target leakage,
and ‘HIGH_RISK’ indicates a high risk of target leakage

feature_lineage_id [str] id of a lineage for automatically discovered features or derived time
series features.

key_summary: list of dict Statistics for top 50 keys (truncated to 103 characters) of Summa-
rized Categorical column example:

{‘key’:’DataRobot’, ‘summary’:{‘min’:0, ‘max’:29815.0, ‘stdDev’:6498.029,
‘mean’:1490.75, ‘median’:0.0, ‘pctRows’:5.0}}

where,
key: string or None name of the key

summary: dict statistics of the key

max: maximum value of the key. min: minimum value of the key. mean: mean value
of the key. median: median value of the key. stdDev: standard deviation of the key.
pctRows: percentage occurrence of key in the EDA sample of the feature.

342 Chapter 2. Table of contents

https://docs.python.org/2/library/time.html#time.strftime

DataRobot Python API Documentation, Release 3.2.2

multilabel_insights_key [str or None] For multicategorical columns this will contain a key for
multilabel insights. The key is unique for a project, feature and EDA stage combination. This
will be the key for the most recent, finished EDA stage.

classmethod get(project_id, feature_name)
Retrieve a single feature

Parameters
project_id [str] The ID of the project the feature is associated with.

feature_name [str] The name of the feature to retrieve

Returns
feature [Feature] The queried instance

get_multiseries_properties(multiseries_id_columns, max_wait=600)
Retrieve time series properties for a potential multiseries datetime partition column

Multiseries time series projects use multiseries id columns to model multiple distinct series within a single
project. This function returns the time series properties (time step and time unit) of this column if it were
used as a datetime partition column with the specified multiseries id columns, running multiseries detection
automatically if it had not previously been successfully ran.

Parameters
multiseries_id_columns [list of str] the name(s) of the multiseries id columns to use with

this datetime partition column. Currently only one multiseries id column is supported.

max_wait [int, optional] if a multiseries detection task is run, the maximum amount of time
to wait for it to complete before giving up

Returns
properties [dict] A dict with three keys:

• time_series_eligible : bool, whether the column can be used as a partition column

• time_unit : str or null, the inferred time unit if used as a partition column

• time_step : int or null, the inferred time step if used as a partition column

get_cross_series_properties(datetime_partition_column, cross_series_group_by_columns,
max_wait=600)

Retrieve cross-series properties for multiseries ID column.

This function returns the cross-series properties (eligibility as group-by column) of this column if it were
used with specified datetime partition column and with current multiseries id column, running cross-series
group-by validation automatically if it had not previously been successfully ran.

Parameters
datetime_partition_column [datetime partition column]

cross_series_group_by_columns [list of str] the name(s) of the columns to use with this
multiseries ID column. Currently only one cross-series group-by column is supported.

max_wait [int, optional] if a multiseries detection task is run, the maximum amount of time
to wait for it to complete before giving up

Returns
properties [dict] A dict with three keys:

• name : str, column name

2.3. API Reference 343

DataRobot Python API Documentation, Release 3.2.2

• eligibility : str, reason for column eligibility

• isEligible : bool, is column eligible as cross-series group-by

get_multicategorical_histogram()
Retrieve multicategorical histogram for this feature

New in version v2.24.

Returns
datarobot.models.MulticategoricalHistogram

Raises
datarobot.errors.InvalidUsageError if this method is called on a unsuited feature

ValueError if no multilabel_insights_key is present for this feature

get_pairwise_correlations()
Retrieve pairwise label correlation for multicategorical features

New in version v2.24.

Returns
datarobot.models.PairwiseCorrelations

Raises
datarobot.errors.InvalidUsageError if this method is called on a unsuited feature

ValueError if no multilabel_insights_key is present for this feature

get_pairwise_joint_probabilities()
Retrieve pairwise label joint probabilities for multicategorical features

New in version v2.24.

Returns
datarobot.models.PairwiseJointProbabilities

Raises
datarobot.errors.InvalidUsageError if this method is called on a unsuited feature

ValueError if no multilabel_insights_key is present for this feature

get_pairwise_conditional_probabilities()
Retrieve pairwise label conditional probabilities for multicategorical features

New in version v2.24.

Returns
datarobot.models.PairwiseConditionalProbabilities

Raises
datarobot.errors.InvalidUsageError if this method is called on a unsuited feature

ValueError if no multilabel_insights_key is present for this feature

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

344 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

get_histogram(bin_limit=None)
Retrieve a feature histogram

Parameters
bin_limit [int or None] Desired max number of histogram bins. If omitted, by default end-

point will use 60.

Returns
featureHistogram [FeatureHistogram] The requested histogram with desired number or

bins

class datarobot.models.ModelingFeature(project_id=None, name=None, feature_type=None,
importance=None, low_information=None, unique_count=None,
na_count=None, date_format=None, min=None, max=None,
mean=None, median=None, std_dev=None,
parent_feature_names=None, key_summary=None,
is_restored_after_reduction=None)

A feature used for modeling

In time series projects, a new set of modeling features is created after setting the partitioning options. These
features are automatically derived from those in the project’s dataset and are the features used for modeling.
Modeling features are only accessible once the target and partitioning options have been set. In projects that
don’t use time series modeling, once the target has been set, ModelingFeatures and Features will behave the
same.

For more information about input and modeling features, see the time series documentation.

As with the Feature object, the min, max, `mean, median, and std_dev attributes provide information about the
distribution of the feature in the EDA sample data. For non-numeric features, they will be None. For features
where the summary statistics are available, they will be in a format compatible with the data type, i.e. date type
features will have their summary statistics expressed as ISO-8601 formatted date strings.

Attributes
project_id [str] the id of the project the feature belongs to

name [str] the name of the feature

feature_type [str] the type of the feature, e.g. ‘Categorical’, ‘Text’

importance [float or None] numeric measure of the strength of relationship between the feature
and target (independent of any model or other features); may be None for non-modeling
features such as partition columns

2.3. API Reference 345

DataRobot Python API Documentation, Release 3.2.2

low_information [bool] whether a feature is considered too uninformative for modeling (e.g.
because it has too few values)

unique_count [int] number of unique values

na_count [int or None] number of missing values

date_format [str or None] For Date features, the date format string for how this feature was
interpreted, compatible with https://docs.python.org/2/library/time.html#time.strftime . For
other feature types, None.

min [str, int, float, or None] The minimum value of the source data in the EDA sample

max [str, int, float, or None] The maximum value of the source data in the EDA sample

mean [str, int, or, float] The arithmetic mean of the source data in the EDA sample

median [str, int, float, or None] The median of the source data in the EDA sample

std_dev [str, int, float, or None] The standard deviation of the source data in the EDA sample

parent_feature_names [list of str] A list of the names of input features used to derive this mod-
eling feature. In cases where the input features and modeling features are the same, this
will simply contain the feature’s name. Note that if a derived feature was used to create this
modeling feature, the values here will not necessarily correspond to the features that must be
supplied at prediction time.

key_summary: list of dict Statistics for top 50 keys (truncated to 103 characters) of Summa-
rized Categorical column example:

{‘key’:’DataRobot’, ‘summary’:{‘min’:0, ‘max’:29815.0, ‘stdDev’:6498.029,
‘mean’:1490.75, ‘median’:0.0, ‘pctRows’:5.0}}

where,
key: string or None name of the key

summary: dict statistics of the key

max: maximum value of the key. min: minimum value of the key. mean: mean value
of the key. median: median value of the key. stdDev: standard deviation of the key.
pctRows: percentage occurrence of key in the EDA sample of the feature.

classmethod get(project_id, feature_name)
Retrieve a single modeling feature

Parameters
project_id [str] The ID of the project the feature is associated with.

feature_name [str] The name of the feature to retrieve

Returns
feature [ModelingFeature] The requested feature

class datarobot.models.DatasetFeature(id_, dataset_id=None, dataset_version_id=None, name=None,
feature_type=None, low_information=None, unique_count=None,
na_count=None, date_format=None, min_=None, max_=None,
mean=None, median=None, std_dev=None,
time_series_eligible=None, time_series_eligibility_reason=None,
time_step=None, time_unit=None, target_leakage=None,
target_leakage_reason=None)

A feature from a project’s dataset

346 Chapter 2. Table of contents

https://docs.python.org/2/library/time.html#time.strftime

DataRobot Python API Documentation, Release 3.2.2

These are features either included in the originally uploaded dataset or added to it via feature transformations.

The min, max, mean, median, and std_dev attributes provide information about the distribution of the feature
in the EDA sample data. For non-numeric features or features created prior to these summary statistics becoming
available, they will be None. For features where the summary statistics are available, they will be in a format
compatible with the data type, i.e. date type features will have their summary statistics expressed as ISO-8601
formatted date strings.

Attributes
id [int] the id for the feature - note that name is used to reference the feature instead of id

dataset_id [str] the id of the dataset the feature belongs to

dataset_version_id [str] the id of the dataset version the feature belongs to

name [str] the name of the feature

feature_type [str, optional] the type of the feature, e.g. ‘Categorical’, ‘Text’

low_information [bool, optional] whether a feature is considered too uninformative for model-
ing (e.g. because it has too few values)

unique_count [int, optional] number of unique values

na_count [int, optional] number of missing values

date_format [str, optional] For Date features, the date format string for how this feature was
interpreted, compatible with https://docs.python.org/2/library/time.html#time.strftime . For
other feature types, None.

min [str, int, float, optional] The minimum value of the source data in the EDA sample

max [str, int, float, optional] The maximum value of the source data in the EDA sample

mean [str, int, float, optional] The arithmetic mean of the source data in the EDA sample

median [str, int, float, optional] The median of the source data in the EDA sample

std_dev [str, int, float, optional] The standard deviation of the source data in the EDA sample

time_series_eligible [bool, optional] Whether this feature can be used as the datetime partition
column in a time series project.

time_series_eligibility_reason [str, optional] Why the feature is ineligible for the datetime par-
tition column in a time series project, or ‘suitable’ when it is eligible.

time_step [int, optional] For time series eligible features, a positive integer determining the
interval at which windows can be specified. If used as the datetime partition column on
a time series project, the feature derivation and forecast windows must start and end at an
integer multiple of this value. None for features that are not time series eligible.

time_unit [str, optional] For time series eligible features, the time unit covered by a single time
step, e.g. ‘HOUR’, or None for features that are not time series eligible.

target_leakage [str, optional] Whether a feature is considered to have target leakage or not. A
value of ‘SKIPPED_DETECTION’ indicates that target leakage detection was not run on the
feature. ‘FALSE’ indicates no leakage, ‘MODERATE’ indicates a moderate risk of target
leakage, and ‘HIGH_RISK’ indicates a high risk of target leakage

target_leakage_reason: string, optional The descriptive text explaining the reason for target
leakage, if any.

get_histogram(bin_limit=None)
Retrieve a feature histogram

2.3. API Reference 347

https://docs.python.org/2/library/time.html#time.strftime

DataRobot Python API Documentation, Release 3.2.2

Parameters
bin_limit [int or None] Desired max number of histogram bins. If omitted, by default end-

point will use 60.

Returns
featureHistogram [DatasetFeatureHistogram] The requested histogram with desired num-

ber or bins

class datarobot.models.DatasetFeatureHistogram(plot)

classmethod get(dataset_id, feature_name, bin_limit=None, key_name=None)
Retrieve a single feature histogram

Parameters
dataset_id [str] The ID of the Dataset the feature is associated with.

feature_name [str] The name of the feature to retrieve

bin_limit [int or None] Desired max number of histogram bins. If omitted, by default the
endpoint will use 60.

key_name: string or None (Only required for summarized categorical feature) Name of the
top 50 keys for which plot to be retrieved

Returns
featureHistogram [FeatureHistogram] The queried instance with plot attribute in it.

class datarobot.models.FeatureHistogram(plot)

classmethod get(project_id, feature_name, bin_limit=None, key_name=None)
Retrieve a single feature histogram

Parameters
project_id [str] The ID of the project the feature is associated with.

feature_name [str] The name of the feature to retrieve

bin_limit [int or None] Desired max number of histogram bins. If omitted, by default end-
point will use 60.

key_name: string or None (Only required for summarized categorical feature) Name of the
top 50 keys for which plot to be retrieved

Returns
featureHistogram [FeatureHistogram] The queried instance with plot attribute in it.

class datarobot.models.InteractionFeature(rows, source_columns, bars, bubbles)
Interaction feature data

New in version v2.21.

Attributes
rows: int Total number of rows

source_columns: list(str) names of two categorical features which were combined into this one

bars: list(dict) dictionaries representing frequencies of each independent value from the source
columns

348 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

bubbles: list(dict) dictionaries representing frequencies of each combined value in the interac-
tion feature.

classmethod get(project_id, feature_name)
Retrieve a single Interaction feature

Parameters
project_id [str] The id of the project the feature belongs to

feature_name [str] The name of the Interaction feature to retrieve

Returns
feature [InteractionFeature] The queried instance

class datarobot.models.MulticategoricalHistogram(feature_name, histogram)
Histogram for Multicategorical feature.

New in version v2.24.

Notes

HistogramValues contains:

• values.[].label : string - Label name

• values.[].plot : list - Histogram for label

• values.[].plot.[].label_relevance : int - Label relevance value

• values.[].plot.[].row_count : int - Row count where label has given relevance

• values.[].plot.[].row_pct : float - Percentage of rows where label has given relevance

Attributes
feature_name [str] Name of the feature

values [list(dict)] List of Histogram values with a schema described as HistogramValues

classmethod get(multilabel_insights_key)
Retrieves multicategorical histogram

You might find it more convenient to use Feature.get_multicategorical_histogram instead.

Parameters
multilabel_insights_key: string Key for multilabel insights, unique for a project, feature

and EDA stage combination. The multilabel_insights_key can be retrieved via Feature.
multilabel_insights_key.

Returns
MulticategoricalHistogram The multicategorical histogram for multilabel_insights_key

to_dataframe()
Convenience method to get all the information from this multicategorical_histogram instance in form of a
pandas.DataFrame.

Returns
pandas.DataFrame Histogram information as a multicategorical_histogram. The

dataframe will contain these columns: feature_name, label, label_relevance, row_count
and row_pct

2.3. API Reference 349

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.PairwiseCorrelations(*args, **kwargs)
Correlation of label pairs for multicategorical feature.

New in version v2.24.

Notes

CorrelationValues contain:

• values.[].label_configuration : list of length 2 - Configuration of the label pair

• values.[].label_configuration.[].label : str – Label name

• values.[].statistic_value : float – Statistic value

Attributes
feature_name [str] Name of the feature

values [list(dict)] List of correlation values with a schema described as CorrelationValues

statistic_dataframe [pandas.DataFrame] Correlation values for all label pairs as a DataFrame

classmethod get(multilabel_insights_key)
Retrieves pairwise correlations

You might find it more convenient to use Feature.get_pairwise_correlations instead.

Parameters
multilabel_insights_key: string Key for multilabel insights, unique for a project, feature

and EDA stage combination. The multilabel_insights_key can be retrieved via Feature.
multilabel_insights_key.

Returns
PairwiseCorrelations The pairwise label correlations

as_dataframe()
The pairwise label correlations as a (num_labels x num_labels) DataFrame.

Returns
pandas.DataFrame The pairwise label correlations. Index and column names allow the

interpretation of the values.

class datarobot.models.PairwiseJointProbabilities(*args, **kwargs)
Joint probabilities of label pairs for multicategorical feature.

New in version v2.24.

Notes

ProbabilityValues contain:

• values.[].label_configuration : list of length 2 - Configuration of the label pair

• values.[].label_configuration.[].relevance : int – 0 for absence of the labels, 1 for the presence
of labels

• values.[].label_configuration.[].label : str – Label name

• values.[].statistic_value : float – Statistic value

350 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Attributes
feature_name [str] Name of the feature

values [list(dict)] List of joint probability values with a schema described as
ProbabilityValues

statistic_dataframes [dict(pandas.DataFrame)] Joint Probability values as DataFrames for dif-
ferent relevance combinations.

E.g. The probability P(A=0,B=1) can be retrieved via:
pairwise_joint_probabilities.statistic_dataframes[(0,1)].loc['A',
'B']

classmethod get(multilabel_insights_key)
Retrieves pairwise joint probabilities

You might find it more convenient to use Feature.get_pairwise_joint_probabilities instead.

Parameters
multilabel_insights_key: string Key for multilabel insights, unique for a project, feature

and EDA stage combination. The multilabel_insights_key can be retrieved via Feature.
multilabel_insights_key.

Returns
PairwiseJointProbabilities The pairwise joint probabilities

as_dataframe(relevance_configuration)
Joint probabilities of label pairs as a (num_labels x num_labels) DataFrame.

Parameters
relevance_configuration: tuple of length 2 Valid options are (0, 0), (0, 1), (1, 0) and (1, 1).

Values of 0 indicate absence of labels and 1 indicates presence of labels. The first value
describes the presence for the labels in axis=0 and the second value describes the presence
for the labels in axis=1.

For example the matrix values for a relevance configuration of (0, 1) describe the proba-
bilities of absent labels in the index axis and present labels in the column axis.

E.g. The probability P(A=0,B=1) can be retrieved via:
pairwise_joint_probabilities.as_dataframe((0,1)).loc['A', 'B']

Returns
pandas.DataFrame The joint probabilities for the requested relevance_configuration.

Index and column names allow the interpretation of the values.

class datarobot.models.PairwiseConditionalProbabilities(*args, **kwargs)
Conditional probabilities of label pairs for multicategorical feature.

New in version v2.24.

2.3. API Reference 351

DataRobot Python API Documentation, Release 3.2.2

Notes

ProbabilityValues contain:

• values.[].label_configuration : list of length 2 - Configuration of the label pair

• values.[].label_configuration.[].relevance : int – 0 for absence of the labels, 1 for the presence
of labels

• values.[].label_configuration.[].label : str – Label name

• values.[].statistic_value : float – Statistic value

Attributes
feature_name [str] Name of the feature

values [list(dict)] List of conditional probability values with a schema described as
ProbabilityValues

statistic_dataframes [dict(pandas.DataFrame)] Conditional Probability values as DataFrames
for different relevance combinations. The label names in the columns are the events, on which
we condition. The label names in the index are the events whose conditional probability given
the indexes is in the dataframe.

E.g. The probability P(A=0|B=1) can be retrieved via:
pairwise_conditional_probabilities.statistic_dataframes[(0,1)].
loc['A', 'B']

classmethod get(multilabel_insights_key)
Retrieves pairwise conditional probabilities

You might find it more convenient to use Feature.get_pairwise_conditional_probabilities in-
stead.

Parameters
multilabel_insights_key: string Key for multilabel insights, unique for a project, feature

and EDA stage combination. The multilabel_insights_key can be retrieved via Feature.
multilabel_insights_key.

Returns
PairwiseConditionalProbabilities The pairwise conditional probabilities

as_dataframe(relevance_configuration)
Conditional probabilities of label pairs as a (num_labels x num_labels) DataFrame. The label names in
the columns are the events, on which we condition. The label names in the index are the events whose
conditional probability given the indexes is in the dataframe.

E.g. The probability P(A=0|B=1) can be retrieved via: pairwise_conditional_probabilities.
as_dataframe((0, 1)).loc['A', 'B']

Parameters
relevance_configuration: tuple of length 2 Valid options are (0, 0), (0, 1), (1, 0) and (1, 1).

Values of 0 indicate absence of labels and 1 indicates presence of labels. The first value
describes the presence for the labels in axis=0 and the second value describes the presence
for the labels in axis=1.

For example the matrix values for a relevance configuration of (0, 1) describe the proba-
bilities of absent labels in the index axis given the presence of labels in the column axis.

352 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
pandas.DataFrame The conditional probabilities for the requested
relevance_configuration. Index and column names allow the interpretation of
the values.

2.3.28 Feature Association

class datarobot.models.FeatureAssociationMatrix(strengths=None, features=None, project_id=None)
Feature association statistics for a project.

Note: Projects created prior to v2.17 are not supported by this feature.

Examples

import datarobot as dr

retrieve feature association matrix
feature_association_matrix = dr.FeatureAssociationMatrix.get(project_id)
feature_association_matrix.strengths
feature_association_matrix.features

retrieve feature association matrix for a metric, association type or a feature␣
→˓list
feature_association_matrix = dr.FeatureAssociationMatrix.get(

project_id,
metric=enums.FEATURE_ASSOCIATION_METRIC.SPEARMAN,
association_type=enums.FEATURE_ASSOCIATION_TYPE.CORRELATION,
featurelist_id=featurelist_id,

)

Attributes
project_id [str] Id of the associated project.

strengths [list of dict] Pairwise statistics for the available features as structured below.

features [list of dict] Metadata for each feature and where it goes in the matrix.

classmethod get(project_id, metric=None, association_type=None, featurelist_id=None)
Get feature association statistics.

Parameters
project_id [str] Id of the project that contains the requested associations.

metric [enums.FEATURE_ASSOCIATION_METRIC] The name of a met-
ric to get pairwise data for. Since ‘v2.19’ this is optional and defaults to
enums.FEATURE_ASSOCIATION_METRIC.MUTUAL_INFO.

association_type [enums.FEATURE_ASSOCIATION_TYPE] The type of de-
pendence for the data. Since ‘v2.19’ this is optional and defaults to
enums.FEATURE_ASSOCIATION_TYPE.ASSOCIATION.

2.3. API Reference 353

DataRobot Python API Documentation, Release 3.2.2

featurelist_id [str or None] Optional, the feature list to lookup FAM data for. By default,
depending on the type of the project “Informative Features” or “Timeseries Informative
Features” list will be used. (New in version v2.19)

Returns
FeatureAssociationMatrix Feature association pairwise metric strength data, feature clus-

tering data, and ordering data for Feature Association Matrix visualization.

Return type FeatureAssociationMatrix

2.3.29 Feature Association Matrix Details

class datarobot.models.FeatureAssociationMatrixDetails(project_id=None, chart_type=None,
values=None, features=None, types=None,
featurelist_id=None)

Plotting details for a pair of passed features present in the feature association matrix.

Note: Projects created prior to v2.17 are not supported by this feature.

Attributes
project_id [str] Id of the project that contains the requested associations.

chart_type [str] Which type of plotting the pair of features gets in the UI. e.g. ‘HORIZON-
TAL_BOX’, ‘VERTICAL_BOX’, ‘SCATTER’ or ‘CONTINGENCY’

values [list] The data triplets for pairwise plotting e.g. {“values”: [[460.0, 428.5, 0.001],
[1679.3, 259.0, 0.001], . . .] The first entry of each list is a value of feature1, the second
entry of each list is a value of feature2, and the third is the relative frequency of the pair of
datapoints in the sample.

features [list] A list of the requested features, [feature1, feature2]

types [list] The type of feature1 and feature2. Possible values: “CATEGORICAL”, “NU-
MERIC”

featurelist_id [str] Id of the feature list to lookup FAM details for.

classmethod get(project_id, feature1, feature2, featurelist_id=None)
Get a sample of the actual values used to measure the association between a pair of features

New in version v2.17.

Parameters
project_id [str] Id of the project of interest.

feature1 [str] Feature name for the first feature of interest.

feature2 [str] Feature name for the second feature of interest.

featurelist_id [str] Optional, the feature list to lookup FAM data for. By default, depending
on the type of the project “Informative Features” or “Timeseries Informative Features” list
will be used.

Returns
FeatureAssociationMatrixDetails The feature association plotting for provided pair of fea-

tures.

354 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type FeatureAssociationMatrixDetails

2.3.30 Feature Association Featurelists

class datarobot.models.FeatureAssociationFeaturelists(project_id=None, featurelists=None)
Featurelists with feature association matrix availability flags for a project.

Attributes
project_id [str] Id of the project that contains the requested associations.

featurelists [list fo dict] The featurelists with the featurelist_id, title and the has_fam flag.

classmethod get(project_id)
Get featurelists with feature association status for each.

Parameters
project_id [str] Id of the project of interest.

Returns
FeatureAssociationFeaturelists Featurelist with feature association status for each.

Return type FeatureAssociationFeaturelists

2.3.31 Feature Discovery

Relationships Configuration

class datarobot.models.RelationshipsConfiguration(id, dataset_definitions=None, relationships=None,
feature_discovery_mode=None,
feature_discovery_settings=None)

A Relationships configuration specifies a set of secondary datasets as well as the relationships among them. It is
used to configure Feature Discovery for a project to generate features automatically from these datasets.

Attributes
id [string] Id of the created relationships configuration

dataset_definitions: list Each element is a dataset_definitions for a dataset.

relationships: list Each element is a relationship between two datasets

feature_discovery_mode: str Mode of feature discovery. Supported values are ‘default’ and
‘manual’

feature_discovery_settings: list List of feature discovery settings used to customize the feature
discovery process

The `dataset_definitions` structure is
identifier: string Alias of the dataset (used directly as part of the generated feature names)

catalog_id: str, or None Identifier of the catalog item

catalog_version_id: str Identifier of the catalog item version

primary_temporal_key: string, optional Name of the column indicating time of record cre-
ation

2.3. API Reference 355

DataRobot Python API Documentation, Release 3.2.2

feature_list_id: string, optional Identifier of the feature list. This decides which columns in
the dataset are used for feature generation

snapshot_policy: str Policy to use when creating a project or making predictions. Must be one
of the following values: ‘specified’: Use specific snapshot specified by catalogVersionId
‘latest’: Use latest snapshot from the same catalog item ‘dynamic’: Get data from the source
(only applicable for JDBC datasets)

feature_lists: list List of feature list info

data_source: dict Data source info if the dataset is from data source

data_sources: list List of Data source details for a JDBC datasets

is_deleted: bool, optional Whether the dataset is deleted or not

The `data source info` structured is
data_store_id: str Id of the data store.

data_store_name [str] User-friendly name of the data store.

url [str] Url used to connect to the data store.

dbtable [str] Name of table from the data store.

schema: str Schema definition of the table from the data store

catalog: str Catalog name of the data source.

The `feature list info` structure is
id [str] Id of the featurelist

name [str] Name of the featurelist

features [list of str] Names of all the Features in the featurelist

dataset_id [str] Project the featurelist belongs to

creation_date [datetime.datetime] When the featurelist was created

user_created [bool] Whether the featurelist was created by a user or by DataRobot automation

created_by: str Name of user who created it

description [str] Description of the featurelist. Can be updated by the user and may be supplied
by default for DataRobot-created featurelists.

dataset_id: str Dataset which is associated with the feature list

dataset_version_id: str or None Version of the dataset which is associated with feature list.
Only relevant for Informative features

The `relationships` schema is
dataset1_identifier: str or None Identifier of the first dataset in this relationship. This is spec-

ified in the identifier field of dataset_definition structure. If None, then the relationship is
with the primary dataset.

dataset2_identifier: str Identifier of the second dataset in this relationship. This is specified in
the identifier field of dataset_definition schema.

dataset1_keys: list of str (max length: 10 min length: 1) Column(s) from the first dataset
which are used to join to the second dataset

dataset2_keys: list of str (max length: 10 min length: 1) Column(s) from the second dataset
that are used to join to the first dataset

356 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

time_unit: str, or None Time unit of the feature derivation window. Supported values are MIL-
LISECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, YEAR. If
present, the feature engineering Graph will perform time-aware joins.

feature_derivation_window_start: int, or None How many time_units of each dataset’s pri-
mary temporal key into the past relative to the datetimePartitionColumn the feature deriva-
tion window should begin. Will be a negative integer, If present, the feature engineering
Graph will perform time-aware joins.

feature_derivation_window_end: int, or None How many timeUnits of each dataset’s record
primary temporal key into the past relative to the datetimePartitionColumn the feature deriva-
tion window should end. Will be a non-positive integer, if present. If present, the feature
engineering Graph will perform time-aware joins.

feature_derivation_window_time_unit: int or None Time unit of the feature derivation win-
dow. Supported values are MILLISECOND, SECOND, MINUTE, HOUR, DAY, WEEK,
MONTH, QUARTER, YEAR If present, time-aware joins will be used. Only applicable
when dataset1Identifier is not provided.

feature_derivation_windows: list of dict, or None List of feature derivation win-
dows settings. If present, time-aware joins will be used. Only allowed
when feature_derivation_window_start, feature_derivation_window_end and fea-
ture_derivation_window_time_unit are not provided.

prediction_point_rounding: int, or None Closest value of predic-
tion_point_rounding_time_unit to round the prediction point into the past when applying
the feature derivation window. Will be a positive integer, if present.Only applicable when
dataset1_identifier is not provided.

prediction_point_rounding_time_unit: str, or None time unit of the prediction point round-
ing. Supported values are MILLISECOND, SECOND, MINUTE, HOUR, DAY, WEEK,
MONTH, QUARTER, YEAR Only applicable when dataset1_identifier is not provided.

The `feature_derivation_windows` is a list of dictionary with schema:
start: int How many time_units of each dataset’s primary temporal key into the past relative

to the datetimePartitionColumn the feature derivation window should begin.

end: int How many timeUnits of each dataset’s record primary temporal key into the past
relative to the datetimePartitionColumn the feature derivation window should end.

unit: string Time unit of the feature derivation window. One of datarobot.enums.
AllowedTimeUnitsSAFER.

The `feature_discovery_settings` structure is:
name: str Name of the feature discovery setting

value: bool Value of the feature discovery setting

To see the list of possible settings, create a RelationshipConfiguration without specifying
settings and check its `feature_discovery_settings` attribute, which is a list of possible
settings with their default values.

classmethod create(dataset_definitions, relationships, feature_discovery_settings=None)
Create a Relationships Configuration

Parameters
dataset_definitions: list of dataset definitions Each element is a datarobot.helpers.
feature_discovery.DatasetDefinition

2.3. API Reference 357

DataRobot Python API Documentation, Release 3.2.2

relationships: list of relationships Each element is a datarobot.helpers.
feature_discovery.Relationship

feature_discovery_settings [list of feature discovery settings, optional] Each
element is a dictionary or a datarobot.helpers.feature_discovery.
FeatureDiscoverySetting. If not provided, default settings will be used.

Returns
relationships_configuration: RelationshipsConfiguration Created relationships configu-

ration

Examples

dataset_definition = dr.DatasetDefinition(
identifier='profile',
catalog_id='5fd06b4af24c641b68e4d88f',
catalog_version_id='5fd06b4af24c641b68e4d88f'

)
relationship = dr.Relationship(

dataset2_identifier='profile',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit='DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

)
dataset_definitions = [dataset_definition]
relationships = [relationship]
relationship_config = dr.RelationshipsConfiguration.create(

dataset_definitions=dataset_definitions,
relationships=relationships,
feature_discovery_settings = [

{'name': 'enable_categorical_statistics', 'value': True},
{'name': 'enable_numeric_skewness', 'value': True},

]
)
>>> relationship_config.id
'5c88a37770fc42a2fcc62759'

get()
Retrieve the Relationships configuration for a given id

Returns
relationships_configuration: RelationshipsConfiguration The requested relationships

configuration

Raises
ClientError Raised if an invalid relationships config id is provided.

358 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

relationships_config = dr.RelationshipsConfiguration(valid_config_id)
result = relationships_config.get()
>>> result.id
'5c88a37770fc42a2fcc62759'

replace(dataset_definitions, relationships, feature_discovery_settings=None)
Update the Relationships Configuration which is not used in the feature discovery Project

Parameters
dataset_definitions: list of dataset definition Each element is a datarobot.helpers.
feature_discovery.DatasetDefinition

relationships: list of relationships Each element is a datarobot.helpers.
feature_discovery.Relationship

feature_discovery_settings [list of feature discovery settings, optional] Each
element is a dictionary or a datarobot.helpers.feature_discovery.
FeatureDiscoverySetting. If not provided, default settings will be used.

Returns
relationships_configuration: RelationshipsConfiguration the updated relationships con-

figuration

delete()
Delete the Relationships configuration

Raises
ClientError Raised if an invalid relationships config id is provided.

Examples

Deleting with a valid id
relationships_config = dr.RelationshipsConfiguration(valid_config_id)
status_code = relationships_config.delete()
status_code
>>> 204
relationships_config.get()
>>> ClientError: Relationships Configuration not found

Dataset Definition

class datarobot.helpers.feature_discovery.DatasetDefinition(identifier, catalog_id,
catalog_version_id,
snapshot_policy='latest',
feature_list_id=None,
primary_temporal_key=None)

Dataset definition for the Feature Discovery

New in version v2.25.

2.3. API Reference 359

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
dataset_definition = dr.DatasetDefinition(

identifier='profile',
catalog_id='5ec4aec1f072bc028e3471ae',
catalog_version_id='5ec4aec2f072bc028e3471b1',

)

dataset_definition = dr.DatasetDefinition(
identifier='transaction',
catalog_id='5ec4aec1f072bc028e3471ae',
catalog_version_id='5ec4aec2f072bc028e3471b1',
primary_temporal_key='Date'

)

Attributes
identifier: string Alias of the dataset (used directly as part of the generated feature names)

catalog_id: string, optional Identifier of the catalog item

catalog_version_id: string Identifier of the catalog item version

primary_temporal_key: string, optional Name of the column indicating time of record cre-
ation

feature_list_id: string, optional Identifier of the feature list. This decides which columns in
the dataset are used for feature generation

snapshot_policy: string, optional Policy to use when creating a project or making predictions.
If omitted, by default endpoint will use ‘latest’. Must be one of the following values: ‘spec-
ified’: Use specific snapshot specified by catalogVersionId ‘latest’: Use latest snapshot
from the same catalog item ‘dynamic’: Get data from the source (only applicable for JDBC
datasets)

Relationship

class datarobot.helpers.feature_discovery.Relationship(dataset2_identifier, dataset1_keys,
dataset2_keys, dataset1_identifier=None,
feature_derivation_window_start=None,
feature_derivation_window_end=None, fea-
ture_derivation_window_time_unit=None,
feature_derivation_windows=None,
prediction_point_rounding=None, predic-
tion_point_rounding_time_unit=None)

Relationship between dataset defined in DatasetDefinition

New in version v2.25.

360 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
relationship = dr.Relationship(

dataset1_identifier='profile',
dataset2_identifier='transaction',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID']

)

relationship = dr.Relationship(
dataset2_identifier='profile',
dataset1_keys=['CustomerID'],
dataset2_keys=['CustomerID'],
feature_derivation_window_start=-14,
feature_derivation_window_end=-1,
feature_derivation_window_time_unit='DAY',
prediction_point_rounding=1,
prediction_point_rounding_time_unit='DAY'

)

Attributes
dataset1_identifier: string, optional Identifier of the first dataset in this relationship. This is

specified in the identifier field of dataset_definition structure. If None, then the relationship
is with the primary dataset.

dataset2_identifier: string Identifier of the second dataset in this relationship. This is specified
in the identifier field of dataset_definition schema.

dataset1_keys: list of string (max length: 10 min length: 1) Column(s) from the first dataset
which are used to join to the second dataset

dataset2_keys: list of string (max length: 10 min length: 1) Column(s) from the second
dataset that are used to join to the first dataset

feature_derivation_window_start: int, or None How many time_units of each dataset’s pri-
mary temporal key into the past relative to the datetimePartitionColumn the feature deriva-
tion window should begin. Will be a negative integer, If present, the feature engineering
Graph will perform time-aware joins.

feature_derivation_window_end: int, optional How many timeUnits of each dataset’s record
primary temporal key into the past relative to the datetimePartitionColumn the feature deriva-
tion window should end. Will be a non-positive integer, if present. If present, the feature
engineering Graph will perform time-aware joins.

feature_derivation_window_time_unit: int, optional Time unit of the feature derivation win-
dow. One of datarobot.enums.AllowedTimeUnitsSAFER If present, time-aware joins
will be used. Only applicable when dataset1_identifier is not provided.

feature_derivation_windows: list of dict, or None List of feature derivation win-
dows settings. If present, time-aware joins will be used. Only allowed
when feature_derivation_window_start, feature_derivation_window_end and fea-
ture_derivation_window_time_unit are not provided.

prediction_point_rounding: int, optional Closest value of predic-
tion_point_rounding_time_unit to round the prediction point into the past when applying

2.3. API Reference 361

DataRobot Python API Documentation, Release 3.2.2

the feature derivation window. Will be a positive integer, if present.Only applicable when
dataset1_identifier is not provided.

prediction_point_rounding_time_unit: string, optional Time unit of the prediction point
rounding. One of datarobot.enums.AllowedTimeUnitsSAFER Only applicable when
dataset1_identifier is not provided.

The `feature_derivation_windows` is a list of dictionary with schema:
start: int How many time_units of each dataset’s primary temporal key into the past relative

to the datetimePartitionColumn the feature derivation window should begin.

end: int How many timeUnits of each dataset’s record primary temporal key into the past
relative to the datetimePartitionColumn the feature derivation window should end.

unit: string Time unit of the feature derivation window. One of datarobot.enums.
AllowedTimeUnitsSAFER.

Feature Lineage

class datarobot.models.FeatureLineage(steps=None)
Lineage of an automatically engineered feature.

Attributes
steps: list list of steps which were applied to build the feature.

`steps` structure is:
id [int] step id starting with 0.

step_type: str one of the data/action/json/generatedData.

name: str name of the step.

description: str description of the step.

parents: list[int] references to other steps id.

is_time_aware: bool indicator of step being time aware. Mandatory only for action and join
steps. action step provides additional information about feature derivation window in the
timeInfo field.

catalog_id: str id of the catalog for a data step.

catalog_version_id: str id of the catalog version for a data step.

group_by: list[str] list of columns which this action step aggregated by.

columns: list names of columns involved into the feature generation. Available only for data
steps.

time_info: dict description of the feature derivation window which was applied to this action
step.

join_info: list[dict] join step details.

`columns` structure is
data_type: str the type of the feature, e.g. ‘Categorical’, ‘Text’

is_input: bool indicates features which provided data to transform in this lineage.

name: str feature name.

is_cutoff: bool indicates a cutoff column.

362 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

`time_info` structure is:
latest: dict end of the feature derivation window applied.

duration: dict size of the feature derivation window applied.

`latest` and `duration` structure is:
time_unit: str time unit name like ‘MINUTE’, ‘DAY’, ‘MONTH’ etc.

duration: int value/size of this duration object.

`join_info` structure is:
join_type: str kind of join, left/right.

left_table: dict information about a dataset which was considered as left.

right_table: str information about a dataset which was considered as right.

`left_table` and `right_table` structure is:
columns: list[str] list of columns which datasets were joined by.

datasteps: list[int] list of data steps id which brought the columns into the current step dataset.

classmethod get(project_id, id)
Retrieve a single FeatureLineage.

Parameters
project_id [str] The id of the project the feature belongs to

id [str] id of a feature lineage to retrieve

Returns
lineage [FeatureLineage] The queried instance

Secondary Dataset Configurations

class datarobot.models.SecondaryDatasetConfigurations(id, project_id, config=None,
secondary_datasets=None, name=None,
creator_full_name=None,
creator_user_id=None, created=None,
featurelist_id=None, credential_ids=None,
is_default=None, project_version=None)

Create secondary dataset configurations for a given project

New in version v2.20.

Attributes
id [str] Id of this secondary dataset configuration

project_id [str] Id of the associated project.

config: list of DatasetConfiguration (Deprecated in version v2.23) List of secondary dataset
configurations

secondary_datasets: list of SecondaryDataset (new in v2.23) List of secondary datasets (sec-
ondaryDataset)

name: str Verbose name of the SecondaryDatasetConfig. null if it wasn’t specified.

created: datetime.datetime DR-formatted datetime. null for legacy (before DR 6.0) db records.

2.3. API Reference 363

DataRobot Python API Documentation, Release 3.2.2

creator_user_id: str Id of the user created this config.

creator_full_name: str fullname or email of the user created this config.

featurelist_id: str, optional Id of the feature list. null if it wasn’t specified.

credential_ids: list of DatasetsCredentials, optional credentials used by the secondary
datasets if the datasets used in the configuration are from datasource

is_default: bool, optional Boolean flag if default config created during feature discovery aim

project_version: str, optional Version of project when its created (Release version)

classmethod create(project_id, secondary_datasets, name, featurelist_id=None)
create secondary dataset configurations

New in version v2.20.

Parameters
project_id [str] id of the associated project.

secondary_datasets: list of SecondaryDataset (New in version v2.23) list of sec-
ondary datasets used by the configuration each element is a datarobot.helpers.
feature_discovery.SecondaryDataset

name: str (New in version v2.23) Name of the secondary datasets configuration

featurelist_id: str, or None (New in version v2.23) Id of the featurelist

Returns
an instance of SecondaryDatasetConfigurations

Raises
ClientError raised if incorrect configuration parameters are provided

Examples

profile_secondary_dataset = dr.SecondaryDataset(
identifier='profile',
catalog_id='5ec4aec1f072bc028e3471ae',
catalog_version_id='5ec4aec2f072bc028e3471b1',
snapshot_policy='latest'

)

transaction_secondary_dataset = dr.SecondaryDataset(
identifier='transaction',
catalog_id='5ec4aec268f0f30289a03901',
catalog_version_id='5ec4aec268f0f30289a03900',
snapshot_policy='latest'

)

secondary_datasets = [profile_secondary_dataset, transaction_secondary_dataset]
new_secondary_dataset_config = dr.SecondaryDatasetConfigurations.create(

project_id=project.id,
name='My config',
secondary_datasets=secondary_datasets

)
(continues on next page)

364 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

>>> new_secondary_dataset_config.id
'5fd1e86c589238a4e635e93d'

Return type SecondaryDatasetConfigurations

delete()
Removes the Secondary datasets configuration

New in version v2.21.

Raises
ClientError Raised if an invalid or already deleted secondary dataset config id is provided

Examples

Deleting with a valid secondary_dataset_config id
status_code = dr.SecondaryDatasetConfigurations.delete(some_config_id)
status_code
>>> 204

Return type None

get()
Retrieve a single secondary dataset configuration for a given id

New in version v2.21.

Returns
secondary_dataset_configurations [SecondaryDatasetConfigurations] The requested sec-

ondary dataset configurations

Examples

config_id = '5fd1e86c589238a4e635e93d'
secondary_dataset_config = dr.SecondaryDatasetConfigurations(id=config_id).get()
>>> secondary_dataset_config
{

'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',
'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
'credential_ids': None,
'featurelist_id': None,
'id': u'5fd1e86c589238a4e635e93d',
'is_default': True,
'name': u'My config',
'project_id': u'5fd06afce2456ec1e9d20457',
'project_version': None,
'secondary_datasets': [

{
(continues on next page)

2.3. API Reference 365

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'snapshot_policy': u'latest',
'identifier': u'profile',
'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
'catalog_id': u'5fd06b4af24c641b68e4d88e'

},
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e',
'catalog_id': u'5fd1e86c589238a4e635e98d'

}
]

}

Return type SecondaryDatasetConfigurations

classmethod list(project_id, featurelist_id=None, limit=None, offset=None)
Returns list of secondary dataset configurations.

New in version v2.23.

Parameters
project_id: str The Id of project

featurelist_id: str, optional Id of the feature list to filter the secondary datasets configura-
tions

Returns
secondary_dataset_configurations [list of SecondaryDatasetConfigurations] The re-

quested list of secondary dataset configurations for a given project

Examples

pid = '5fd06afce2456ec1e9d20457'
secondary_dataset_configs = dr.SecondaryDatasetConfigurations.list(pid)
>>> secondary_dataset_configs[0]

{
'created': datetime.datetime(2020, 12, 9, 6, 16, 22, tzinfo=tzutc()),
'creator_full_name': u'abc@datarobot.com',
'creator_user_id': u'asdf4af1gf4bdsd2fba1de0a',
'credential_ids': None,
'featurelist_id': None,
'id': u'5fd1e86c589238a4e635e93d',
'is_default': True,
'name': u'My config',
'project_id': u'5fd06afce2456ec1e9d20457',
'project_version': None,
'secondary_datasets': [

{
'snapshot_policy': u'latest',
'identifier': u'profile',

(continues on next page)

366 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'catalog_version_id': u'5fd06b4af24c641b68e4d88f',
'catalog_id': u'5fd06b4af24c641b68e4d88e'

},
{

'snapshot_policy': u'dynamic',
'identifier': u'transaction',
'catalog_version_id': u'5fd1e86c589238a4e635e98e',
'catalog_id': u'5fd1e86c589238a4e635e98d'

}
]

}

Return type List[SecondaryDatasetConfigurations]

Secondary Dataset

class datarobot.helpers.feature_discovery.SecondaryDataset(identifier, catalog_id,
catalog_version_id,
snapshot_policy='latest')

A secondary dataset to be used for feature discovery

New in version v2.25.

Examples

import datarobot as dr
dataset_definition = dr.SecondaryDataset(

identifier='profile',
catalog_id='5ec4aec1f072bc028e3471ae',
catalog_version_id='5ec4aec2f072bc028e3471b1',

)

Attributes
identifier: string Alias of the dataset (used directly as part of the generated feature names)

catalog_id: string Identifier of the catalog item

catalog_version_id: string Identifier of the catalog item version

snapshot_policy: string, optional Policy to use while creating a project or making predictions.
If omitted, by default endpoint will use ‘latest’. Must be one of the following values: ‘spec-
ified’: Use specific snapshot specified by catalogVersionId ‘latest’: Use latest snapshot
from the same catalog item ‘dynamic’: Get data from the source (only applicable for JDBC
datasets)

2.3. API Reference 367

DataRobot Python API Documentation, Release 3.2.2

2.3.32 Feature Effects

class datarobot.models.FeatureEffects(project_id, model_id, source, feature_effects, data_slice_id=None,
backtest_index=None)

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by feature
impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the average
effects of all other predictive features. It indicates how, holding all other variables except the feature of interest
as they were, the value of this feature affects your prediction.

Notes

featureEffects is a dict containing the following:

• feature_name (string) Name of the feature

• feature_type (string) dr.enums.FEATURE_TYPE, Feature type either numeric, categorical or datetime

• feature_impact_score (float) Feature impact score

• weight_label (string) optional, Weight label if configured for the project else null

• partial_dependence (List) Partial dependence results

• predicted_vs_actual (List) optional, Predicted versus actual results, may be omitted if there are insuf-
ficient qualified samples

partial_dependence is a dict containing the following:
• is_capped (bool) Indicates whether the data for computation is capped

• data (List) partial dependence results in the following format

data is a list of dict containing the following:
• label (string) Contains label for categorical and numeric features as string

• dependence (float) Value of partial dependence

predicted_vs_actual is a dict containing the following:
• is_capped (bool) Indicates whether the data for computation is capped

• data (List) pred vs actual results in the following format

data is a list of dict containing the following:
• label (string) Contains label for categorical features for numeric features contains range or numeric

value.

• bin (List) optional, For numeric features contains labels for left and right bin limits

• predicted (float) Predicted value

• actual (float) Actual value. Actual value is null for unsupervised timeseries models

• row_count (int or float) Number of rows for the label and bin. Type is float if weight or exposure is
set for the project.

Attributes
project_id: string The project that contains requested model

model_id: string The model to retrieve Feature Effects for

368 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

source: string The source to retrieve Feature Effects for

data_slice_id: string or None The slice to retrieve Feature Effects for; if None, retrieve un-
sliced data

feature_effects: list Feature Effects for every feature

backtest_index: string, required only for DatetimeModels, The backtest index to retrieve
Feature Effects for.

classmethod from_server_data(data, *args, use_insights_format=False, **kwargs)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing.

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

use_insights_format [bool, optional] Whether to repack the data from the format used in
the GET /insights/featureEffects/ URL to the format used in the legacy URL.

class datarobot.models.FeatureEffectMetadata(status, sources)
Feature Effect Metadata for model, contains status and available model sources.

Notes

source is expected parameter to retrieve Feature Effect. One of provided sources shall be used.

class datarobot.models.FeatureEffectMetadataDatetime(data)
Feature Effect Metadata for datetime model, contains list of feature effect metadata per backtest.

Notes

feature effect metadata per backtest contains:
• status : string.

• backtest_index : string.

• sources : list(string).

source is expected parameter to retrieve Feature Effect. One of provided sources shall be used.

backtest_index is expected parameter to submit compute request and retrieve Feature Effect. One of provided
backtest indexes shall be used.

Attributes
data [list[FeatureEffectMetadataDatetimePerBacktest]] List feature effect metadata per backtest

class datarobot.models.FeatureEffectMetadataDatetimePerBacktest(ff_metadata_datetime_per_backtest)
Convert dictionary into feature effect metadata per backtest which contains backtest_index, status and sources.

2.3. API Reference 369

DataRobot Python API Documentation, Release 3.2.2

2.3.33 Feature List

class datarobot.DatasetFeaturelist(id=None, name=None, features=None, dataset_id=None,
dataset_version_id=None, creation_date=None, created_by=None,
user_created=None, description=None)

A set of features attached to a dataset in the AI Catalog

Attributes
id [str] the id of the dataset featurelist

dataset_id [str] the id of the dataset the featurelist belongs to

dataset_version_id: str, optional the version id of the dataset this featurelist belongs to

name [str] the name of the dataset featurelist

features [list of str] a list of the names of features included in this dataset featurelist

creation_date [datetime.datetime] when the featurelist was created

created_by [str] the user name of the user who created this featurelist

user_created [bool] whether the featurelist was created by a user or by DataRobot automation

description [str, optional] the description of the featurelist. Only present on DataRobot-created
featurelists.

classmethod get(dataset_id, featurelist_id)
Retrieve a dataset featurelist

Parameters
dataset_id [str] the id of the dataset the featurelist belongs to

featurelist_id [str] the id of the dataset featurelist to retrieve

Returns
featurelist [DatasetFeatureList] the specified featurelist

Return type TypeVar(TDatasetFeaturelist, bound= DatasetFeaturelist)

delete()
Delete a dataset featurelist

Featurelists configured into the dataset as a default featurelist cannot be deleted.

Return type None

update(name=None)
Update the name of an existing featurelist

Note that only user-created featurelists can be renamed, and that names must not conflict with names used
by other featurelists.

Parameters
name [str, optional] the new name for the featurelist

Return type None

370 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.Featurelist(id=None, name=None, features=None, project_id=None,
created=None, is_user_created=None, num_models=None,
description=None)

A set of features used in modeling

Attributes
id [str] the id of the featurelist

name [str] the name of the featurelist

features [list of str] the names of all the Features in the featurelist

project_id [str] the project the featurelist belongs to

created [datetime.datetime] (New in version v2.13) when the featurelist was created

is_user_created [bool] (New in version v2.13) whether the featurelist was created by a user or
by DataRobot automation

num_models [int] (New in version v2.13) the number of models currently using this featurelist.
A model is considered to use a featurelist if it is used to train the model or as a monotonic
constraint featurelist, or if the model is a blender with at least one component model using
the featurelist.

description [str] (New in version v2.13) the description of the featurelist. Can be updated by
the user and may be supplied by default for DataRobot-created featurelists.

classmethod from_data(data)
Overrides the parent method to ensure description is always populated

Parameters
data [dict] the data from the server, having gone through processing

Return type TypeVar(TFeaturelist, bound= Featurelist)

classmethod get(project_id, featurelist_id)
Retrieve a known feature list

Parameters
project_id [str] The id of the project the featurelist is associated with

featurelist_id [str] The ID of the featurelist to retrieve

Returns
featurelist [Featurelist] The queried instance

Raises
ValueError passed project_id parameter value is of not supported type

Return type TypeVar(TFeaturelist, bound= Featurelist)

delete(dry_run=False, delete_dependencies=False)
Delete a featurelist, and any models and jobs using it

All models using a featurelist, whether as the training featurelist or as a monotonic constraint featurelist,
will also be deleted when the deletion is executed and any queued or running jobs using it will be cancelled.
Similarly, predictions made on these models will also be deleted. All the entities that are to be deleted with
a featurelist are described as “dependencies” of it. To preview the results of deleting a featurelist, call delete
with dry_run=True

2.3. API Reference 371

DataRobot Python API Documentation, Release 3.2.2

When deleting a featurelist with dependencies, users must specify delete_dependencies=True to confirm
they want to delete the featurelist and all its dependencies. Without that option, only featurelists with no
dependencies may be successfully deleted and others will error.

Featurelists configured into the project as a default featurelist or as a default monotonic constraint featurelist
cannot be deleted.

Featurelists used in a model deployment cannot be deleted until the model deployment is deleted.

Parameters
dry_run [bool, optional] specify True to preview the result of deleting the featurelist, instead

of actually deleting it.

delete_dependencies [bool, optional] specify True to successfully delete featurelists with
dependencies; if left False by default, featurelists without dependencies can be successfully
deleted and those with dependencies will error upon attempting to delete them.

Returns
result [dict]

A dictionary describing the result of deleting the featurelist, with the following keys
• dry_run : bool, whether the deletion was a dry run or an actual deletion

• can_delete : bool, whether the featurelist can actually be deleted

• deletion_blocked_reason : str, why the featurelist can’t be deleted (if it can’t)

• num_affected_models : int, the number of models using this featurelist

• num_affected_jobs : int, the number of jobs using this featurelist

Return type DeleteFeatureListResult

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

update(name=None, description=None)
Update the name or description of an existing featurelist

Note that only user-created featurelists can be renamed, and that names must not conflict with names used
by other featurelists.

Parameters
name [str, optional] the new name for the featurelist

description [str, optional] the new description for the featurelist

Return type None

372 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.ModelingFeaturelist(id=None, name=None, features=None, project_id=None,
created=None, is_user_created=None, num_models=None,
description=None)

A set of features that can be used to build a model

In time series projects, a new set of modeling features is created after setting the partitioning options. These
features are automatically derived from those in the project’s dataset and are the features used for modeling.
Modeling features are only accessible once the target and partitioning options have been set. In projects that
don’t use time series modeling, once the target has been set, ModelingFeaturelists and Featurelists will behave
the same.

For more information about input and modeling features, see the time series documentation.

Attributes
id [str] the id of the modeling featurelist

project_id [str] the id of the project the modeling featurelist belongs to

name [str] the name of the modeling featurelist

features [list of str] a list of the names of features included in this modeling featurelist

created [datetime.datetime] (New in version v2.13) when the featurelist was created

is_user_created [bool] (New in version v2.13) whether the featurelist was created by a user or
by DataRobot automation

num_models [int] (New in version v2.13) the number of models currently using this featurelist.
A model is considered to use a featurelist if it is used to train the model or as a monotonic
constraint featurelist, or if the model is a blender with at least one component model using
the featurelist.

description [str] (New in version v2.13) the description of the featurelist. Can be updated by
the user and may be supplied by default for DataRobot-created featurelists.

classmethod get(project_id, featurelist_id)
Retrieve a modeling featurelist

Modeling featurelists can only be retrieved once the target and partitioning options have been set.

Parameters
project_id [str] the id of the project the modeling featurelist belongs to

featurelist_id [str] the id of the modeling featurelist to retrieve

Returns
featurelist [ModelingFeaturelist] the specified featurelist

Return type TypeVar(TModelingFeaturelist, bound= ModelingFeaturelist)

update(name=None, description=None)
Update the name or description of an existing featurelist

Note that only user-created featurelists can be renamed, and that names must not conflict with names used
by other featurelists.

Parameters
name [str, optional] the new name for the featurelist

description [str, optional] the new description for the featurelist

2.3. API Reference 373

DataRobot Python API Documentation, Release 3.2.2

Return type None

delete(dry_run=False, delete_dependencies=False)
Delete a featurelist, and any models and jobs using it

All models using a featurelist, whether as the training featurelist or as a monotonic constraint featurelist,
will also be deleted when the deletion is executed and any queued or running jobs using it will be cancelled.
Similarly, predictions made on these models will also be deleted. All the entities that are to be deleted with
a featurelist are described as “dependencies” of it. To preview the results of deleting a featurelist, call delete
with dry_run=True

When deleting a featurelist with dependencies, users must specify delete_dependencies=True to confirm
they want to delete the featurelist and all its dependencies. Without that option, only featurelists with no
dependencies may be successfully deleted and others will error.

Featurelists configured into the project as a default featurelist or as a default monotonic constraint featurelist
cannot be deleted.

Featurelists used in a model deployment cannot be deleted until the model deployment is deleted.

Parameters
dry_run [bool, optional] specify True to preview the result of deleting the featurelist, instead

of actually deleting it.

delete_dependencies [bool, optional] specify True to successfully delete featurelists with
dependencies; if left False by default, featurelists without dependencies can be successfully
deleted and those with dependencies will error upon attempting to delete them.

Returns
result [dict]

A dictionary describing the result of deleting the featurelist, with the following keys
• dry_run : bool, whether the deletion was a dry run or an actual deletion

• can_delete : bool, whether the featurelist can actually be deleted

• deletion_blocked_reason : str, why the featurelist can’t be deleted (if it can’t)

• num_affected_models : int, the number of models using this featurelist

• num_affected_jobs : int, the number of jobs using this featurelist

Return type DeleteFeatureListResult

class datarobot.models.featurelist.DeleteFeatureListResult() -> new empty dictionary
dict(mapping) -> new dictionary
initialized from a mapping object's
(key, value) pairs dict(iterable) -> new
dictionary initialized as if via: d = {}
for k, v in iterable: d[k] = v
dict(**kwargs) -> new dictionary
initialized with the name=value pairs in
the keyword argument list. For
example: dict(one=1, two=2)

374 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.34 Restoring Discarded Features

class datarobot.models.restore_discarded_features.DiscardedFeaturesInfo(total_restore_limit, re-
maining_restore_limit,
count, features)

An object containing information about time series features which were reduced during time series feature gen-
eration process. These features can be restored back to the project. They will be included into All Time Series
Features and can be used to create new feature lists.

New in version v2.27.

Attributes
total_restore_limit [int] The total limit indicating how many features can be restored in this

project.

remaining_restore_limit [int] The remaining available number of the features which can be
restored in this project.

features [list of strings] Discarded features which can be restored.

count [int] Discarded features count.

classmethod restore(project_id, features_to_restore, max_wait=600)
Restore discarded during time series feature generation process features back to the project. After restora-
tion features will be included into All Time Series Features.

New in version v2.27.

Parameters
project_id: string
features_to_restore: list of strings List of the feature names to restore

max_wait: int, optional max time to wait for features to be restored. Defaults to 10 min

Returns
status: FeatureRestorationStatus information about features which were restored and

which were not.

Return type FeatureRestorationStatus

classmethod retrieve(project_id)
Retrieve the discarded features information for a given project.

New in version v2.27.

Parameters
project_id: string

Returns
info: DiscardedFeaturesInfo information about features which were discarded during fea-

ture generation process and limits how many features can be restored.

Return type DiscardedFeaturesInfo

class datarobot.models.restore_discarded_features.FeatureRestorationStatus(warnings, fea-
tures_to_restore)

Status of the feature restoration process.

2.3. API Reference 375

DataRobot Python API Documentation, Release 3.2.2

New in version v2.27.

Attributes
warnings [list of strings] Warnings generated for those features which failed to restore

remaining_restore_limit [int] The remaining available number of the features which can be
restored in this project.

restored_features [list of strings] Features which were restored

2.3.35 Job

class datarobot.models.Job(data, completed_resource_url=None)
Tracks asynchronous work being done within a project

Attributes
id [int] the id of the job

project_id [str] the id of the project the job belongs to

status [str] the status of the job - will be one of datarobot.enums.QUEUE_STATUS

job_type [str] what kind of work the job is doing - will be one of datarobot.enums.JOB_TYPE

is_blocked [bool] if true, the job is blocked (cannot be executed) until its dependencies are re-
solved

classmethod get(project_id, job_id)
Fetches one job.

Parameters
project_id [str] The identifier of the project in which the job resides

job_id [str] The job id

Returns
job [Job] The job

Raises
AsyncFailureError Querying this resource gave a status code other than 200 or 303

Return type Job

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns
result [object]

376 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters
max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

refresh()
Update this object with the latest job data from the server.

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

Return type None

class datarobot.models.TrainingPredictionsJob(data, model_id, data_subset, **kwargs)

classmethod get(project_id, job_id, model_id=None, data_subset=None)
Fetches one training predictions job.

The resulting TrainingPredictions object will be annotated with model_id and data_subset.

Parameters

2.3. API Reference 377

DataRobot Python API Documentation, Release 3.2.2

project_id [str] The identifier of the project in which the job resides

job_id [str] The job id

model_id [str] The identifier of the model used for computing training predictions

data_subset [dr.enums.DATA_SUBSET, optional] Data subset used for computing training
predictions

Returns
job [TrainingPredictionsJob] The job

refresh()
Update this object with the latest job data from the server.

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns
result [object]

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters
max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

378 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

Return type None

class datarobot.models.ShapMatrixJob(data, model_id=None, dataset_id=None, **kwargs)

classmethod get(project_id, job_id, model_id=None, dataset_id=None)
Fetches one SHAP matrix job.

Parameters
project_id [str] The identifier of the project in which the job resides

job_id [str] The job identifier

model_id [str] The identifier of the model used for computing prediction explanations

dataset_id [str] The identifier of the dataset against which prediction explanations should be
computed

Returns
job [ShapMatrixJob] The job

Raises
AsyncFailureError Querying this resource gave a status code other than 200 or 303

Return type ShapMatrixJob

refresh()
Update this object with the latest job data from the server.

Return type None

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns

2.3. API Reference 379

DataRobot Python API Documentation, Release 3.2.2

result [object]

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters
max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

Return type None

class datarobot.models.FeatureImpactJob(data, completed_resource_url=None, with_metadata=False)
Custom Feature Impact job to handle different return value structures.

The original implementation had just the the data and the new one also includes some metadata.

In general, we aim to keep the number of Job classes low by just utilizing the job_type attribute to control any spe-
cific formatting; however in this case when we needed to support a new representation with the _same_ job_type,
customizing the behavior of _make_result_from_location allowed us to achieve our ends without complicating
the _make_result_from_json method.

380 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(project_id, job_id, with_metadata=False)
Fetches one job.

Parameters
project_id [str] The identifier of the project in which the job resides

job_id [str] The job id

with_metadata [bool] To make this job return the metadata (i.e. the full object of the com-
pleted resource) set the with_metadata flag to True.

Returns
job [Job] The job

Raises
AsyncFailureError Querying this resource gave a status code other than 200 or 303

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns
result [object]

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters

2.3. API Reference 381

DataRobot Python API Documentation, Release 3.2.2

max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

refresh()
Update this object with the latest job data from the server.

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

Return type None

2.3.36 Lift Chart

class datarobot.models.lift_chart.LiftChart(source, bins, source_model_id, target_class,
data_slice_id=None)

Lift chart data for model.

Notes

LiftChartBin is a dict containing the following:

• actual (float) Sum of actual target values in bin

• predicted (float) Sum of predicted target values in bin

• bin_weight (float) The weight of the bin. For weighted projects, it is the sum of the weights of the rows
in the bin. For unweighted projects, it is the number of rows in the bin.

Attributes
source [str] Lift chart data source. Can be ‘validation’, ‘crossValidation’ or ‘holdout’.

bins [list of dict] List of dicts with schema described as LiftChartBin above.

source_model_id [str] ID of the model this lift chart represents; in some cases, insights from
the parent of a frozen model may be used

target_class [str, optional] For multiclass lift - target class for this lift chart data.

data_slice_id: string or None The slice to retrieve Lift Chart for; if None, retrieve unsliced
data.

classmethod from_server_data(data, keep_attrs=None, use_insights_format=False, **kwargs)
Overwrite APIObject.from_server_data to handle lift chart data retrieved from either legacy URL or /in-
sights/ new URL.

Parameters

382 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

data [dict] The directly translated dict of JSON from the server. No casing fixes have taken
place

use_insights_format [bool, optional] Whether to repack the data from the format used in
the GET /insights/liftChart/ URL to the format used in the legacy URL.

2.3.37 Missing Values Report

class datarobot.models.missing_report.MissingValuesReport(missing_values_report)
Missing values report for model, contains list of reports per feature sorted by missing count in descending order.

Notes

Report per feature contains:

• feature : feature name.

• type : feature type – ‘Numeric’ or ‘Categorical’.

• missing_count : missing values count in training data.

• missing_percentage : missing values percentage in training data.

• tasks : list of information per each task, which was applied to feature.

task information contains:

• id : a number of task in the blueprint diagram.

• name : task name.

• descriptions : human readable aggregated information about how the task handles missing values. The
following descriptions may be present: what value is imputed for missing values, whether the feature being
missing is treated as a feature by the task, whether missing values are treated as infrequent values, whether
infrequent values are treated as missing values, and whether missing values are ignored.

classmethod get(project_id, model_id)
Retrieve a missing report.

Parameters
project_id [str] The project’s id.

model_id [str] The model’s id.

Returns
MissingValuesReport The queried missing report.

Return type MissingValuesReport

2.3. API Reference 383

DataRobot Python API Documentation, Release 3.2.2

2.3.38 Models

Model

class datarobot.models.Model(id=None, processes=None, featurelist_name=None, featurelist_id=None,
project_id=None, sample_pct=None, training_row_count=None,
training_duration=None, training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
is_n_clusters_dynamically_determined=None, blueprint_id=None,
metrics=None, project=None, monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None, n_clusters=None,
has_empty_clusters=None, supports_monotonic_constraints=None,
is_starred=None, prediction_threshold=None,
prediction_threshold_read_only=None, model_number=None,
parent_model_id=None, use_project_settings=None,
supports_composable_ml=None)

A model trained on a project’s dataset capable of making predictions

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float or None] the percentage of the project dataset used in training the model. If
the project uses datetime partitioning, the sample_pct will be None. See training_row_count,
training_duration, and training_start_date and training_end_date instead.

training_row_count [int or None] the number of rows of the project dataset used in training
the model. In a datetime partitioned project, if specified, defines the number of rows used
to train the model and evaluate backtest scores; if unspecified, either training_duration or
training_start_date and training_end_date was used to determine that instead.

training_duration [str or None] only present for models in datetime partitioned projects. If
specified, a duration string specifying the duration spanned by the data used to train the
model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

model_type [str] what model this is, e.g. ‘Nystroem Kernel SVM Regressor’

model_category [str] what kind of model this is - ‘prime’ for DataRobot Prime models, ‘blend’
for blender models, and ‘model’ for other models

is_frozen [bool] whether this model is a frozen model

is_n_clusters_dynamically_determined [bool] (New in version v2.27) optional, if this model
determines number of clusters dynamically

384 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

n_clusters [int] (New in version v2.27) optional, number of data clusters discovered by model

has_empty_clusters: bool (New in version v2.27) optional, whether clustering models pro-
duces empty clusters.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

model_number [integer] model number assigned to a model

parent_model_id [str or None] (New in version v2.20) the id of the model that tuning parameters
are derived from

use_project_settings [bool or None] (New in version v2.20) Only present for models in
datetime-partitioned projects. If True, indicates that the custom backtest partitioning set-
tings specified by the user were used to train the model and evaluate backtest scores.

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

classmethod get(project, model_id)
Retrieve a specific model.

Parameters
project [str] The project’s id.

model_id [str] The model_id of the leaderboard item to retrieve.

Returns
model [Model] The queried instance.

Raises
ValueError passed project parameter value is of not supported type

Return type Model

get_features_used()
Query the server to determine which features were used.

Note that the data returned by this method is possibly different than the names of the features in the featurelist
used by this model. This method will return the raw features that must be supplied in order for predictions

2.3. API Reference 385

DataRobot Python API Documentation, Release 3.2.2

to be generated on a new set of data. The featurelist, in contrast, would also include the names of derived
features.

Returns
features [list of str] The names of the features used in the model.

Return type List[str]

get_supported_capabilities()
Retrieves a summary of the capabilities supported by a model.

New in version v2.14.

Returns
supportsBlending: bool whether the model supports blending

supportsMonotonicConstraints: bool whether the model supports monotonic constraints

hasWordCloud: bool whether the model has word cloud data available

eligibleForPrime: bool whether the model is eligible for Prime

hasParameters: bool whether the model has parameters that can be retrieved

supportsCodeGeneration: bool (New in version v2.18) whether the model supports code
generation

supportsShap: bool
(New in version v2.18) True if the model supports Shapley package. i.e. Shapley based

feature Importance

supportsEarlyStopping: bool (New in version v2.22) True if this is an early stopping tree-
based model and number of trained iterations can be retrieved.

get_num_iterations_trained()
Retrieves the number of estimators trained by early-stopping tree-based models.

– versionadded:: v2.22

Returns
projectId: str id of project containing the model

modelId: str id of the model

data: array list of numEstimatorsItem objects, one for each modeling stage.

numEstimatorsItem will be of the form:
stage: str indicates the modeling stage (for multi-stage models); None of single-stage models

numIterations: int the number of estimators or iterations trained by the model

delete()
Delete a model from the project’s leaderboard.

Return type None

get_uri()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

386 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type str

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

open_model_browser()
Opens model at project leaderboard in web browser. Note: If text-mode browsers are used, the calling
process will block until the user exits the browser.

Return type None

train(sample_pct=None, featurelist_id=None, scoring_type=None, training_row_count=None,
monotonic_increasing_featurelist_id=<object object>, monotonic_decreasing_featurelist_id=<object
object>)

Train the blueprint used in model on a particular featurelist or amount of data.

This method creates a new training job for worker and appends it to the end of the queue for this project.
After the job has finished you can get the newly trained model by retrieving it from the project leaderboard,
or by retrieving the result of the job.

Either sample_pct or training_row_count can be used to specify the amount of data to use, but not both. If
neither are specified, a default of the maximum amount of data that can safely be used to train any blueprint
without going into the validation data will be selected.

In smart-sampled projects, sample_pct and training_row_count are assumed to be in terms of rows of the
minority class.

Note: For datetime partitioned projects, see train_datetime instead.

Parameters
sample_pct [float, optional] The amount of data to use for training, as a percentage of the

project dataset from 0 to 100.

featurelist_id [str, optional] The identifier of the featurelist to use. If not defined, the fea-
turelist of this model is used.

scoring_type [str, optional] Either validation or crossValidation (also
dr.SCORING_TYPE.validation or dr.SCORING_TYPE.cross_validation).
validation is available for every partitioning type, and indicates that the default
model validation should be used for the project. If the project uses a form of cross-
validation partitioning, crossValidation can also be used to indicate that all of the
available training/validation combinations should be used to evaluate the model.

training_row_count [int, optional] The number of rows to use to train the requested model.

monotonic_increasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. Passing None disables increasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the

2.3. API Reference 387

DataRobot Python API Documentation, Release 3.2.2

target. Passing None disables decreasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

Returns
model_job_id [str] id of created job, can be used as parameter to ModelJob.get method or
wait_for_async_model_creation function

Examples

project = Project.get('project-id')
model = Model.get('project-id', 'model-id')
model_job_id = model.train(training_row_count=project.max_train_rows)

Return type str

train_datetime(featurelist_id=None, training_row_count=None, training_duration=None,
time_window_sample_pct=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Trains this model on a different featurelist or sample size.

Requires that this model is part of a datetime partitioned project; otherwise, an error will occur.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
featurelist_id [str, optional] the featurelist to use to train the model. If not specified, the

featurelist of this model is used.

training_row_count [int, optional] the number of rows of data that should be used to train
the model. If specified, neither training_duration nor use_project_settings may
be specified.

training_duration [str, optional] a duration string specifying what time range the data
used to train the model should span. If specified, neither training_row_count nor
use_project_settings may be specified.

use_project_settings [bool, optional] (New in version v2.20) defaults to False. If True,
indicates that the custom backtest partitioning settings specified by the user will be used to
train the model and evaluate backtest scores. If specified, neither training_row_count
nor training_duration may be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting

388 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

monotonic_increasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically increasing relation-
ship to the target. Passing None disables increasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically decreasing relationship
to the target. Passing None disables decreasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters: int, optional (New in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
job [ModelJob] the created job to build the model

Return type ModelJob

retrain(sample_pct=None, featurelist_id=None, training_row_count=None, n_clusters=None)
Submit a job to the queue to train a blender model.

Parameters
sample_pct: float, optional The sample size in percents (1 to 100) to use in training. If this

parameter is used then training_row_count should not be given.

featurelist_id [str, optional] The featurelist id

training_row_count [int, optional] The number of rows used to train the model. If this
parameter is used, then sample_pct should not be given.

n_clusters: int, optional (new in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that do
not determine the number of clusters automatically.

Returns
job [ModelJob] The created job that is retraining the model

Return type ModelJob

request_predictions(dataset_id=None, dataset=None, dataframe=None, file_path=None, file=None,
include_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, explanation_algorithm=None,
max_explanations=None, max_ngram_explanations=None)

Requests predictions against a previously uploaded dataset.

Parameters
dataset_id [string, optional] The ID of the dataset to make predictions against (as uploaded

from Project.upload_dataset)

dataset [Dataset, optional] The dataset to make predictions against (as uploaded from
Project.upload_dataset)

2.3. API Reference 389

DataRobot Python API Documentation, Release 3.2.2

dataframe [pd.DataFrame, optional] (New in v3.0) The dataframe to make predictions
against

file_path [str, optional] (New in v3.0) Path to file to make predictions against

file [IOBase, optional] (New in v3.0) File to make predictions against

include_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Specifies whether prediction intervals should be calculated for this request. Defaults to
True if prediction_intervals_size is specified, otherwise defaults to False.

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Rep-
resents the percentile to use for the size of the prediction intervals. Defaults to 80 if in-
clude_prediction_intervals is True. Prediction intervals size must be between 1 and 100
(inclusive).

forecast_point [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. This is the default point relative to which predictions will be generated, based
on the forecast window of the project. See the time series prediction documentation for
more information.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm: (New in version v2.21) optional; If set to ‘shap’, the response
will include prediction explanations based on the SHAP explainer (SHapley Additive
exPlanations). Defaults to null (no prediction explanations).

max_explanations: (New in version v2.21) int optional; specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value, greatest
to least. If null, no limit. In the case of ‘shap’: if the number of features is greater than the
limit, the sum of remaining values will also be returned as shapRemainingTotal. Defaults
to null. Cannot be set if explanation_algorithm is omitted.

max_ngram_explanations: optional; int or str (New in version v2.29) Specifies the max-
imum number of text explanation values that should be returned. If set to all, text explana-
tions will be computed and all the ngram explanations will be returned. If set to a non zero
positive integer value, text explanations will be computed and this amount of descendingly
sorted ngram explanations will be returned. By default text explanation won’t be triggered
to be computed.

Returns
job [PredictJob] The job computing the predictions

Return type PredictJob

390 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_feature_impact(with_metadata=False, data_slice_filter=<datarobot.models.model.Sentinel object>)
Retrieve the computed Feature Impact results, a measure of the relevance of each feature in the model.

Feature Impact is computed for each column by creating new data with that column randomly permuted
(but the others left unchanged), and seeing how the error metric score for the predictions is affected. The
‘impactUnnormalized’ is how much worse the error metric score is when making predictions on this mod-
ified data. The ‘impactNormalized’ is normalized so that the largest value is 1. In both cases, larger values
indicate more important features.

If a feature is a redundant feature, i.e. once other features are considered it doesn’t contribute much in addi-
tion, the ‘redundantWith’ value is the name of feature that has the highest correlation with this feature. Note
that redundancy detection is only available for jobs run after the addition of this feature. When retrieving
data that predates this functionality, a NoRedundancyImpactAvailable warning will be used.

Elsewhere this technique is sometimes called ‘Permutation Importance’.

Requires that Feature Impact has already been computed with request_feature_impact.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default, this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_feature_impact will raise a
ValueError.

Returns
list or dict The feature impact data response depends on the with_metadata parameter. The

response is either a dict with metadata and a list with actual data or just a list with that data.

Each List item is a dict with the keys featureName, impactNormalized, and
impactUnnormalized, redundantWith and count.

For dict response available keys are:

• featureImpacts - Feature Impact data as a dictionary. Each item is a dict with
keys: featureName, impactNormalized, and impactUnnormalized, and
redundantWith.

• shapBased - A boolean that indicates whether Feature Impact was calculated using
Shapley values.

• ranRedundancyDetection - A boolean that indicates whether redundant feature
identification was run while calculating this Feature Impact.

• rowCount - An integer or None that indicates the number of rows that was used to
calculate Feature Impact. For the Feature Impact calculated with the default logic,
without specifying the rowCount, we return None here.

• count - An integer with the number of features under the featureImpacts.

Raises
ClientError (404) If the feature impacts have not been computed.

ValueError If data_slice_filter passed as None

get_all_feature_impacts(data_slice_filter=None)
Retrieve a list of all feature impact results available for the model.

Parameters

2.3. API Reference 391

DataRobot Python API Documentation, Release 3.2.2

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on the
dataslice.id. By default, this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then no data_slice filtering will be applied
when requesting the roc_curve.

Returns
list of dicts Data for all available model feature impacts. Or an empty list if not data found.

Examples

model = datarobot.Model(id='model-id', project_id='project-id')

Get feature impact insights for sliced data
data_slice = datarobot.DataSlice(id='data-slice-id')
sliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get feature impact insights for unsliced data
data_slice = datarobot.DataSlice()
unsliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get all feature impact insights
all_fi = model.get_all_feature_impacts()

get_multiclass_feature_impact()
For multiclass it’s possible to calculate feature impact separately for each target class. The method for
calculation is exactly the same, calculated in one-vs-all style for each target class.

Requires that Feature Impact has already been computed with request_feature_impact.

Returns
feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys

‘featureImpacts’ (list), ‘class’ (str). Each item in ‘featureImpacts’ is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
ClientError (404) If the multiclass feature impacts have not been computed.

request_feature_impact(row_count=None, with_metadata=False, data_slice_id=None)
Request feature impacts to be computed for the model.

See get_feature_impact for more information on the result of the job.

Parameters
row_count [int, optional] The sample size (specified in rows) to use for Feature Impact com-

putation. This is not supported for unsupervised, multiclass (which has a separate method),
and time series projects.

with_metadata [bool, optional] Flag indicating whether the result should include the meta-
data. If true, metadata is included.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns

392 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

job [Job or status_id] Job representing the Feature Impact computation. To retrieve the com-
pleted Feature Impact data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature impacts have already been requested.

request_external_test(dataset_id, actual_value_column=None)
Request external test to compute scores and insights on an external test dataset

Parameters
dataset_id [string] The dataset to make predictions against (as uploaded from

Project.upload_dataset)

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

Returns
——-
job [Job] a Job representing external dataset insights computation

get_or_request_feature_impact(max_wait=600, **kwargs)
Retrieve feature impact for the model, requesting a job if it hasn’t been run previously

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature impact job to

complete before erroring

**kwargs Arbitrary keyword arguments passed to request_feature_impact.

Returns
feature_impacts [list or dict] The feature impact data. See get_feature_impact for the

exact schema.

get_feature_effect_metadata()
Retrieve Feature Effects metadata. Response contains status and available model sources.

• Feature Effect for the training partition is always available, with the exception of older projects that
only supported Feature Effect for validation.

• When a model is trained into validation or holdout without stacked predictions (i.e., no out-of-sample
predictions in those partitions), Feature Effects is not available for validation or holdout.

• Feature Effects for holdout is not available when holdout was not unlocked for the project.

Use source to retrieve Feature Effects, selecting one of the provided sources.

Returns
feature_effect_metadata: FeatureEffectMetadata

request_feature_effect(row_count=None, data_slice_id=None)
Submit request to compute Feature Effects for the model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] (New in version v2.21) The sample size to use for Feature Impact compu-

tation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size of the
model, whichever is less.

2.3. API Reference 393

DataRobot Python API Documentation, Release 3.2.2

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job] A Job representing the feature effect computation. To get the completed feature

effect data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature effect have already been requested.

request_feature_effects_multiclass(row_count=None, top_n_features=None, features=None)
Request Feature Effects computation for the multiclass model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by feature impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

Returns
job [Job] A Job representing Feature Effect computation. To get the completed Feature Effect

data, use job.get_result or job.get_result_when_complete.

get_feature_effect(source, data_slice_id=None)
Retrieve Feature Effects for the model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [string] The source Feature Effects are retrieved for.

data_slice_id [string, optional] ID for the data slice used in the request. If None, retrieve
unsliced insight data.

Returns
feature_effects [FeatureEffects] The feature effects data.

Raises
ClientError (404) If the feature effects have not been computed or source is not valid value.

get_feature_effects_multiclass(source='training', class_=None)
Retrieve Feature Effects for the multiclass model.

Feature Effects provide partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

394 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [str] The source Feature Effects are retrieved for.

class_ [str or None] The class name Feature Effects are retrieved for.

Returns
list The list of multiclass feature effects.

Raises
ClientError (404) If Feature Effects have not been computed or source is not valid value.

get_or_request_feature_effects_multiclass(source, top_n_features=None, features=None,
row_count=None, class_=None, max_wait=600)

Retrieve Feature Effects for the multiclass model, requesting a job if it hasn’t been run previously.

Parameters
source [string] The source Feature Effects retrieve for.

class_ [str or None] The class name Feature Effects retrieve for.

row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by Feature Impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

max_wait [int, optional] The maximum time to wait for a requested Feature Effects job to
complete before erroring.

Returns
feature_effects [list of FeatureEffectsMulticlass] The list of multiclass feature effects data.

get_or_request_feature_effect(source, max_wait=600, row_count=None, data_slice_id=None)
Retrieve Feature Effects for the model, requesting a new job if it hasn’t been run previously.

See get_feature_effect_metadata for retrieving information of source.

Parameters
source [string] The source Feature Effects are retrieved for.

max_wait [int, optional] The maximum time to wait for a requested Feature Effect job to
complete before erroring.

row_count [int, optional] (New in version v2.21) The sample size to use for Feature Impact
computation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size
of the model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
feature_effects [FeatureEffects] The Feature Effects data.

2.3. API Reference 395

DataRobot Python API Documentation, Release 3.2.2

get_prime_eligibility()
Check if this model can be approximated with DataRobot Prime

Returns
prime_eligibility [dict] a dict indicating whether a model can be approximated with

DataRobot Prime (key can_make_prime) and why it may be ineligible (key message)

request_approximation()
Request an approximation of this model using DataRobot Prime

This will create several rulesets that could be used to approximate this model. After comparing their scores
and rule counts, the code used in the approximation can be downloaded and run locally.

Returns
job [Job] the job generating the rulesets

get_rulesets()
List the rulesets approximating this model generated by DataRobot Prime

If this model hasn’t been approximated yet, will return an empty list. Note that these are rulesets approxi-
mating this model, not rulesets used to construct this model.

Returns
rulesets [list of Ruleset]

Return type List[Ruleset]

download_export(filepath)
Download an exportable model file for use in an on-premise DataRobot standalone prediction environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

Parameters
filepath [str] The path at which to save the exported model file.

Return type None

request_transferable_export(prediction_intervals_size=None)
Request generation of an exportable model file for use in an on-premise DataRobot standalone prediction
environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

This function does not download the exported file. Use download_export for that.

Parameters
prediction_intervals_size [int, optional] (New in v2.19) For time series projects only. Rep-

resents the percentile to use for the size of the prediction intervals. Prediction intervals size
must be between 1 and 100 (inclusive).

Returns
Job

396 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')
job = model.request_transferable_export()
job.wait_for_completion()
model.download_export('my_exported_model.drmodel')

Client must be configured to use standalone prediction server for import:
datarobot.Client(token='my-token-at-standalone-server',

endpoint='standalone-server-url/api/v2')

imported_model = datarobot.ImportedModel.create('my_exported_model.drmodel')

Return type Job

request_frozen_model(sample_pct=None, training_row_count=None)
Train a new frozen model with parameters from this model

Note: This method only works if project the model belongs to is not datetime partitioned. If it is, use
request_frozen_datetime_model instead.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

Parameters
sample_pct [float] optional, the percentage of the dataset to use with the model. If not pro-

vided, will use the value from this model.

training_row_count [int] (New in version v2.9) optional, the integer number of rows of the
dataset to use with the model. Only one of sample_pct and training_row_count should be
specified.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

request_frozen_datetime_model(training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None)

Train a new frozen model with parameters from this model.

Requires that this model belongs to a datetime partitioned project. If it does not, an error will occur when
submitting the job.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

In addition of training_row_count and training_duration, frozen datetime models may be trained on an
exact date range. Only one of training_row_count, training_duration, or training_start_date and train-
ing_end_date should be specified.

Models specified using training_start_date and training_end_date are the only ones that can be trained into
the holdout data (once the holdout is unlocked).

2.3. API Reference 397

DataRobot Python API Documentation, Release 3.2.2

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
training_row_count [int, optional] the number of rows of data that should be used to train

the model. If specified, training_duration may not be specified.

training_duration [str, optional] a duration string specifying what time range the data used
to train the model should span. If specified, training_row_count may not be specified.

training_start_date [datetime.datetime, optional] the start date of the data to train to model
on. Only rows occurring at or after this datetime will be used. If training_start_date is
specified, training_end_date must also be specified.

training_end_date [datetime.datetime, optional] the end date of the data to train the model
on. Only rows occurring strictly before this datetime will be used. If training_end_date is
specified, training_start_date must also be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

get_parameters()
Retrieve model parameters.

Returns
ModelParameters Model parameters for this model.

request_lift_chart(source, data_slice_id=None)
Request the model Lift Chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

398 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type StatusCheckJob

get_lift_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
lift chart data for this model’s parent if the lift chart is not available for this model and the
model has a defined parent model. If omitted or False, or there is no parent model, will not
attempt to return insight data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_lift_chart will raise a ValueError.

Returns
LiftChart Model lift chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

request_roc_curve(source, data_slice_id=None)
Request the model Roc Curve for the specified source.

Parameters
source [str] Roc Curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

get_all_lift_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool, optional] (New in version v2.14) Optional, if True, this

will return lift chart data for this model’s parent for any source that is not available for this
model and if this model has a defined parent model. If omitted or False, or this model has
no parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned lift chart by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns

2.3. API Reference 399

DataRobot Python API Documentation, Release 3.2.2

list of LiftChart Data for all available model lift charts. Or an empty list if no data found.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get lift chart insights for sliced data
sliced_lift_charts = model.get_all_lift_charts(data_slice_id='data-slice-id')

Get lift chart insights for unsliced data
unsliced_lift_charts = model.get_all_lift_charts(unsliced_only=True)

Get all lift chart insights
all_lift_charts = model.get_all_lift_charts()

get_multiclass_lift_chart(source, fallback_to_parent_insights=False)
Retrieve model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_all_multiclass_lift_charts(fallback_to_parent_insights=False)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

lift chart data for this model’s parent for any source that is not available for this model and
if this model has a defined parent model. If omitted or False, or this model has no parent,
this will not attempt to retrieve any data from this model’s parent.

Returns
list of LiftChart Data for all available model lift charts.

get_multilabel_lift_charts(source, fallback_to_parent_insights=False)
Retrieve model Lift charts for the specified source.

New in version v2.24.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

400 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_residuals_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data
for this model’s parent if the residuals chart is not available for this model and the model
has a defined parent model. If omitted or False, or there is no parent model, will not attempt
to return residuals data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_residuals_chart will raise a
ValueError.

Returns
ResidualsChart Model residuals chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_all_residuals_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all residuals charts available for the model.

Parameters
fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data

for this model’s parent for any source that is not available for this model and if this model
has a defined parent model. If omitted or False, or this model has no parent, this will not
attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned residuals charts by
data_slice_filter.id. If None (the default) applies no filter based on data_slice_id.

Returns
list of ResidualsChart Data for all available model residuals charts.

2.3. API Reference 401

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get residuals chart insights for sliced data
sliced_residuals_charts = model.get_all_residuals_charts(data_slice_id='data-
→˓slice-id')

Get residuals chart insights for unsliced data
unsliced_residuals_charts = model.get_all_residuals_charts(unsliced_only=True)

Get all residuals chart insights
all_residuals_charts = model.get_all_residuals_charts()

request_residuals_chart(source, data_slice_id=None)
Request the model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

get_pareto_front()
Retrieve the Pareto Front for a Eureqa model.

This method is only supported for Eureqa models.

Returns
ParetoFront Model ParetoFront data

get_confusion_chart(source, fallback_to_parent_insights=False)
Retrieve them model’s confusion matrix for the specified source.

Parameters
source [str] Confusion chart source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
confusion chart data for this model’s parent if the confusion chart is not available for this
model and the defined parent model. If omitted or False, or there is no parent model, will
not attempt to return insight data from this model’s parent.

Returns
ConfusionChart Model ConfusionChart data

Raises
ClientError If the insight is not available for this model

402 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_all_confusion_charts(fallback_to_parent_insights=False)
Retrieve a list of all confusion matrices available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

confusion chart data for this model’s parent for any source that is not available for this model
and if this has a defined parent model. If omitted or False, or this model has no parent, this
will not attempt to retrieve any data from this model’s parent.

Returns
list of ConfusionChart Data for all available confusion charts for model.

get_roc_curve(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the ROC curve for a binary model for the specified source.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
ROC curve data for this model’s parent if the ROC curve is not available for this model and
the model has a defined parent model. If omitted or False, or there is no parent model, will
not attempt to return data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_roc_curve will raise a ValueError.

Returns
RocCurve Model ROC curve data

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is multilabel

ValueError If data_slice_filter passed as None

get_all_roc_curves(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all ROC curves available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

ROC curve data for this model’s parent for any source that is not available for this model
and if this model has a defined parent model. If omitted or False, or this model has no
parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] filters the returned roc_curve by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of RocCurve Data for all available model ROC curves. Or an empty list if no RocCurves

are found.

2.3. API Reference 403

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')
ds_filter=DataSlice(id='data-slice-id')

Get roc curve insights for sliced data
sliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get roc curve insights for unsliced data
data_slice_filter=DataSlice(id=None)
unsliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get all roc curve insights
all_roc_curves = model.get_all_roc_curves()

get_labelwise_roc_curves(source, fallback_to_parent_insights=False)
Retrieve a list of LabelwiseRocCurve instances for a multilabel model the given source and all labels.

New in version v2.24.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return ROC curve data for
this model’s parent if the ROC curve is not available for this model and the model has a
defined parent model. If omitted or False, or there is no parent model, will not attempt to
return data from this model’s parent.

Returns
list of [class:LabelwiseRocCurve <datarobot.models.roc_curve.LabelwiseRocCurve>] La-

belwise ROC Curve instances for source and all labels

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is binary

get_word_cloud(exclude_stop_words=False)
Retrieve word cloud data for the model.

Parameters
exclude_stop_words [bool, optional] Set to True if you want stopwords filtered out of re-

sponse.

Returns
WordCloud Word cloud data for the model.

download_scoring_code(file_name, source_code=False)
Download the Scoring Code JAR.

Parameters
file_name [str] File path where scoring code will be saved.

source_code [bool, optional] Set to True to download source code archive. It will not be
executable.

404 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_model_blueprint_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

Return type Dict[str, Tuple[List[str], List[str], str]]

get_model_blueprint_documents()
Get documentation for tasks used in this model.

Returns
list of BlueprintTaskDocument All documents available for the model.

get_model_blueprint_chart()
Retrieve a diagram that can be used to understand data flow in the blueprint.

Returns
ModelBlueprintChart The queried model blueprint chart.

get_missing_report_info()
Retrieve a report on missing training data that can be used to understand missing values treatment in the
model. The report consists of missing values resolutions for features numeric or categorical features that
were part of building the model.

Returns
An iterable of MissingReportPerFeature The queried model missing report, sorted by

missing count (DESCENDING order).

get_frozen_child_models()
Retrieve the IDs for all models that are frozen from this model.

Returns
A list of Models

request_training_predictions(data_subset, explanation_algorithm=None, max_explanations=None)
Start a job to build training predictions

Parameters
data_subset [str] data set definition to build predictions on. Choices are:

• dr.enums.DATA_SUBSET.ALL or string all for all data available. Not valid for
models in datetime partitioned projects

• dr.enums.DATA_SUBSET.VALIDATION_AND_HOLDOUT or string validationAndHoldout for
all data except training set. Not valid for models in datetime partitioned projects

• dr.enums.DATA_SUBSET.HOLDOUT or string holdout for holdout data set only

• dr.enums.DATA_SUBSET.ALL_BACKTESTS or string allBacktests for downloading
the predictions for all backtest validation folds. Requires the model to have success-
fully scored all backtests. Datetime partitioned projects only.

explanation_algorithm [dr.enums.EXPLANATIONS_ALGORITHM] (New in v2.21) Op-
tional. If set to dr.enums.EXPLANATIONS_ALGORITHM.SHAP, the response will in-
clude prediction explanations based on the SHAP explainer (SHapley Additive exPlana-
tions). Defaults to None (no prediction explanations).

2.3. API Reference 405

DataRobot Python API Documentation, Release 3.2.2

max_explanations [int] (New in v2.21) Optional. Specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value,
greatest to least. In the case of dr.enums.EXPLANATIONS_ALGORITHM.SHAP: If not
set, explanations are returned for all features. If the number of features is greater
than the max_explanations, the sum of remaining values will also be returned as
shap_remaining_total. Max 100. Defaults to null for datasets narrower than
100 columns, defaults to 100 for datasets wider than 100 columns. Is ignored if
explanation_algorithm is not set.

Returns
Job an instance of created async job

cross_validate()
Run cross validation on the model.

Note: To perform Cross Validation on a new model with new parameters, use train instead.

Returns
ModelJob The created job to build the model

get_cross_validation_scores(partition=None, metric=None)
Return a dictionary, keyed by metric, showing cross validation scores per partition.

Cross Validation should already have been performed using cross_validate or train.

Note: Models that computed cross validation before this feature was added will need to be deleted and
retrained before this method can be used.

Parameters
partition [float] optional, the id of the partition (1,2,3.0,4.0,etc. . .) to filter results by can be

a whole number positive integer or float value. 0 corresponds to the validation partition.

metric: unicode optional name of the metric to filter to resulting cross validation scores by

Returns
cross_validation_scores: dict A dictionary keyed by metric showing cross validation scores

per partition.

advanced_tune(params, description=None)
Generate a new model with the specified advanced-tuning parameters

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Parameters
params [dict] Mapping of parameter ID to parameter value. The list of valid parameter

IDs for a model can be found by calling get_advanced_tuning_parameters(). This end-
point does not need to include values for all parameters. If a parameter is omitted, its
current_value will be used.

description [str] Human-readable string describing the newly advanced-tuned model

Returns

406 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

ModelJob The created job to build the model

Return type ModelJob

get_advanced_tuning_parameters()
Get the advanced-tuning parameters available for this model.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
dict A dictionary describing the advanced-tuning parameters for the current model. There

are two top-level keys, tuning_description and tuning_parameters.

tuning_description an optional value. If not None, then it indicates the user-specified de-
scription of this set of tuning parameter.

tuning_parameters is a list of a dicts, each has the following keys

• parameter_name : (str) name of the parameter (unique per task, see below)

• parameter_id : (str) opaque ID string uniquely identifying parameter

• default_value : (*) the actual value used to train the model; either the single value of
the parameter specified before training, or the best value from the list of grid-searched
values (based on current_value)

• current_value : (*) the single value or list of values of the parameter that were grid
searched. Depending on the grid search specification, could be a single fixed value (no
grid search), a list of discrete values, or a range.

• task_name : (str) name of the task that this parameter belongs to

• constraints: (dict) see the notes below

• vertex_id: (str) ID of vertex that this parameter belongs to

Notes

The type of default_value and current_value is defined by the constraints structure. It will be a string or
numeric Python type.

constraints is a dict with at least one, possibly more, of the following keys. The presence of a key indicates
that the parameter may take on the specified type. (If a key is absent, this means that the parameter may
not take on the specified type.) If a key on constraints is present, its value will be a dict containing all of
the fields described below for that key.

"constraints": {
"select": {

"values": [<list(basestring or number) : possible values>]
},
"ascii": {},
"unicode": {},
"int": {

"min": <int : minimum valid value>,
"max": <int : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
(continues on next page)

2.3. API Reference 407

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

},
"float": {

"min": <float : minimum valid value>,
"max": <float : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"intList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <int : minimum valid value>,
"max_val": <int : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"floatList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <float : minimum valid value>,
"max_val": <float : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
}

}

The keys have meaning as follows:

• select: Rather than specifying a specific data type, if present, it indicates that the parameter is permitted
to take on any of the specified values. Listed values may be of any string or real (non-complex) numeric
type.

• ascii: The parameter may be a unicode object that encodes simple ASCII characters. (A-Z, a-z, 0-9,
whitespace, and certain common symbols.) In addition to listed constraints, ASCII keys currently may
not contain either newlines or semicolons.

• unicode: The parameter may be any Python unicode object.

• int: The value may be an object of type int within the specified range (inclusive). Please note that the
value will be passed around using the JSON format, and some JSON parsers have undefined behavior
with integers outside of the range [-(2**53)+1, (2**53)-1].

• float: The value may be an object of type float within the specified range (inclusive).

• intList, floatList: The value may be a list of int or float objects, respectively, following constraints as
specified respectively by the int and float types (above).

Many parameters only specify one key under constraints. If a parameter specifies multiple keys, the pa-
rameter may take on any value permitted by any key.

Return type AdvancedTuningParamsType
start_advanced_tuning_session()

Start an Advanced Tuning session. Returns an object that helps set up arguments for an Advanced Tuning
model execution.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

408 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
AdvancedTuningSession Session for setting up and running Advanced Tuning on a model

star_model()
Mark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

unstar_model()
Unmark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

set_prediction_threshold(threshold)
Set a custom prediction threshold for the model.

May not be used once prediction_threshold_read_only is True for this model.

Parameters
threshold [float] only used for binary classification projects. The threshold to when deciding

between the positive and negative classes when making predictions. Should be between 0.0
and 1.0 (inclusive).

download_training_artifact(file_name)
Retrieve trained artifact(s) from a model containing one or more custom tasks.

Artifact(s) will be downloaded to the specified local filepath.

Parameters
file_name [str] File path where trained model artifact(s) will be saved.

request_fairness_insights(fairness_metrics_set=None)
Request fairness insights to be computed for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

Returns
status_id [str] A statusId of computation request.

get_fairness_insights(fairness_metrics_set=None, offset=0, limit=100)
Retrieve a list of Per Class Bias insights for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
json

request_data_disparity_insights(feature, compared_class_names)
Request data disparity insights to be computed for the model.

2.3. API Reference 409

DataRobot Python API Documentation, Release 3.2.2

Parameters
feature [str] Bias and Fairness protected feature name.

compared_class_names [list(str)] List of two classes to compare

Returns
status_id [str] A statusId of computation request.

get_data_disparity_insights(feature, class_name1, class_name2)
Retrieve a list of Cross Class Data Disparity insights for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

class_name1 [str] One of the compared classes

class_name2 [str] Another compared class

Returns
json

request_cross_class_accuracy_scores()
Request data disparity insights to be computed for the model.

Returns
status_id [str] A statusId of computation request.

get_cross_class_accuracy_scores()
Retrieves a list of Cross Class Accuracy scores for the model.

Returns
json

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

class datarobot.models.model.AdvancedTuningParamsType() -> new empty dictionary dict(mapping) ->
new dictionary initialized from a mapping
object's (key, value) pairs dict(iterable) ->
new dictionary initialized as if via: d = {} for
k, v in iterable: d[k] = v dict(**kwargs) ->
new dictionary initialized with the
name=value pairs in the keyword argument
list. For example: dict(one=1, two=2)

410 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.model.BiasMitigationFeatureInfo(messages)

PrimeModel

class datarobot.models.PrimeModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
blueprint_id=None, metrics=None, parent_model_id=None,
ruleset_id=None, rule_count=None, score=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None, prediction_threshold_read_only=None,
model_number=None, supports_composable_ml=None)

Represents a DataRobot Prime model approximating a parent model with downloadable code.

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float] the percentage of the project dataset used in training the model

training_row_count [int or None] the number of rows of the project dataset used in training
the model. In a datetime partitioned project, if specified, defines the number of rows used
to train the model and evaluate backtest scores; if unspecified, either training_duration or
training_start_date and training_end_date was used to determine that instead.

training_duration [str or None] only present for models in datetime partitioned projects. If
specified, a duration string specifying the duration spanned by the data used to train the
model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

model_type [str] what model this is, e.g. ‘DataRobot Prime’

model_category [str] what kind of model this is - always ‘prime’ for DataRobot Prime models

is_frozen [bool] whether this model is a frozen model

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric

2.3. API Reference 411

DataRobot Python API Documentation, Release 3.2.2

ruleset [Ruleset] the ruleset used in the Prime model

parent_model_id [str] the id of the model that this Prime model approximates

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model is marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

classmethod get(project_id, model_id)
Retrieve a specific prime model.

Parameters
project_id [str] The id of the project the prime model belongs to

model_id [str] The model_id of the prime model to retrieve.

Returns
model [PrimeModel] The queried instance.

request_download_validation(language)
Prep and validate the downloadable code for the ruleset associated with this model.

Parameters
language [str] the language the code should be downloaded in - see datarobot.enums.
PRIME_LANGUAGE for available languages

Returns
job [Job] A job tracking the code preparation and validation

advanced_tune(params, description=None)
Generate a new model with the specified advanced-tuning parameters

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Parameters
params [dict] Mapping of parameter ID to parameter value. The list of valid parameter

IDs for a model can be found by calling get_advanced_tuning_parameters(). This end-
point does not need to include values for all parameters. If a parameter is omitted, its
current_value will be used.

description [str] Human-readable string describing the newly advanced-tuned model

412 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
ModelJob The created job to build the model

Return type ModelJob

cross_validate()
Run cross validation on the model.

Note: To perform Cross Validation on a new model with new parameters, use train instead.

Returns
ModelJob The created job to build the model

delete()
Delete a model from the project’s leaderboard.

Return type None

download_export(filepath)
Download an exportable model file for use in an on-premise DataRobot standalone prediction environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

Parameters
filepath [str] The path at which to save the exported model file.

Return type None

download_scoring_code(file_name, source_code=False)
Download the Scoring Code JAR.

Parameters
file_name [str] File path where scoring code will be saved.

source_code [bool, optional] Set to True to download source code archive. It will not be
executable.

download_training_artifact(file_name)
Retrieve trained artifact(s) from a model containing one or more custom tasks.

Artifact(s) will be downloaded to the specified local filepath.

Parameters
file_name [str] File path where trained model artifact(s) will be saved.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

2.3. API Reference 413

DataRobot Python API Documentation, Release 3.2.2

get_advanced_tuning_parameters()
Get the advanced-tuning parameters available for this model.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
dict A dictionary describing the advanced-tuning parameters for the current model. There

are two top-level keys, tuning_description and tuning_parameters.

tuning_description an optional value. If not None, then it indicates the user-specified de-
scription of this set of tuning parameter.

tuning_parameters is a list of a dicts, each has the following keys

• parameter_name : (str) name of the parameter (unique per task, see below)

• parameter_id : (str) opaque ID string uniquely identifying parameter

• default_value : (*) the actual value used to train the model; either the single value of
the parameter specified before training, or the best value from the list of grid-searched
values (based on current_value)

• current_value : (*) the single value or list of values of the parameter that were grid
searched. Depending on the grid search specification, could be a single fixed value (no
grid search), a list of discrete values, or a range.

• task_name : (str) name of the task that this parameter belongs to

• constraints: (dict) see the notes below

• vertex_id: (str) ID of vertex that this parameter belongs to

Notes

The type of default_value and current_value is defined by the constraints structure. It will be a string or
numeric Python type.

constraints is a dict with at least one, possibly more, of the following keys. The presence of a key indicates
that the parameter may take on the specified type. (If a key is absent, this means that the parameter may
not take on the specified type.) If a key on constraints is present, its value will be a dict containing all of
the fields described below for that key.

"constraints": {
"select": {

"values": [<list(basestring or number) : possible values>]
},
"ascii": {},
"unicode": {},
"int": {

"min": <int : minimum valid value>,
"max": <int : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"float": {

"min": <float : minimum valid value>,
"max": <float : maximum valid value>,

(continues on next page)

414 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

"supports_grid_search": <bool : True if Grid Search may be
requested for this param>

},
"intList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <int : minimum valid value>,
"max_val": <int : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"floatList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <float : minimum valid value>,
"max_val": <float : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
}

}

The keys have meaning as follows:

• select: Rather than specifying a specific data type, if present, it indicates that the parameter is permitted
to take on any of the specified values. Listed values may be of any string or real (non-complex) numeric
type.

• ascii: The parameter may be a unicode object that encodes simple ASCII characters. (A-Z, a-z, 0-9,
whitespace, and certain common symbols.) In addition to listed constraints, ASCII keys currently may
not contain either newlines or semicolons.

• unicode: The parameter may be any Python unicode object.

• int: The value may be an object of type int within the specified range (inclusive). Please note that the
value will be passed around using the JSON format, and some JSON parsers have undefined behavior
with integers outside of the range [-(2**53)+1, (2**53)-1].

• float: The value may be an object of type float within the specified range (inclusive).

• intList, floatList: The value may be a list of int or float objects, respectively, following constraints as
specified respectively by the int and float types (above).

Many parameters only specify one key under constraints. If a parameter specifies multiple keys, the pa-
rameter may take on any value permitted by any key.

Return type AdvancedTuningParamsType
get_all_confusion_charts(fallback_to_parent_insights=False)

Retrieve a list of all confusion matrices available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

confusion chart data for this model’s parent for any source that is not available for this model
and if this has a defined parent model. If omitted or False, or this model has no parent, this
will not attempt to retrieve any data from this model’s parent.

Returns

2.3. API Reference 415

DataRobot Python API Documentation, Release 3.2.2

list of ConfusionChart Data for all available confusion charts for model.

get_all_feature_impacts(data_slice_filter=None)
Retrieve a list of all feature impact results available for the model.

Parameters
data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on the

dataslice.id. By default, this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then no data_slice filtering will be applied
when requesting the roc_curve.

Returns
list of dicts Data for all available model feature impacts. Or an empty list if not data found.

Examples

model = datarobot.Model(id='model-id', project_id='project-id')

Get feature impact insights for sliced data
data_slice = datarobot.DataSlice(id='data-slice-id')
sliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get feature impact insights for unsliced data
data_slice = datarobot.DataSlice()
unsliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get all feature impact insights
all_fi = model.get_all_feature_impacts()

get_all_lift_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool, optional] (New in version v2.14) Optional, if True, this

will return lift chart data for this model’s parent for any source that is not available for this
model and if this model has a defined parent model. If omitted or False, or this model has
no parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned lift chart by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of LiftChart Data for all available model lift charts. Or an empty list if no data found.

416 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get lift chart insights for sliced data
sliced_lift_charts = model.get_all_lift_charts(data_slice_id='data-slice-id')

Get lift chart insights for unsliced data
unsliced_lift_charts = model.get_all_lift_charts(unsliced_only=True)

Get all lift chart insights
all_lift_charts = model.get_all_lift_charts()

get_all_multiclass_lift_charts(fallback_to_parent_insights=False)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

lift chart data for this model’s parent for any source that is not available for this model and
if this model has a defined parent model. If omitted or False, or this model has no parent,
this will not attempt to retrieve any data from this model’s parent.

Returns
list of LiftChart Data for all available model lift charts.

get_all_residuals_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all residuals charts available for the model.

Parameters
fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data

for this model’s parent for any source that is not available for this model and if this model
has a defined parent model. If omitted or False, or this model has no parent, this will not
attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned residuals charts by
data_slice_filter.id. If None (the default) applies no filter based on data_slice_id.

Returns
list of ResidualsChart Data for all available model residuals charts.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get residuals chart insights for sliced data
sliced_residuals_charts = model.get_all_residuals_charts(data_slice_id='data-
→˓slice-id')

Get residuals chart insights for unsliced data
unsliced_residuals_charts = model.get_all_residuals_charts(unsliced_only=True)

Get all residuals chart insights
all_residuals_charts = model.get_all_residuals_charts()

2.3. API Reference 417

DataRobot Python API Documentation, Release 3.2.2

get_all_roc_curves(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all ROC curves available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

ROC curve data for this model’s parent for any source that is not available for this model
and if this model has a defined parent model. If omitted or False, or this model has no
parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] filters the returned roc_curve by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of RocCurve Data for all available model ROC curves. Or an empty list if no RocCurves

are found.

Examples

model = datarobot.Model.get('project-id', 'model-id')
ds_filter=DataSlice(id='data-slice-id')

Get roc curve insights for sliced data
sliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get roc curve insights for unsliced data
data_slice_filter=DataSlice(id=None)
unsliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get all roc curve insights
all_roc_curves = model.get_all_roc_curves()

get_confusion_chart(source, fallback_to_parent_insights=False)
Retrieve them model’s confusion matrix for the specified source.

Parameters
source [str] Confusion chart source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
confusion chart data for this model’s parent if the confusion chart is not available for this
model and the defined parent model. If omitted or False, or there is no parent model, will
not attempt to return insight data from this model’s parent.

Returns
ConfusionChart Model ConfusionChart data

Raises
ClientError If the insight is not available for this model

get_cross_class_accuracy_scores()
Retrieves a list of Cross Class Accuracy scores for the model.

Returns
json

418 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_cross_validation_scores(partition=None, metric=None)
Return a dictionary, keyed by metric, showing cross validation scores per partition.

Cross Validation should already have been performed using cross_validate or train.

Note: Models that computed cross validation before this feature was added will need to be deleted and
retrained before this method can be used.

Parameters
partition [float] optional, the id of the partition (1,2,3.0,4.0,etc. . .) to filter results by can be

a whole number positive integer or float value. 0 corresponds to the validation partition.

metric: unicode optional name of the metric to filter to resulting cross validation scores by

Returns
cross_validation_scores: dict A dictionary keyed by metric showing cross validation scores

per partition.

get_data_disparity_insights(feature, class_name1, class_name2)
Retrieve a list of Cross Class Data Disparity insights for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

class_name1 [str] One of the compared classes

class_name2 [str] Another compared class

Returns
json

get_fairness_insights(fairness_metrics_set=None, offset=0, limit=100)
Retrieve a list of Per Class Bias insights for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
json

get_feature_effect(source, data_slice_id=None)
Retrieve Feature Effects for the model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

2.3. API Reference 419

DataRobot Python API Documentation, Release 3.2.2

Parameters
source [string] The source Feature Effects are retrieved for.

data_slice_id [string, optional] ID for the data slice used in the request. If None, retrieve
unsliced insight data.

Returns
feature_effects [FeatureEffects] The feature effects data.

Raises
ClientError (404) If the feature effects have not been computed or source is not valid value.

get_feature_effect_metadata()
Retrieve Feature Effects metadata. Response contains status and available model sources.

• Feature Effect for the training partition is always available, with the exception of older projects that
only supported Feature Effect for validation.

• When a model is trained into validation or holdout without stacked predictions (i.e., no out-of-sample
predictions in those partitions), Feature Effects is not available for validation or holdout.

• Feature Effects for holdout is not available when holdout was not unlocked for the project.

Use source to retrieve Feature Effects, selecting one of the provided sources.

Returns
feature_effect_metadata: FeatureEffectMetadata

get_feature_effects_multiclass(source='training', class_=None)
Retrieve Feature Effects for the multiclass model.

Feature Effects provide partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [str] The source Feature Effects are retrieved for.

class_ [str or None] The class name Feature Effects are retrieved for.

Returns
list The list of multiclass feature effects.

Raises
ClientError (404) If Feature Effects have not been computed or source is not valid value.

get_feature_impact(with_metadata=False, data_slice_filter=<datarobot.models.model.Sentinel object>)
Retrieve the computed Feature Impact results, a measure of the relevance of each feature in the model.

Feature Impact is computed for each column by creating new data with that column randomly permuted
(but the others left unchanged), and seeing how the error metric score for the predictions is affected. The

420 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

‘impactUnnormalized’ is how much worse the error metric score is when making predictions on this mod-
ified data. The ‘impactNormalized’ is normalized so that the largest value is 1. In both cases, larger values
indicate more important features.

If a feature is a redundant feature, i.e. once other features are considered it doesn’t contribute much in addi-
tion, the ‘redundantWith’ value is the name of feature that has the highest correlation with this feature. Note
that redundancy detection is only available for jobs run after the addition of this feature. When retrieving
data that predates this functionality, a NoRedundancyImpactAvailable warning will be used.

Elsewhere this technique is sometimes called ‘Permutation Importance’.

Requires that Feature Impact has already been computed with request_feature_impact.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default, this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_feature_impact will raise a
ValueError.

Returns
list or dict The feature impact data response depends on the with_metadata parameter. The

response is either a dict with metadata and a list with actual data or just a list with that data.

Each List item is a dict with the keys featureName, impactNormalized, and
impactUnnormalized, redundantWith and count.

For dict response available keys are:

• featureImpacts - Feature Impact data as a dictionary. Each item is a dict with
keys: featureName, impactNormalized, and impactUnnormalized, and
redundantWith.

• shapBased - A boolean that indicates whether Feature Impact was calculated using
Shapley values.

• ranRedundancyDetection - A boolean that indicates whether redundant feature
identification was run while calculating this Feature Impact.

• rowCount - An integer or None that indicates the number of rows that was used to
calculate Feature Impact. For the Feature Impact calculated with the default logic,
without specifying the rowCount, we return None here.

• count - An integer with the number of features under the featureImpacts.

Raises
ClientError (404) If the feature impacts have not been computed.

ValueError If data_slice_filter passed as None

get_features_used()
Query the server to determine which features were used.

Note that the data returned by this method is possibly different than the names of the features in the featurelist
used by this model. This method will return the raw features that must be supplied in order for predictions
to be generated on a new set of data. The featurelist, in contrast, would also include the names of derived
features.

Returns
features [list of str] The names of the features used in the model.

2.3. API Reference 421

DataRobot Python API Documentation, Release 3.2.2

Return type List[str]

get_frozen_child_models()
Retrieve the IDs for all models that are frozen from this model.

Returns
A list of Models

get_labelwise_roc_curves(source, fallback_to_parent_insights=False)
Retrieve a list of LabelwiseRocCurve instances for a multilabel model the given source and all labels.

New in version v2.24.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return ROC curve data for
this model’s parent if the ROC curve is not available for this model and the model has a
defined parent model. If omitted or False, or there is no parent model, will not attempt to
return data from this model’s parent.

Returns
list of [class:LabelwiseRocCurve <datarobot.models.roc_curve.LabelwiseRocCurve>] La-

belwise ROC Curve instances for source and all labels

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is binary

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_lift_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
lift chart data for this model’s parent if the lift chart is not available for this model and the
model has a defined parent model. If omitted or False, or there is no parent model, will not
attempt to return insight data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_lift_chart will raise a ValueError.

Returns

422 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

LiftChart Model lift chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_missing_report_info()
Retrieve a report on missing training data that can be used to understand missing values treatment in the
model. The report consists of missing values resolutions for features numeric or categorical features that
were part of building the model.

Returns
An iterable of MissingReportPerFeature The queried model missing report, sorted by

missing count (DESCENDING order).

get_model_blueprint_chart()
Retrieve a diagram that can be used to understand data flow in the blueprint.

Returns
ModelBlueprintChart The queried model blueprint chart.

get_model_blueprint_documents()
Get documentation for tasks used in this model.

Returns
list of BlueprintTaskDocument All documents available for the model.

get_model_blueprint_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

Return type Dict[str, Tuple[List[str], List[str], str]]

get_multiclass_feature_impact()
For multiclass it’s possible to calculate feature impact separately for each target class. The method for
calculation is exactly the same, calculated in one-vs-all style for each target class.

Requires that Feature Impact has already been computed with request_feature_impact.

Returns
feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys

‘featureImpacts’ (list), ‘class’ (str). Each item in ‘featureImpacts’ is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
ClientError (404) If the multiclass feature impacts have not been computed.

get_multiclass_lift_chart(source, fallback_to_parent_insights=False)
Retrieve model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

2.3. API Reference 423

DataRobot Python API Documentation, Release 3.2.2

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_multilabel_lift_charts(source, fallback_to_parent_insights=False)
Retrieve model Lift charts for the specified source.

New in version v2.24.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_num_iterations_trained()
Retrieves the number of estimators trained by early-stopping tree-based models.

– versionadded:: v2.22

Returns
projectId: str id of project containing the model

modelId: str id of the model

data: array list of numEstimatorsItem objects, one for each modeling stage.

numEstimatorsItem will be of the form:
stage: str indicates the modeling stage (for multi-stage models); None of single-stage models

numIterations: int the number of estimators or iterations trained by the model

get_or_request_feature_effect(source, max_wait=600, row_count=None, data_slice_id=None)
Retrieve Feature Effects for the model, requesting a new job if it hasn’t been run previously.

See get_feature_effect_metadata for retrieving information of source.

Parameters
source [string] The source Feature Effects are retrieved for.

max_wait [int, optional] The maximum time to wait for a requested Feature Effect job to
complete before erroring.

424 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

row_count [int, optional] (New in version v2.21) The sample size to use for Feature Impact
computation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size
of the model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
feature_effects [FeatureEffects] The Feature Effects data.

get_or_request_feature_effects_multiclass(source, top_n_features=None, features=None,
row_count=None, class_=None, max_wait=600)

Retrieve Feature Effects for the multiclass model, requesting a job if it hasn’t been run previously.

Parameters
source [string] The source Feature Effects retrieve for.

class_ [str or None] The class name Feature Effects retrieve for.

row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by Feature Impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

max_wait [int, optional] The maximum time to wait for a requested Feature Effects job to
complete before erroring.

Returns
feature_effects [list of FeatureEffectsMulticlass] The list of multiclass feature effects data.

get_or_request_feature_impact(max_wait=600, **kwargs)
Retrieve feature impact for the model, requesting a job if it hasn’t been run previously

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature impact job to

complete before erroring

**kwargs Arbitrary keyword arguments passed to request_feature_impact.

Returns
feature_impacts [list or dict] The feature impact data. See get_feature_impact for the

exact schema.

get_parameters()
Retrieve model parameters.

Returns
ModelParameters Model parameters for this model.

get_pareto_front()
Retrieve the Pareto Front for a Eureqa model.

This method is only supported for Eureqa models.

Returns
ParetoFront Model ParetoFront data

2.3. API Reference 425

DataRobot Python API Documentation, Release 3.2.2

get_prime_eligibility()
Check if this model can be approximated with DataRobot Prime

Returns
prime_eligibility [dict] a dict indicating whether a model can be approximated with

DataRobot Prime (key can_make_prime) and why it may be ineligible (key message)

get_residuals_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data
for this model’s parent if the residuals chart is not available for this model and the model
has a defined parent model. If omitted or False, or there is no parent model, will not attempt
to return residuals data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_residuals_chart will raise a
ValueError.

Returns
ResidualsChart Model residuals chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_roc_curve(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the ROC curve for a binary model for the specified source.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
ROC curve data for this model’s parent if the ROC curve is not available for this model and
the model has a defined parent model. If omitted or False, or there is no parent model, will
not attempt to return data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_roc_curve will raise a ValueError.

Returns
RocCurve Model ROC curve data

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is multilabel

426 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

ValueError If data_slice_filter passed as None

get_rulesets()
List the rulesets approximating this model generated by DataRobot Prime

If this model hasn’t been approximated yet, will return an empty list. Note that these are rulesets approxi-
mating this model, not rulesets used to construct this model.

Returns
rulesets [list of Ruleset]

Return type List[Ruleset]

get_supported_capabilities()
Retrieves a summary of the capabilities supported by a model.

New in version v2.14.

Returns
supportsBlending: bool whether the model supports blending

supportsMonotonicConstraints: bool whether the model supports monotonic constraints

hasWordCloud: bool whether the model has word cloud data available

eligibleForPrime: bool whether the model is eligible for Prime

hasParameters: bool whether the model has parameters that can be retrieved

supportsCodeGeneration: bool (New in version v2.18) whether the model supports code
generation

supportsShap: bool
(New in version v2.18) True if the model supports Shapley package. i.e. Shapley based

feature Importance

supportsEarlyStopping: bool (New in version v2.22) True if this is an early stopping tree-
based model and number of trained iterations can be retrieved.

get_uri()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_word_cloud(exclude_stop_words=False)
Retrieve word cloud data for the model.

Parameters
exclude_stop_words [bool, optional] Set to True if you want stopwords filtered out of re-

sponse.

Returns
WordCloud Word cloud data for the model.

2.3. API Reference 427

DataRobot Python API Documentation, Release 3.2.2

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

open_model_browser()
Opens model at project leaderboard in web browser. Note: If text-mode browsers are used, the calling
process will block until the user exits the browser.

Return type None

request_cross_class_accuracy_scores()
Request data disparity insights to be computed for the model.

Returns
status_id [str] A statusId of computation request.

request_data_disparity_insights(feature, compared_class_names)
Request data disparity insights to be computed for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

compared_class_names [list(str)] List of two classes to compare

Returns
status_id [str] A statusId of computation request.

request_external_test(dataset_id, actual_value_column=None)
Request external test to compute scores and insights on an external test dataset

Parameters
dataset_id [string] The dataset to make predictions against (as uploaded from

Project.upload_dataset)

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

Returns
——-
job [Job] a Job representing external dataset insights computation

request_fairness_insights(fairness_metrics_set=None)
Request fairness insights to be computed for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

Returns
status_id [str] A statusId of computation request.

request_feature_effect(row_count=None, data_slice_id=None)
Submit request to compute Feature Effects for the model.

See get_feature_effect for more information on the result of the job.

428 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
row_count [int] (New in version v2.21) The sample size to use for Feature Impact compu-

tation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size of the
model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job] A Job representing the feature effect computation. To get the completed feature

effect data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature effect have already been requested.

request_feature_effects_multiclass(row_count=None, top_n_features=None, features=None)
Request Feature Effects computation for the multiclass model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by feature impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

Returns
job [Job] A Job representing Feature Effect computation. To get the completed Feature Effect

data, use job.get_result or job.get_result_when_complete.

request_feature_impact(row_count=None, with_metadata=False, data_slice_id=None)
Request feature impacts to be computed for the model.

See get_feature_impact for more information on the result of the job.

Parameters
row_count [int, optional] The sample size (specified in rows) to use for Feature Impact com-

putation. This is not supported for unsupervised, multiclass (which has a separate method),
and time series projects.

with_metadata [bool, optional] Flag indicating whether the result should include the meta-
data. If true, metadata is included.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job or status_id] Job representing the Feature Impact computation. To retrieve the com-

pleted Feature Impact data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature impacts have already been requested.

request_lift_chart(source, data_slice_id=None)
Request the model Lift Chart for the specified source.

Parameters

2.3. API Reference 429

DataRobot Python API Documentation, Release 3.2.2

source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for
possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_predictions(dataset_id=None, dataset=None, dataframe=None, file_path=None, file=None,
include_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, explanation_algorithm=None,
max_explanations=None, max_ngram_explanations=None)

Requests predictions against a previously uploaded dataset.

Parameters
dataset_id [string, optional] The ID of the dataset to make predictions against (as uploaded

from Project.upload_dataset)

dataset [Dataset, optional] The dataset to make predictions against (as uploaded from
Project.upload_dataset)

dataframe [pd.DataFrame, optional] (New in v3.0) The dataframe to make predictions
against

file_path [str, optional] (New in v3.0) Path to file to make predictions against

file [IOBase, optional] (New in v3.0) File to make predictions against

include_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Specifies whether prediction intervals should be calculated for this request. Defaults to
True if prediction_intervals_size is specified, otherwise defaults to False.

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Rep-
resents the percentile to use for the size of the prediction intervals. Defaults to 80 if in-
clude_prediction_intervals is True. Prediction intervals size must be between 1 and 100
(inclusive).

forecast_point [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. This is the default point relative to which predictions will be generated, based
on the forecast window of the project. See the time series prediction documentation for
more information.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

430 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm: (New in version v2.21) optional; If set to ‘shap’, the response
will include prediction explanations based on the SHAP explainer (SHapley Additive
exPlanations). Defaults to null (no prediction explanations).

max_explanations: (New in version v2.21) int optional; specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value, greatest
to least. If null, no limit. In the case of ‘shap’: if the number of features is greater than the
limit, the sum of remaining values will also be returned as shapRemainingTotal. Defaults
to null. Cannot be set if explanation_algorithm is omitted.

max_ngram_explanations: optional; int or str (New in version v2.29) Specifies the max-
imum number of text explanation values that should be returned. If set to all, text explana-
tions will be computed and all the ngram explanations will be returned. If set to a non zero
positive integer value, text explanations will be computed and this amount of descendingly
sorted ngram explanations will be returned. By default text explanation won’t be triggered
to be computed.

Returns
job [PredictJob] The job computing the predictions

Return type PredictJob

request_residuals_chart(source, data_slice_id=None)
Request the model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_roc_curve(source, data_slice_id=None)
Request the model Roc Curve for the specified source.

Parameters
source [str] Roc Curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

2.3. API Reference 431

DataRobot Python API Documentation, Release 3.2.2

Return type StatusCheckJob

request_training_predictions(data_subset, explanation_algorithm=None, max_explanations=None)
Start a job to build training predictions

Parameters
data_subset [str] data set definition to build predictions on. Choices are:

• dr.enums.DATA_SUBSET.ALL or string all for all data available. Not valid for
models in datetime partitioned projects

• dr.enums.DATA_SUBSET.VALIDATION_AND_HOLDOUT or string validationAndHoldout for
all data except training set. Not valid for models in datetime partitioned projects

• dr.enums.DATA_SUBSET.HOLDOUT or string holdout for holdout data set only

• dr.enums.DATA_SUBSET.ALL_BACKTESTS or string allBacktests for downloading
the predictions for all backtest validation folds. Requires the model to have success-
fully scored all backtests. Datetime partitioned projects only.

explanation_algorithm [dr.enums.EXPLANATIONS_ALGORITHM] (New in v2.21) Op-
tional. If set to dr.enums.EXPLANATIONS_ALGORITHM.SHAP, the response will in-
clude prediction explanations based on the SHAP explainer (SHapley Additive exPlana-
tions). Defaults to None (no prediction explanations).

max_explanations [int] (New in v2.21) Optional. Specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value,
greatest to least. In the case of dr.enums.EXPLANATIONS_ALGORITHM.SHAP: If not
set, explanations are returned for all features. If the number of features is greater
than the max_explanations, the sum of remaining values will also be returned as
shap_remaining_total. Max 100. Defaults to null for datasets narrower than
100 columns, defaults to 100 for datasets wider than 100 columns. Is ignored if
explanation_algorithm is not set.

Returns
Job an instance of created async job

request_transferable_export(prediction_intervals_size=None)
Request generation of an exportable model file for use in an on-premise DataRobot standalone prediction
environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

This function does not download the exported file. Use download_export for that.

Parameters
prediction_intervals_size [int, optional] (New in v2.19) For time series projects only. Rep-

resents the percentile to use for the size of the prediction intervals. Prediction intervals size
must be between 1 and 100 (inclusive).

Returns
Job

432 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')
job = model.request_transferable_export()
job.wait_for_completion()
model.download_export('my_exported_model.drmodel')

Client must be configured to use standalone prediction server for import:
datarobot.Client(token='my-token-at-standalone-server',

endpoint='standalone-server-url/api/v2')

imported_model = datarobot.ImportedModel.create('my_exported_model.drmodel')

Return type Job

retrain(sample_pct=None, featurelist_id=None, training_row_count=None, n_clusters=None)
Submit a job to the queue to train a blender model.

Parameters
sample_pct: float, optional The sample size in percents (1 to 100) to use in training. If this

parameter is used then training_row_count should not be given.

featurelist_id [str, optional] The featurelist id

training_row_count [int, optional] The number of rows used to train the model. If this
parameter is used, then sample_pct should not be given.

n_clusters: int, optional (new in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that do
not determine the number of clusters automatically.

Returns
job [ModelJob] The created job that is retraining the model

Return type ModelJob

set_prediction_threshold(threshold)
Set a custom prediction threshold for the model.

May not be used once prediction_threshold_read_only is True for this model.

Parameters
threshold [float] only used for binary classification projects. The threshold to when deciding

between the positive and negative classes when making predictions. Should be between 0.0
and 1.0 (inclusive).

star_model()
Mark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

start_advanced_tuning_session()
Start an Advanced Tuning session. Returns an object that helps set up arguments for an Advanced Tuning
model execution.

2.3. API Reference 433

DataRobot Python API Documentation, Release 3.2.2

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
AdvancedTuningSession Session for setting up and running Advanced Tuning on a model

unstar_model()
Unmark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

BlenderModel

class datarobot.models.BlenderModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
blueprint_id=None, metrics=None, model_ids=None,
blender_method=None, monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None, prediction_threshold_read_only=None,
model_number=None, parent_model_id=None,
supports_composable_ml=None)

Represents blender model that combines prediction results from other models.

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float] the percentage of the project dataset used in training the model

training_row_count [int or None] the number of rows of the project dataset used in training
the model. In a datetime partitioned project, if specified, defines the number of rows used
to train the model and evaluate backtest scores; if unspecified, either training_duration or
training_start_date and training_end_date was used to determine that instead.

training_duration [str or None] only present for models in datetime partitioned projects. If
specified, a duration string specifying the duration spanned by the data used to train the
model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

434 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

model_type [str] what model this is, e.g. ‘DataRobot Prime’

model_category [str] what kind of model this is - always ‘prime’ for DataRobot Prime models

is_frozen [bool] whether this model is a frozen model

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric

model_ids [list of str] List of model ids used in blender

blender_method [str] Method used to blend results from underlying models

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

model_number [integer] model number assigned to a model

parent_model_id [str or None] (New in version v2.20) the id of the model that tuning parameters
are derived from

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

classmethod get(project_id, model_id)
Retrieve a specific blender.

Parameters
project_id [str] The project’s id.

model_id [str] The model_id of the leaderboard item to retrieve.

Returns
model [BlenderModel] The queried instance.

advanced_tune(params, description=None)
Generate a new model with the specified advanced-tuning parameters

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Parameters
params [dict] Mapping of parameter ID to parameter value. The list of valid parameter

IDs for a model can be found by calling get_advanced_tuning_parameters(). This end-
point does not need to include values for all parameters. If a parameter is omitted, its
current_value will be used.

2.3. API Reference 435

DataRobot Python API Documentation, Release 3.2.2

description [str] Human-readable string describing the newly advanced-tuned model

Returns
ModelJob The created job to build the model

Return type ModelJob

cross_validate()
Run cross validation on the model.

Note: To perform Cross Validation on a new model with new parameters, use train instead.

Returns
ModelJob The created job to build the model

delete()
Delete a model from the project’s leaderboard.

Return type None

download_export(filepath)
Download an exportable model file for use in an on-premise DataRobot standalone prediction environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

Parameters
filepath [str] The path at which to save the exported model file.

Return type None

download_scoring_code(file_name, source_code=False)
Download the Scoring Code JAR.

Parameters
file_name [str] File path where scoring code will be saved.

source_code [bool, optional] Set to True to download source code archive. It will not be
executable.

download_training_artifact(file_name)
Retrieve trained artifact(s) from a model containing one or more custom tasks.

Artifact(s) will be downloaded to the specified local filepath.

Parameters
file_name [str] File path where trained model artifact(s) will be saved.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

436 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_advanced_tuning_parameters()
Get the advanced-tuning parameters available for this model.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
dict A dictionary describing the advanced-tuning parameters for the current model. There

are two top-level keys, tuning_description and tuning_parameters.

tuning_description an optional value. If not None, then it indicates the user-specified de-
scription of this set of tuning parameter.

tuning_parameters is a list of a dicts, each has the following keys

• parameter_name : (str) name of the parameter (unique per task, see below)

• parameter_id : (str) opaque ID string uniquely identifying parameter

• default_value : (*) the actual value used to train the model; either the single value of
the parameter specified before training, or the best value from the list of grid-searched
values (based on current_value)

• current_value : (*) the single value or list of values of the parameter that were grid
searched. Depending on the grid search specification, could be a single fixed value (no
grid search), a list of discrete values, or a range.

• task_name : (str) name of the task that this parameter belongs to

• constraints: (dict) see the notes below

• vertex_id: (str) ID of vertex that this parameter belongs to

Notes

The type of default_value and current_value is defined by the constraints structure. It will be a string or
numeric Python type.

constraints is a dict with at least one, possibly more, of the following keys. The presence of a key indicates
that the parameter may take on the specified type. (If a key is absent, this means that the parameter may
not take on the specified type.) If a key on constraints is present, its value will be a dict containing all of
the fields described below for that key.

"constraints": {
"select": {

"values": [<list(basestring or number) : possible values>]
},
"ascii": {},
"unicode": {},
"int": {

"min": <int : minimum valid value>,
"max": <int : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"float": {

"min": <float : minimum valid value>,
"max": <float : maximum valid value>,

(continues on next page)

2.3. API Reference 437

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

"supports_grid_search": <bool : True if Grid Search may be
requested for this param>

},
"intList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <int : minimum valid value>,
"max_val": <int : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"floatList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <float : minimum valid value>,
"max_val": <float : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
}

}

The keys have meaning as follows:

• select: Rather than specifying a specific data type, if present, it indicates that the parameter is permitted
to take on any of the specified values. Listed values may be of any string or real (non-complex) numeric
type.

• ascii: The parameter may be a unicode object that encodes simple ASCII characters. (A-Z, a-z, 0-9,
whitespace, and certain common symbols.) In addition to listed constraints, ASCII keys currently may
not contain either newlines or semicolons.

• unicode: The parameter may be any Python unicode object.

• int: The value may be an object of type int within the specified range (inclusive). Please note that the
value will be passed around using the JSON format, and some JSON parsers have undefined behavior
with integers outside of the range [-(2**53)+1, (2**53)-1].

• float: The value may be an object of type float within the specified range (inclusive).

• intList, floatList: The value may be a list of int or float objects, respectively, following constraints as
specified respectively by the int and float types (above).

Many parameters only specify one key under constraints. If a parameter specifies multiple keys, the pa-
rameter may take on any value permitted by any key.

Return type AdvancedTuningParamsType
get_all_confusion_charts(fallback_to_parent_insights=False)

Retrieve a list of all confusion matrices available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

confusion chart data for this model’s parent for any source that is not available for this model
and if this has a defined parent model. If omitted or False, or this model has no parent, this
will not attempt to retrieve any data from this model’s parent.

Returns

438 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

list of ConfusionChart Data for all available confusion charts for model.

get_all_feature_impacts(data_slice_filter=None)
Retrieve a list of all feature impact results available for the model.

Parameters
data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on the

dataslice.id. By default, this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then no data_slice filtering will be applied
when requesting the roc_curve.

Returns
list of dicts Data for all available model feature impacts. Or an empty list if not data found.

Examples

model = datarobot.Model(id='model-id', project_id='project-id')

Get feature impact insights for sliced data
data_slice = datarobot.DataSlice(id='data-slice-id')
sliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get feature impact insights for unsliced data
data_slice = datarobot.DataSlice()
unsliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get all feature impact insights
all_fi = model.get_all_feature_impacts()

get_all_lift_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool, optional] (New in version v2.14) Optional, if True, this

will return lift chart data for this model’s parent for any source that is not available for this
model and if this model has a defined parent model. If omitted or False, or this model has
no parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned lift chart by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of LiftChart Data for all available model lift charts. Or an empty list if no data found.

2.3. API Reference 439

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get lift chart insights for sliced data
sliced_lift_charts = model.get_all_lift_charts(data_slice_id='data-slice-id')

Get lift chart insights for unsliced data
unsliced_lift_charts = model.get_all_lift_charts(unsliced_only=True)

Get all lift chart insights
all_lift_charts = model.get_all_lift_charts()

get_all_multiclass_lift_charts(fallback_to_parent_insights=False)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

lift chart data for this model’s parent for any source that is not available for this model and
if this model has a defined parent model. If omitted or False, or this model has no parent,
this will not attempt to retrieve any data from this model’s parent.

Returns
list of LiftChart Data for all available model lift charts.

get_all_residuals_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all residuals charts available for the model.

Parameters
fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data

for this model’s parent for any source that is not available for this model and if this model
has a defined parent model. If omitted or False, or this model has no parent, this will not
attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned residuals charts by
data_slice_filter.id. If None (the default) applies no filter based on data_slice_id.

Returns
list of ResidualsChart Data for all available model residuals charts.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get residuals chart insights for sliced data
sliced_residuals_charts = model.get_all_residuals_charts(data_slice_id='data-
→˓slice-id')

Get residuals chart insights for unsliced data
unsliced_residuals_charts = model.get_all_residuals_charts(unsliced_only=True)

Get all residuals chart insights
all_residuals_charts = model.get_all_residuals_charts()

440 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_all_roc_curves(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all ROC curves available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

ROC curve data for this model’s parent for any source that is not available for this model
and if this model has a defined parent model. If omitted or False, or this model has no
parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] filters the returned roc_curve by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of RocCurve Data for all available model ROC curves. Or an empty list if no RocCurves

are found.

Examples

model = datarobot.Model.get('project-id', 'model-id')
ds_filter=DataSlice(id='data-slice-id')

Get roc curve insights for sliced data
sliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get roc curve insights for unsliced data
data_slice_filter=DataSlice(id=None)
unsliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get all roc curve insights
all_roc_curves = model.get_all_roc_curves()

get_confusion_chart(source, fallback_to_parent_insights=False)
Retrieve them model’s confusion matrix for the specified source.

Parameters
source [str] Confusion chart source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
confusion chart data for this model’s parent if the confusion chart is not available for this
model and the defined parent model. If omitted or False, or there is no parent model, will
not attempt to return insight data from this model’s parent.

Returns
ConfusionChart Model ConfusionChart data

Raises
ClientError If the insight is not available for this model

get_cross_class_accuracy_scores()
Retrieves a list of Cross Class Accuracy scores for the model.

Returns
json

2.3. API Reference 441

DataRobot Python API Documentation, Release 3.2.2

get_cross_validation_scores(partition=None, metric=None)
Return a dictionary, keyed by metric, showing cross validation scores per partition.

Cross Validation should already have been performed using cross_validate or train.

Note: Models that computed cross validation before this feature was added will need to be deleted and
retrained before this method can be used.

Parameters
partition [float] optional, the id of the partition (1,2,3.0,4.0,etc. . .) to filter results by can be

a whole number positive integer or float value. 0 corresponds to the validation partition.

metric: unicode optional name of the metric to filter to resulting cross validation scores by

Returns
cross_validation_scores: dict A dictionary keyed by metric showing cross validation scores

per partition.

get_data_disparity_insights(feature, class_name1, class_name2)
Retrieve a list of Cross Class Data Disparity insights for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

class_name1 [str] One of the compared classes

class_name2 [str] Another compared class

Returns
json

get_fairness_insights(fairness_metrics_set=None, offset=0, limit=100)
Retrieve a list of Per Class Bias insights for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
json

get_feature_effect(source, data_slice_id=None)
Retrieve Feature Effects for the model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

442 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
source [string] The source Feature Effects are retrieved for.

data_slice_id [string, optional] ID for the data slice used in the request. If None, retrieve
unsliced insight data.

Returns
feature_effects [FeatureEffects] The feature effects data.

Raises
ClientError (404) If the feature effects have not been computed or source is not valid value.

get_feature_effect_metadata()
Retrieve Feature Effects metadata. Response contains status and available model sources.

• Feature Effect for the training partition is always available, with the exception of older projects that
only supported Feature Effect for validation.

• When a model is trained into validation or holdout without stacked predictions (i.e., no out-of-sample
predictions in those partitions), Feature Effects is not available for validation or holdout.

• Feature Effects for holdout is not available when holdout was not unlocked for the project.

Use source to retrieve Feature Effects, selecting one of the provided sources.

Returns
feature_effect_metadata: FeatureEffectMetadata

get_feature_effects_multiclass(source='training', class_=None)
Retrieve Feature Effects for the multiclass model.

Feature Effects provide partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [str] The source Feature Effects are retrieved for.

class_ [str or None] The class name Feature Effects are retrieved for.

Returns
list The list of multiclass feature effects.

Raises
ClientError (404) If Feature Effects have not been computed or source is not valid value.

get_feature_impact(with_metadata=False, data_slice_filter=<datarobot.models.model.Sentinel object>)
Retrieve the computed Feature Impact results, a measure of the relevance of each feature in the model.

Feature Impact is computed for each column by creating new data with that column randomly permuted
(but the others left unchanged), and seeing how the error metric score for the predictions is affected. The

2.3. API Reference 443

DataRobot Python API Documentation, Release 3.2.2

‘impactUnnormalized’ is how much worse the error metric score is when making predictions on this mod-
ified data. The ‘impactNormalized’ is normalized so that the largest value is 1. In both cases, larger values
indicate more important features.

If a feature is a redundant feature, i.e. once other features are considered it doesn’t contribute much in addi-
tion, the ‘redundantWith’ value is the name of feature that has the highest correlation with this feature. Note
that redundancy detection is only available for jobs run after the addition of this feature. When retrieving
data that predates this functionality, a NoRedundancyImpactAvailable warning will be used.

Elsewhere this technique is sometimes called ‘Permutation Importance’.

Requires that Feature Impact has already been computed with request_feature_impact.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default, this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_feature_impact will raise a
ValueError.

Returns
list or dict The feature impact data response depends on the with_metadata parameter. The

response is either a dict with metadata and a list with actual data or just a list with that data.

Each List item is a dict with the keys featureName, impactNormalized, and
impactUnnormalized, redundantWith and count.

For dict response available keys are:

• featureImpacts - Feature Impact data as a dictionary. Each item is a dict with
keys: featureName, impactNormalized, and impactUnnormalized, and
redundantWith.

• shapBased - A boolean that indicates whether Feature Impact was calculated using
Shapley values.

• ranRedundancyDetection - A boolean that indicates whether redundant feature
identification was run while calculating this Feature Impact.

• rowCount - An integer or None that indicates the number of rows that was used to
calculate Feature Impact. For the Feature Impact calculated with the default logic,
without specifying the rowCount, we return None here.

• count - An integer with the number of features under the featureImpacts.

Raises
ClientError (404) If the feature impacts have not been computed.

ValueError If data_slice_filter passed as None

get_features_used()
Query the server to determine which features were used.

Note that the data returned by this method is possibly different than the names of the features in the featurelist
used by this model. This method will return the raw features that must be supplied in order for predictions
to be generated on a new set of data. The featurelist, in contrast, would also include the names of derived
features.

Returns
features [list of str] The names of the features used in the model.

444 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type List[str]

get_frozen_child_models()
Retrieve the IDs for all models that are frozen from this model.

Returns
A list of Models

get_labelwise_roc_curves(source, fallback_to_parent_insights=False)
Retrieve a list of LabelwiseRocCurve instances for a multilabel model the given source and all labels.

New in version v2.24.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return ROC curve data for
this model’s parent if the ROC curve is not available for this model and the model has a
defined parent model. If omitted or False, or there is no parent model, will not attempt to
return data from this model’s parent.

Returns
list of [class:LabelwiseRocCurve <datarobot.models.roc_curve.LabelwiseRocCurve>] La-

belwise ROC Curve instances for source and all labels

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is binary

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_lift_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
lift chart data for this model’s parent if the lift chart is not available for this model and the
model has a defined parent model. If omitted or False, or there is no parent model, will not
attempt to return insight data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_lift_chart will raise a ValueError.

Returns

2.3. API Reference 445

DataRobot Python API Documentation, Release 3.2.2

LiftChart Model lift chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_missing_report_info()
Retrieve a report on missing training data that can be used to understand missing values treatment in the
model. The report consists of missing values resolutions for features numeric or categorical features that
were part of building the model.

Returns
An iterable of MissingReportPerFeature The queried model missing report, sorted by

missing count (DESCENDING order).

get_model_blueprint_chart()
Retrieve a diagram that can be used to understand data flow in the blueprint.

Returns
ModelBlueprintChart The queried model blueprint chart.

get_model_blueprint_documents()
Get documentation for tasks used in this model.

Returns
list of BlueprintTaskDocument All documents available for the model.

get_model_blueprint_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

Return type Dict[str, Tuple[List[str], List[str], str]]

get_multiclass_feature_impact()
For multiclass it’s possible to calculate feature impact separately for each target class. The method for
calculation is exactly the same, calculated in one-vs-all style for each target class.

Requires that Feature Impact has already been computed with request_feature_impact.

Returns
feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys

‘featureImpacts’ (list), ‘class’ (str). Each item in ‘featureImpacts’ is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
ClientError (404) If the multiclass feature impacts have not been computed.

get_multiclass_lift_chart(source, fallback_to_parent_insights=False)
Retrieve model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

446 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_multilabel_lift_charts(source, fallback_to_parent_insights=False)
Retrieve model Lift charts for the specified source.

New in version v2.24.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_num_iterations_trained()
Retrieves the number of estimators trained by early-stopping tree-based models.

– versionadded:: v2.22

Returns
projectId: str id of project containing the model

modelId: str id of the model

data: array list of numEstimatorsItem objects, one for each modeling stage.

numEstimatorsItem will be of the form:
stage: str indicates the modeling stage (for multi-stage models); None of single-stage models

numIterations: int the number of estimators or iterations trained by the model

get_or_request_feature_effect(source, max_wait=600, row_count=None, data_slice_id=None)
Retrieve Feature Effects for the model, requesting a new job if it hasn’t been run previously.

See get_feature_effect_metadata for retrieving information of source.

Parameters
source [string] The source Feature Effects are retrieved for.

max_wait [int, optional] The maximum time to wait for a requested Feature Effect job to
complete before erroring.

2.3. API Reference 447

DataRobot Python API Documentation, Release 3.2.2

row_count [int, optional] (New in version v2.21) The sample size to use for Feature Impact
computation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size
of the model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
feature_effects [FeatureEffects] The Feature Effects data.

get_or_request_feature_effects_multiclass(source, top_n_features=None, features=None,
row_count=None, class_=None, max_wait=600)

Retrieve Feature Effects for the multiclass model, requesting a job if it hasn’t been run previously.

Parameters
source [string] The source Feature Effects retrieve for.

class_ [str or None] The class name Feature Effects retrieve for.

row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by Feature Impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

max_wait [int, optional] The maximum time to wait for a requested Feature Effects job to
complete before erroring.

Returns
feature_effects [list of FeatureEffectsMulticlass] The list of multiclass feature effects data.

get_or_request_feature_impact(max_wait=600, **kwargs)
Retrieve feature impact for the model, requesting a job if it hasn’t been run previously

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature impact job to

complete before erroring

**kwargs Arbitrary keyword arguments passed to request_feature_impact.

Returns
feature_impacts [list or dict] The feature impact data. See get_feature_impact for the

exact schema.

get_parameters()
Retrieve model parameters.

Returns
ModelParameters Model parameters for this model.

get_pareto_front()
Retrieve the Pareto Front for a Eureqa model.

This method is only supported for Eureqa models.

Returns
ParetoFront Model ParetoFront data

448 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_prime_eligibility()
Check if this model can be approximated with DataRobot Prime

Returns
prime_eligibility [dict] a dict indicating whether a model can be approximated with

DataRobot Prime (key can_make_prime) and why it may be ineligible (key message)

get_residuals_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data
for this model’s parent if the residuals chart is not available for this model and the model
has a defined parent model. If omitted or False, or there is no parent model, will not attempt
to return residuals data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_residuals_chart will raise a
ValueError.

Returns
ResidualsChart Model residuals chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_roc_curve(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the ROC curve for a binary model for the specified source.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
ROC curve data for this model’s parent if the ROC curve is not available for this model and
the model has a defined parent model. If omitted or False, or there is no parent model, will
not attempt to return data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_roc_curve will raise a ValueError.

Returns
RocCurve Model ROC curve data

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is multilabel

2.3. API Reference 449

DataRobot Python API Documentation, Release 3.2.2

ValueError If data_slice_filter passed as None

get_rulesets()
List the rulesets approximating this model generated by DataRobot Prime

If this model hasn’t been approximated yet, will return an empty list. Note that these are rulesets approxi-
mating this model, not rulesets used to construct this model.

Returns
rulesets [list of Ruleset]

Return type List[Ruleset]

get_supported_capabilities()
Retrieves a summary of the capabilities supported by a model.

New in version v2.14.

Returns
supportsBlending: bool whether the model supports blending

supportsMonotonicConstraints: bool whether the model supports monotonic constraints

hasWordCloud: bool whether the model has word cloud data available

eligibleForPrime: bool whether the model is eligible for Prime

hasParameters: bool whether the model has parameters that can be retrieved

supportsCodeGeneration: bool (New in version v2.18) whether the model supports code
generation

supportsShap: bool
(New in version v2.18) True if the model supports Shapley package. i.e. Shapley based

feature Importance

supportsEarlyStopping: bool (New in version v2.22) True if this is an early stopping tree-
based model and number of trained iterations can be retrieved.

get_uri()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_word_cloud(exclude_stop_words=False)
Retrieve word cloud data for the model.

Parameters
exclude_stop_words [bool, optional] Set to True if you want stopwords filtered out of re-

sponse.

Returns
WordCloud Word cloud data for the model.

450 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

open_model_browser()
Opens model at project leaderboard in web browser. Note: If text-mode browsers are used, the calling
process will block until the user exits the browser.

Return type None

request_approximation()
Request an approximation of this model using DataRobot Prime

This will create several rulesets that could be used to approximate this model. After comparing their scores
and rule counts, the code used in the approximation can be downloaded and run locally.

Returns
job [Job] the job generating the rulesets

request_cross_class_accuracy_scores()
Request data disparity insights to be computed for the model.

Returns
status_id [str] A statusId of computation request.

request_data_disparity_insights(feature, compared_class_names)
Request data disparity insights to be computed for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

compared_class_names [list(str)] List of two classes to compare

Returns
status_id [str] A statusId of computation request.

request_external_test(dataset_id, actual_value_column=None)
Request external test to compute scores and insights on an external test dataset

Parameters
dataset_id [string] The dataset to make predictions against (as uploaded from

Project.upload_dataset)

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

Returns
——-
job [Job] a Job representing external dataset insights computation

request_fairness_insights(fairness_metrics_set=None)
Request fairness insights to be computed for the model.

Parameters

2.3. API Reference 451

DataRobot Python API Documentation, Release 3.2.2

fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.
The fairness metric used to calculate the fairness scores.

Returns
status_id [str] A statusId of computation request.

request_feature_effect(row_count=None, data_slice_id=None)
Submit request to compute Feature Effects for the model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] (New in version v2.21) The sample size to use for Feature Impact compu-

tation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size of the
model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job] A Job representing the feature effect computation. To get the completed feature

effect data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature effect have already been requested.

request_feature_effects_multiclass(row_count=None, top_n_features=None, features=None)
Request Feature Effects computation for the multiclass model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by feature impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

Returns
job [Job] A Job representing Feature Effect computation. To get the completed Feature Effect

data, use job.get_result or job.get_result_when_complete.

request_feature_impact(row_count=None, with_metadata=False, data_slice_id=None)
Request feature impacts to be computed for the model.

See get_feature_impact for more information on the result of the job.

Parameters
row_count [int, optional] The sample size (specified in rows) to use for Feature Impact com-

putation. This is not supported for unsupervised, multiclass (which has a separate method),
and time series projects.

with_metadata [bool, optional] Flag indicating whether the result should include the meta-
data. If true, metadata is included.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns

452 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

job [Job or status_id] Job representing the Feature Impact computation. To retrieve the com-
pleted Feature Impact data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature impacts have already been requested.

request_frozen_datetime_model(training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None)

Train a new frozen model with parameters from this model.

Requires that this model belongs to a datetime partitioned project. If it does not, an error will occur when
submitting the job.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

In addition of training_row_count and training_duration, frozen datetime models may be trained on an
exact date range. Only one of training_row_count, training_duration, or training_start_date and train-
ing_end_date should be specified.

Models specified using training_start_date and training_end_date are the only ones that can be trained into
the holdout data (once the holdout is unlocked).

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
training_row_count [int, optional] the number of rows of data that should be used to train

the model. If specified, training_duration may not be specified.

training_duration [str, optional] a duration string specifying what time range the data used
to train the model should span. If specified, training_row_count may not be specified.

training_start_date [datetime.datetime, optional] the start date of the data to train to model
on. Only rows occurring at or after this datetime will be used. If training_start_date is
specified, training_end_date must also be specified.

training_end_date [datetime.datetime, optional] the end date of the data to train the model
on. Only rows occurring strictly before this datetime will be used. If training_end_date is
specified, training_start_date must also be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

Returns
model_job [ModelJob] the modeling job training a frozen model

2.3. API Reference 453

DataRobot Python API Documentation, Release 3.2.2

Return type ModelJob

request_frozen_model(sample_pct=None, training_row_count=None)
Train a new frozen model with parameters from this model

Note: This method only works if project the model belongs to is not datetime partitioned. If it is, use
request_frozen_datetime_model instead.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

Parameters
sample_pct [float] optional, the percentage of the dataset to use with the model. If not pro-

vided, will use the value from this model.

training_row_count [int] (New in version v2.9) optional, the integer number of rows of the
dataset to use with the model. Only one of sample_pct and training_row_count should be
specified.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

request_lift_chart(source, data_slice_id=None)
Request the model Lift Chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_predictions(dataset_id=None, dataset=None, dataframe=None, file_path=None, file=None,
include_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, explanation_algorithm=None,
max_explanations=None, max_ngram_explanations=None)

Requests predictions against a previously uploaded dataset.

Parameters
dataset_id [string, optional] The ID of the dataset to make predictions against (as uploaded

from Project.upload_dataset)

dataset [Dataset, optional] The dataset to make predictions against (as uploaded from
Project.upload_dataset)

454 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

dataframe [pd.DataFrame, optional] (New in v3.0) The dataframe to make predictions
against

file_path [str, optional] (New in v3.0) Path to file to make predictions against

file [IOBase, optional] (New in v3.0) File to make predictions against

include_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Specifies whether prediction intervals should be calculated for this request. Defaults to
True if prediction_intervals_size is specified, otherwise defaults to False.

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Rep-
resents the percentile to use for the size of the prediction intervals. Defaults to 80 if in-
clude_prediction_intervals is True. Prediction intervals size must be between 1 and 100
(inclusive).

forecast_point [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. This is the default point relative to which predictions will be generated, based
on the forecast window of the project. See the time series prediction documentation for
more information.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm: (New in version v2.21) optional; If set to ‘shap’, the response
will include prediction explanations based on the SHAP explainer (SHapley Additive
exPlanations). Defaults to null (no prediction explanations).

max_explanations: (New in version v2.21) int optional; specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value, greatest
to least. If null, no limit. In the case of ‘shap’: if the number of features is greater than the
limit, the sum of remaining values will also be returned as shapRemainingTotal. Defaults
to null. Cannot be set if explanation_algorithm is omitted.

max_ngram_explanations: optional; int or str (New in version v2.29) Specifies the max-
imum number of text explanation values that should be returned. If set to all, text explana-
tions will be computed and all the ngram explanations will be returned. If set to a non zero
positive integer value, text explanations will be computed and this amount of descendingly
sorted ngram explanations will be returned. By default text explanation won’t be triggered
to be computed.

Returns
job [PredictJob] The job computing the predictions

Return type PredictJob

2.3. API Reference 455

DataRobot Python API Documentation, Release 3.2.2

request_residuals_chart(source, data_slice_id=None)
Request the model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_roc_curve(source, data_slice_id=None)
Request the model Roc Curve for the specified source.

Parameters
source [str] Roc Curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_training_predictions(data_subset, explanation_algorithm=None, max_explanations=None)
Start a job to build training predictions

Parameters
data_subset [str] data set definition to build predictions on. Choices are:

• dr.enums.DATA_SUBSET.ALL or string all for all data available. Not valid for
models in datetime partitioned projects

• dr.enums.DATA_SUBSET.VALIDATION_AND_HOLDOUT or string validationAndHoldout for
all data except training set. Not valid for models in datetime partitioned projects

• dr.enums.DATA_SUBSET.HOLDOUT or string holdout for holdout data set only

• dr.enums.DATA_SUBSET.ALL_BACKTESTS or string allBacktests for downloading
the predictions for all backtest validation folds. Requires the model to have success-
fully scored all backtests. Datetime partitioned projects only.

explanation_algorithm [dr.enums.EXPLANATIONS_ALGORITHM] (New in v2.21) Op-
tional. If set to dr.enums.EXPLANATIONS_ALGORITHM.SHAP, the response will in-
clude prediction explanations based on the SHAP explainer (SHapley Additive exPlana-
tions). Defaults to None (no prediction explanations).

max_explanations [int] (New in v2.21) Optional. Specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value,
greatest to least. In the case of dr.enums.EXPLANATIONS_ALGORITHM.SHAP: If not

456 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

set, explanations are returned for all features. If the number of features is greater
than the max_explanations, the sum of remaining values will also be returned as
shap_remaining_total. Max 100. Defaults to null for datasets narrower than
100 columns, defaults to 100 for datasets wider than 100 columns. Is ignored if
explanation_algorithm is not set.

Returns
Job an instance of created async job

request_transferable_export(prediction_intervals_size=None)
Request generation of an exportable model file for use in an on-premise DataRobot standalone prediction
environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

This function does not download the exported file. Use download_export for that.

Parameters
prediction_intervals_size [int, optional] (New in v2.19) For time series projects only. Rep-

resents the percentile to use for the size of the prediction intervals. Prediction intervals size
must be between 1 and 100 (inclusive).

Returns
Job

Examples

model = datarobot.Model.get('project-id', 'model-id')
job = model.request_transferable_export()
job.wait_for_completion()
model.download_export('my_exported_model.drmodel')

Client must be configured to use standalone prediction server for import:
datarobot.Client(token='my-token-at-standalone-server',

endpoint='standalone-server-url/api/v2')

imported_model = datarobot.ImportedModel.create('my_exported_model.drmodel')

Return type Job

retrain(sample_pct=None, featurelist_id=None, training_row_count=None, n_clusters=None)
Submit a job to the queue to train a blender model.

Parameters
sample_pct: float, optional The sample size in percents (1 to 100) to use in training. If this

parameter is used then training_row_count should not be given.

featurelist_id [str, optional] The featurelist id

training_row_count [int, optional] The number of rows used to train the model. If this
parameter is used, then sample_pct should not be given.

2.3. API Reference 457

DataRobot Python API Documentation, Release 3.2.2

n_clusters: int, optional (new in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that do
not determine the number of clusters automatically.

Returns
job [ModelJob] The created job that is retraining the model

Return type ModelJob

set_prediction_threshold(threshold)
Set a custom prediction threshold for the model.

May not be used once prediction_threshold_read_only is True for this model.

Parameters
threshold [float] only used for binary classification projects. The threshold to when deciding

between the positive and negative classes when making predictions. Should be between 0.0
and 1.0 (inclusive).

star_model()
Mark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

start_advanced_tuning_session()
Start an Advanced Tuning session. Returns an object that helps set up arguments for an Advanced Tuning
model execution.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
AdvancedTuningSession Session for setting up and running Advanced Tuning on a model

train(sample_pct=None, featurelist_id=None, scoring_type=None, training_row_count=None,
monotonic_increasing_featurelist_id=<object object>, monotonic_decreasing_featurelist_id=<object
object>)

Train the blueprint used in model on a particular featurelist or amount of data.

This method creates a new training job for worker and appends it to the end of the queue for this project.
After the job has finished you can get the newly trained model by retrieving it from the project leaderboard,
or by retrieving the result of the job.

Either sample_pct or training_row_count can be used to specify the amount of data to use, but not both. If
neither are specified, a default of the maximum amount of data that can safely be used to train any blueprint
without going into the validation data will be selected.

In smart-sampled projects, sample_pct and training_row_count are assumed to be in terms of rows of the
minority class.

Note: For datetime partitioned projects, see train_datetime instead.

Parameters
sample_pct [float, optional] The amount of data to use for training, as a percentage of the

project dataset from 0 to 100.

458 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

featurelist_id [str, optional] The identifier of the featurelist to use. If not defined, the fea-
turelist of this model is used.

scoring_type [str, optional] Either validation or crossValidation (also
dr.SCORING_TYPE.validation or dr.SCORING_TYPE.cross_validation).
validation is available for every partitioning type, and indicates that the default
model validation should be used for the project. If the project uses a form of cross-
validation partitioning, crossValidation can also be used to indicate that all of the
available training/validation combinations should be used to evaluate the model.

training_row_count [int, optional] The number of rows to use to train the requested model.

monotonic_increasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. Passing None disables increasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the
target. Passing None disables decreasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

Returns
model_job_id [str] id of created job, can be used as parameter to ModelJob.get method or
wait_for_async_model_creation function

Examples

project = Project.get('project-id')
model = Model.get('project-id', 'model-id')
model_job_id = model.train(training_row_count=project.max_train_rows)

Return type str

train_datetime(featurelist_id=None, training_row_count=None, training_duration=None,
time_window_sample_pct=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Trains this model on a different featurelist or sample size.

Requires that this model is part of a datetime partitioned project; otherwise, an error will occur.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
featurelist_id [str, optional] the featurelist to use to train the model. If not specified, the

featurelist of this model is used.

training_row_count [int, optional] the number of rows of data that should be used to train
the model. If specified, neither training_duration nor use_project_settings may
be specified.

training_duration [str, optional] a duration string specifying what time range the data
used to train the model should span. If specified, neither training_row_count nor
use_project_settings may be specified.

2.3. API Reference 459

DataRobot Python API Documentation, Release 3.2.2

use_project_settings [bool, optional] (New in version v2.20) defaults to False. If True,
indicates that the custom backtest partitioning settings specified by the user will be used to
train the model and evaluate backtest scores. If specified, neither training_row_count
nor training_duration may be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

monotonic_increasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically increasing relation-
ship to the target. Passing None disables increasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically decreasing relationship
to the target. Passing None disables decreasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters: int, optional (New in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
job [ModelJob] the created job to build the model

Return type ModelJob

unstar_model()
Unmark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

460 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

DatetimeModel

class datarobot.models.DatetimeModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None,
model_type=None, model_category=None, is_frozen=None,
blueprint_id=None, metrics=None, training_info=None,
holdout_score=None, holdout_status=None,
data_selection_method=None, backtests=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None, prediction_threshold_read_only=None,
effective_feature_derivation_window_start=None,
effective_feature_derivation_window_end=None,
forecast_window_start=None, forecast_window_end=None,
windows_basis_unit=None, model_number=None,
parent_model_id=None, use_project_settings=None,
supports_composable_ml=None, n_clusters=None,
is_n_clusters_dynamically_determined=None, **kwargs)

Represents a model from a datetime partitioned project

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Note that only one of training_row_count, training_duration, and training_start_date and training_end_date will
be specified, depending on the data_selection_method of the model. Whichever method was selected determines
the amount of data used to train on when making predictions and scoring the backtests and the holdout.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float] the percentage of the project dataset used in training the model

training_row_count [int or None] If specified, an int specifying the number of rows used to
train the model and evaluate backtest scores.

training_duration [str or None] If specified, a duration string specifying the duration spanned
by the data used to train the model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

time_window_sample_pct [int or None] An integer between 1 and 99 indicating the percentage
of sampling within the training window. The points kept are determined by a random uniform
sample. If not specified, no sampling was done.

2.3. API Reference 461

DataRobot Python API Documentation, Release 3.2.2

sampling_method [str or None] (New in v2.23) indicates the way training data has been selected
(either how rows have been selected within backtest or how time_window_sample_pct has
been applied).

model_type [str] what model this is, e.g. ‘Nystroem Kernel SVM Regressor’

model_category [str] what kind of model this is - ‘prime’ for DataRobot Prime models, ‘blend’
for blender models, and ‘model’ for other models

is_frozen [bool] whether this model is a frozen model

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric. The keys in
metrics are the different metrics used to evaluate the model, and the values are the results. The
dictionaries inside of metrics will be as described here: ‘validation’, the score for a single
backtest; ‘crossValidation’, always None; ‘backtesting’, the average score for all backtests
if all are available and computed, or None otherwise; ‘backtestingScores’, a list of scores
for all backtests where the score is None if that backtest does not have a score available; and
‘holdout’, the score for the holdout or None if the holdout is locked or the score is unavailable.

backtests [list of dict] describes what data was used to fit each backtest, the score for the project
metric, and why the backtest score is unavailable if it is not provided.

data_selection_method [str] which of training_row_count, training_duration, or train-
ing_start_data and training_end_date were used to determine the data used to fit the model.
One of ‘rowCount’, ‘duration’, or ‘selectedDateRange’.

training_info [dict] describes which data was used to train on when scoring the hold-
out and making predictions. training_info` will have the following keys: hold-
out_training_start_date, holdout_training_duration, holdout_training_row_count, hold-
out_training_end_date, prediction_training_start_date, prediction_training_duration, pre-
diction_training_row_count, prediction_training_end_date. Start and end dates will be date-
times, durations will be duration strings, and rows will be integers.

holdout_score [float or None] the score against the holdout, if available and the holdout is un-
locked, according to the project metric.

holdout_status [string or None] the status of the holdout score, e.g. “COMPLETED”, “HOLD-
OUT_BOUNDARIES_EXCEEDED”. Unavailable if the holdout fold was disabled in the
partitioning configuration.

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

462 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

effective_feature_derivation_window_start [int or None] (New in v2.16) For time series
projects only. How many units of the windows_basis_unit into the past relative to the fore-
cast point the user needs to provide history for at prediction time. This can differ from the
feature_derivation_window_start set on the project due to the differencing method
and period selected, or if the model is a time series native model such as ARIMA. Will be a
negative integer in time series projects and None otherwise.

effective_feature_derivation_window_end [int or None] (New in v2.16) For time series
projects only. How many units of the windows_basis_unit into the past relative to the
forecast point the feature derivation window should end. Will be a non-positive integer in
time series projects and None otherwise.

forecast_window_start [int or None] (New in v2.16) For time series projects only. How many
units of the windows_basis_unit into the future relative to the forecast point the forecast
window should start. Note that this field will be the same as what is shown in the project
settings. Will be a non-negative integer in time series projects and None otherwise.

forecast_window_end [int or None] (New in v2.16) For time series projects only. How many
units of the windows_basis_unit into the future relative to the forecast point the forecast
window should end. Note that this field will be the same as what is shown in the project
settings. Will be a non-negative integer in time series projects and None otherwise.

windows_basis_unit [str or None] (New in v2.16) For time series projects only. Indicates which
unit is the basis for the feature derivation window and the forecast window. Note that this
field will be the same as what is shown in the project settings. In time series projects, will
be either the detected time unit or “ROW”, and None otherwise.

model_number [integer] model number assigned to a model

parent_model_id [str or None] (New in version v2.20) the id of the model that tuning parameters
are derived from

use_project_settings [bool or None] (New in version v2.20) If True, indicates that the custom
backtest partitioning settings specified by the user were used to train the model and evaluate
backtest scores.

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

is_n_clusters_dynamically_determined [bool, optional] (New in version 2.27) if True, indi-
cates that model determines number of clusters automatically.

n_clusters [int, optional] (New in version 2.27) Number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

classmethod get(project, model_id)
Retrieve a specific datetime model.

If the project does not use datetime partitioning, a ClientError will occur.

Parameters
project [str] the id of the project the model belongs to

model_id [str] the id of the model to retrieve

Returns
model [DatetimeModel] the model

score_backtests()
Compute the scores for all available backtests.

2.3. API Reference 463

DataRobot Python API Documentation, Release 3.2.2

Some backtests may be unavailable if the model is trained into their validation data.

Returns
job [Job] a job tracking the backtest computation. When it is complete, all available backtests

will have scores computed.

cross_validate()
Inherited from the model. DatetimeModels cannot request cross validation scores; use backtests instead.

Return type NoReturn

get_cross_validation_scores(partition=None, metric=None)
Inherited from Model - DatetimeModels cannot request Cross Validation scores,

Use backtests instead.

Return type NoReturn

request_training_predictions(data_subset, *args, **kwargs)
Start a job that builds training predictions.

Parameters
data_subset [str] data set definition to build predictions on. Choices are:

• dr.enums.DATA_SUBSET.HOLDOUT for holdout data set only

• dr.enums.DATA_SUBSET.ALL_BACKTESTS for downloading the predictions for all
backtest validation folds. Requires the model to have successfully scored all backtests.

Returns
——-
Job an instance of created async job

get_series_accuracy_as_dataframe(offset=0, limit=100, metric=None, multiseries_value=None,
order_by=None, reverse=False)

Retrieve series accuracy results for the specified model as a pandas.DataFrame.

Parameters
offset [int, optional] The number of results to skip. Defaults to 0 if not specified.

limit [int, optional] The maximum number of results to return. Defaults to 100 if not speci-
fied.

metric [str, optional] The name of the metric to retrieve scores for. If omitted, the default
project metric will be used.

multiseries_value [str, optional] If specified, only the series containing the given value in
one of the series ID columns will be returned.

order_by [str, optional] Used for sorting the series. Attribute must be one of datarobot.
enums.SERIES_ACCURACY_ORDER_BY.

reverse [bool, optional] Used for sorting the series. If True, will sort the series in descending
order by the attribute specified by order_by.

Returns
data A pandas.DataFrame with the Series Accuracy for the specified model.

download_series_accuracy_as_csv(filename, encoding='utf-8', offset=0, limit=100, metric=None,
multiseries_value=None, order_by=None, reverse=False)

Save series accuracy results for the specified model in a CSV file.

464 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
filename [str or file object] The path or file object to save the data to.

encoding [str, optional] A string representing the encoding to use in the output csv file. De-
faults to ‘utf-8’.

offset [int, optional] The number of results to skip. Defaults to 0 if not specified.

limit [int, optional] The maximum number of results to return. Defaults to 100 if not speci-
fied.

metric [str, optional] The name of the metric to retrieve scores for. If omitted, the default
project metric will be used.

multiseries_value [str, optional] If specified, only the series containing the given value in
one of the series ID columns will be returned.

order_by [str, optional] Used for sorting the series. Attribute must be one of datarobot.
enums.SERIES_ACCURACY_ORDER_BY.

reverse [bool, optional] Used for sorting the series. If True, will sort the series in descending
order by the attribute specified by order_by.

get_series_clusters(offset=0, limit=100, order_by=None, reverse=False)
Retrieve a dictionary of series and the clusters assigned to each series. This is only usable for clustering
projects.

Parameters
offset [int, optional] The number of results to skip. Defaults to 0 if not specified.

limit [int, optional] The maximum number of results to return. Defaults to 100 if not speci-
fied.

order_by [str, optional] Used for sorting the series. Attribute must be one of datarobot.
enums.SERIES_ACCURACY_ORDER_BY.

reverse [bool, optional] Used for sorting the series. If True, will sort the series in descending
order by the attribute specified by order_by.

Returns
Dict A dictionary of the series in the dataset with their associated cluster

Raises
ValueError If the model type returns an unsupported insight

ClientError If the insight is not available for this model

Return type Dict[str, str]

compute_series_accuracy(compute_all_series=False)
Compute series accuracy for the model.

Parameters
compute_all_series [bool, optional] Calculate accuracy for all series or only first 1000.

Returns
Job an instance of the created async job

2.3. API Reference 465

DataRobot Python API Documentation, Release 3.2.2

retrain(time_window_sample_pct=None, featurelist_id=None, training_row_count=None,
training_duration=None, training_start_date=None, training_end_date=None,
sampling_method=None, n_clusters=None)

Retrain an existing datetime model using a new training period for the model’s training set (with optional
time window sampling) or a different feature list.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
featurelist_id [str, optional] The ID of the featurelist to use.

training_row_count [int, optional] The number of rows to train the model on. If this pa-
rameter is used then sample_pct cannot be specified.

time_window_sample_pct [int, optional] An int between 1 and 99 indicating the percent-
age of sampling within the time window. The points kept are determined by a random
uniform sample. If specified, training_row_count must not be specified and either train-
ing_duration or training_start_date and training_end_date must be specified.

training_duration [str, optional] A duration string representing the training duration for the
submitted model. If specified then training_row_count, training_start_date, and train-
ing_end_date cannot be specified.

training_start_date [str, optional] A datetime string representing the start date of the data
to use for training this model. If specified, training_end_date must also be specified, and
training_duration cannot be specified. The value must be before the training_end_date
value.

training_end_date [str, optional] A datetime string representing the end date of the data to
use for training this model. If specified, training_start_date must also be specified, and
training_duration cannot be specified. The value must be after the training_start_date
value.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

n_clusters [int, optional] (New in version 2.27) Number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
job [ModelJob] The created job that is retraining the model

get_feature_effect_metadata()
Retrieve Feature Effect metadata for each backtest. Response contains status and available sources for each
backtest of the model.

• Each backtest is available for training and validation

• If holdout is configured for the project it has holdout as backtestIndex. It has training and holdout
sources available.

Start/stop models contain a single response item with startstop value for backtestIndex.

466 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Feature Effect of training is always available (except for the old project which supports only Feature
Effect for validation).

• When a model is trained into validation or holdout without stacked prediction (e.g. no out-of-sample
prediction in validation or holdout), Feature Effect is not available for validation or holdout.

• Feature Effect for holdout is not available when there is no holdout configured for the project.

source is expected parameter to retrieve Feature Effect. One of provided sources shall be used.

backtestIndex is expected parameter to submit compute request and retrieve Feature Effect. One of provided
backtest indexes shall be used.

Returns
feature_effect_metadata: FeatureEffectMetadataDatetime

request_feature_effect(backtest_index)
Request feature effects to be computed for the model.

See get_feature_effect for more information on the result of the job.

See get_feature_effect_metadata for retrieving information of backtest_index.

Parameters
backtest_index: string, FeatureEffectMetadataDatetime.backtest_index. The backtest

index to retrieve Feature Effects for.

Returns
job [Job] A Job representing the feature effect computation. To get the completed feature

effect data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature effect have already been requested.

get_feature_effect(source, backtest_index)

Retrieve Feature Effects for the model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features
ordered by feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting
for the average effects of all other predictive features. It indicates how, holding all other variables
except the feature of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information of source, backtest_index.

Parameters
source: string The source Feature Effects are retrieved for. One value of [FeatureEffect-

MetadataDatetime.sources]. To retrieve the available sources for feature effect.

backtest_index: string, FeatureEffectMetadataDatetime.backtest_index. The backtest
index to retrieve Feature Effects for.

Returns
feature_effects: FeatureEffects The feature effects data.

Raises

2.3. API Reference 467

DataRobot Python API Documentation, Release 3.2.2

ClientError (404) If the feature effects have not been computed or source is not valid value.

get_or_request_feature_effect(source, backtest_index, max_wait=600)
Retrieve Feature Effects computations for the model, requesting a new job if it hasn’t been run previously.

See get_feature_effect_metadata for retrieving information of source, backtest_index.

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature effect job to

complete before erroring

source [string] The source Feature Effects are retrieved for. One value of [FeatureEffect-
MetadataDatetime.sources]. To retrieve the available sources for feature effect.

backtest_index: string, FeatureEffectMetadataDatetime.backtest_index. The backtest
index to retrieve Feature Effects for.

Returns
feature_effects [FeatureEffects] The feature effects data.

request_feature_effects_multiclass(backtest_index, row_count=None, top_n_features=None,
features=None)

Request feature effects to be computed for the multiclass datetime model.

See get_feature_effect for more information on the result of the job.

Parameters
backtest_index [str] The backtest index to use for Feature Effects calculation.

row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by Feature Impact) used to
calculate Feature Effects.

features [list or None] The list of features to use to calculate Feature Effects.

Returns
job [Job] A Job representing Feature Effects computation. To get the completed Feature

Effect data, use job.get_result or job.get_result_when_complete.

get_feature_effects_multiclass(backtest_index, source='training', class_=None)
Retrieve Feature Effects for the multiclass datetime model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
backtest_index [str] The backtest index to retrieve Feature Effects for.

source [str] The source Feature Effects are retrieved for.

class_ [str or None] The class name Feature Effects are retrieved for.

Returns

468 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

list The list of multiclass Feature Effects.

Raises
ClientError (404) If the Feature Effects have not been computed or source is not valid value.

get_or_request_feature_effects_multiclass(backtest_index, source, top_n_features=None,
features=None, row_count=None, class_=None,
max_wait=600)

Retrieve Feature Effects for a datetime multiclass model, and request a job if it hasn’t been run previously.

Parameters
backtest_index [str] The backtest index to retrieve Feature Effects for.

source [string] The source from which Feature Effects are retrieved.

class_ [str or None] The class name Feature Effects retrieve for.

row_count [int] The number of rows used from the dataset for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by feature impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

max_wait [int, optional] The maximum time to wait for a requested feature effect job to
complete before erroring.

Returns
feature_effects [list of FeatureEffectsMulticlass] The list of multiclass feature effects data.

calculate_prediction_intervals(prediction_intervals_size)
Calculate prediction intervals for this DatetimeModel for the specified size.

New in version v2.19.

Parameters
prediction_intervals_size [int] The prediction interval’s size to calculate for this model. See

the prediction intervals documentation for more information.

Returns
job [Job] a Job tracking the prediction intervals computation

Return type Job

get_calculated_prediction_intervals(offset=None, limit=None)
Retrieve a list of already-calculated prediction intervals for this model

New in version v2.19.

Parameters
offset [int, optional] If provided, this many results will be skipped

limit [int, optional] If provided, at most this many results will be returned. If not provided,
will return at most 100 results.

Returns
list[int] A descending-ordered list of already-calculated prediction interval sizes

2.3. API Reference 469

DataRobot Python API Documentation, Release 3.2.2

compute_datetime_trend_plots(backtest=0, source=SOURCE_TYPE.VALIDATION,
forecast_distance_start=None, forecast_distance_end=None)

Computes datetime trend plots (Accuracy over Time, Forecast vs Actual, Anomaly over Time) for this
model

New in version v2.25.

Parameters
backtest [int or string, optional] Compute plots for a specific backtest (use the backtest index

starting from zero). To compute plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

forecast_distance_start [int, optional:] The start of forecast distance range (forecast win-
dow) to compute. If not specified, the first forecast distance for this project will be used.
Only for time series supervised models

forecast_distance_end [int, optional:] The end of forecast distance range (forecast window)
to compute. If not specified, the last forecast distance for this project will be used. Only
for time series supervised models

Returns
job [Job] a Job tracking the datetime trend plots computation

Notes

• Forecast distance specifies the number of time steps between the predicted point and the origin point.

• For the multiseries models only first 1000 series in alphabetical order and an average plot for them will
be computed.

• Maximum 100 forecast distances can be requested for calculation in time series supervised projects.

get_accuracy_over_time_plots_metadata(forecast_distance=None)
Retrieve Accuracy over Time plots metadata for this model.

New in version v2.25.

Parameters
forecast_distance [int, optional] Forecast distance to retrieve the metadata for. If not spec-

ified, the first forecast distance for this project will be used. Only available for time series
projects.

Returns
metadata [AccuracyOverTimePlotsMetadata] a AccuracyOverTimePlotsMetadata rep-

resenting Accuracy over Time plots metadata

get_accuracy_over_time_plot(backtest=0, source=SOURCE_TYPE.VALIDATION,
forecast_distance=None, series_id=None, resolution=None,
max_bin_size=None, start_date=None, end_date=None, max_wait=600)

Retrieve Accuracy over Time plots for this model.

New in version v2.25.

Parameters
backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index

starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

470 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

forecast_distance [int, optional] Forecast distance to retrieve the plots for. If not speci-
fied, the first forecast distance for this project will be used. Only available for time series
projects.

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

resolution [string, optional] Specifying at which resolution the data should be binned. If
not provided an optimal resolution will be used to build chart data with number of bins <=
max_bin_size. One of dr.enums.DATETIME_TREND_PLOTS_RESOLUTION.

max_bin_size [int, optional] An int between 1 and 1000, which specifies the maximum num-
ber of bins for the retrieval. Default is 500.

start_date [datetime.datetime, optional] The start of the date range to return. If not specified,
start date for requested plot will be used.

end_date [datetime.datetime, optional] The end of the date range to return. If not specified,
end date for requested plot will be used.

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [AccuracyOverTimePlot] a AccuracyOverTimePlot representing Accuracy over

Time plot

Examples

import datarobot as dr
import pandas as pd
model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_accuracy_over_time_plot()
df = pd.DataFrame.from_dict(plot.bins)
figure = df.plot("start_date", ["actual", "predicted"]).get_figure()
figure.savefig("accuracy_over_time.png")

get_accuracy_over_time_plot_preview(backtest=0, source=SOURCE_TYPE.VALIDATION,
forecast_distance=None, series_id=None, max_wait=600)

Retrieve Accuracy over Time preview plots for this model.

New in version v2.25.

Parameters
backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index

starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

forecast_distance [int, optional] Forecast distance to retrieve the plots for. If not speci-
fied, the first forecast distance for this project will be used. Only available for time series
projects.

2.3. API Reference 471

DataRobot Python API Documentation, Release 3.2.2

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [AccuracyOverTimePlotPreview] a AccuracyOverTimePlotPreview representing

Accuracy over Time plot preview

Examples

import datarobot as dr
import pandas as pd
model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_accuracy_over_time_plot_preview()
df = pd.DataFrame.from_dict(plot.bins)
figure = df.plot("start_date", ["actual", "predicted"]).get_figure()
figure.savefig("accuracy_over_time_preview.png")

get_forecast_vs_actual_plots_metadata()
Retrieve Forecast vs Actual plots metadata for this model.

New in version v2.25.

Returns
metadata [ForecastVsActualPlotsMetadata] a ForecastVsActualPlotsMetadata repre-

senting Forecast vs Actual plots metadata

get_forecast_vs_actual_plot(backtest=0, source=SOURCE_TYPE.VALIDATION,
forecast_distance_start=None, forecast_distance_end=None,
series_id=None, resolution=None, max_bin_size=None,
start_date=None, end_date=None, max_wait=600)

Retrieve Forecast vs Actual plots for this model.

New in version v2.25.

Parameters
backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index

starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

forecast_distance_start [int, optional:] The start of forecast distance range (forecast win-
dow) to retrieve. If not specified, the first forecast distance for this project will be used.

forecast_distance_end [int, optional:] The end of forecast distance range (forecast window)
to retrieve. If not specified, the last forecast distance for this project will be used.

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

resolution [string, optional] Specifying at which resolution the data should be binned. If
not provided an optimal resolution will be used to build chart data with number of bins <=
max_bin_size. One of dr.enums.DATETIME_TREND_PLOTS_RESOLUTION.

472 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_bin_size [int, optional] An int between 1 and 1000, which specifies the maximum num-
ber of bins for the retrieval. Default is 500.

start_date [datetime.datetime, optional] The start of the date range to return. If not specified,
start date for requested plot will be used.

end_date [datetime.datetime, optional] The end of the date range to return. If not specified,
end date for requested plot will be used.

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [ForecastVsActualPlot] a ForecastVsActualPlot representing Forecast vs Actual

plot

Examples

import datarobot as dr
import pandas as pd
import matplotlib.pyplot as plt

model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_forecast_vs_actual_plot()
df = pd.DataFrame.from_dict(plot.bins)

As an example, get the forecasts for the 10th point
forecast_point_index = 10
Pad the forecasts for plotting. The forecasts length must match the df length
forecasts = [None] * forecast_point_index + df.forecasts[forecast_point_index]
forecasts = forecasts + [None] * (len(df) - len(forecasts))

plt.plot(df.start_date, df.actual, label="Actual")
plt.plot(df.start_date, forecasts, label="Forecast")
forecast_point = df.start_date[forecast_point_index]
plt.title("Forecast vs Actual (Forecast Point {})".format(forecast_point))
plt.legend()
plt.savefig("forecast_vs_actual.png")

get_forecast_vs_actual_plot_preview(backtest=0, source=SOURCE_TYPE.VALIDATION,
series_id=None, max_wait=600)

Retrieve Forecast vs Actual preview plots for this model.

New in version v2.25.

Parameters
backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index

starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

2.3. API Reference 473

DataRobot Python API Documentation, Release 3.2.2

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [ForecastVsActualPlotPreview] a ForecastVsActualPlotPreview representing

Forecast vs Actual plot preview

Examples

import datarobot as dr
import pandas as pd
model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_forecast_vs_actual_plot_preview()
df = pd.DataFrame.from_dict(plot.bins)
figure = df.plot("start_date", ["actual", "predicted"]).get_figure()
figure.savefig("forecast_vs_actual_preview.png")

get_anomaly_over_time_plots_metadata()
Retrieve Anomaly over Time plots metadata for this model.

New in version v2.25.

Returns
metadata [AnomalyOverTimePlotsMetadata] a AnomalyOverTimePlotsMetadata repre-

senting Anomaly over Time plots metadata

get_anomaly_over_time_plot(backtest=0, source=SOURCE_TYPE.VALIDATION, series_id=None,
resolution=None, max_bin_size=None, start_date=None, end_date=None,
max_wait=600)

Retrieve Anomaly over Time plots for this model.

New in version v2.25.

Parameters
backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index

starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

resolution [string, optional] Specifying at which resolution the data should be binned. If
not provided an optimal resolution will be used to build chart data with number of bins <=
max_bin_size. One of dr.enums.DATETIME_TREND_PLOTS_RESOLUTION.

max_bin_size [int, optional] An int between 1 and 1000, which specifies the maximum num-
ber of bins for the retrieval. Default is 500.

start_date [datetime.datetime, optional] The start of the date range to return. If not specified,
start date for requested plot will be used.

end_date [datetime.datetime, optional] The end of the date range to return. If not specified,
end date for requested plot will be used.

474 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [AnomalyOverTimePlot] a AnomalyOverTimePlot representing Anomaly over Time

plot

Examples

import datarobot as dr
import pandas as pd
model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_anomaly_over_time_plot()
df = pd.DataFrame.from_dict(plot.bins)
figure = df.plot("start_date", "predicted").get_figure()
figure.savefig("anomaly_over_time.png")

get_anomaly_over_time_plot_preview(prediction_threshold=0.5, backtest=0,
source=SOURCE_TYPE.VALIDATION, series_id=None,
max_wait=600)

Retrieve Anomaly over Time preview plots for this model.

New in version v2.25.

Parameters
prediction_threshold: float, optional Only bins with predictions exceeding this threshold

will be returned in the response.

backtest [int or string, optional] Retrieve plots for a specific backtest (use the backtest index
starting from zero). To retrieve plots for holdout, use dr.enums.DATA_SUBSET.HOLDOUT

source [string, optional] The source of the data for the backtest/holdout. Attribute must be
one of dr.enums.SOURCE_TYPE

series_id [string, optional] The name of the series to retrieve for multiseries projects. If not
provided an average plot for the first 1000 series will be retrieved.

max_wait [int or None, optional] The maximum time to wait for a compute job to complete
before retrieving the plots. Default is dr.enums.DEFAULT_MAX_WAIT. If 0 or None, the
plots would be retrieved without attempting the computation.

Returns
plot [AnomalyOverTimePlotPreview] a AnomalyOverTimePlotPreview representing

Anomaly over Time plot preview

2.3. API Reference 475

DataRobot Python API Documentation, Release 3.2.2

Examples

import datarobot as dr
import pandas as pd
import matplotlib.pyplot as plt

model = dr.DatetimeModel(project_id=project_id, id=model_id)
plot = model.get_anomaly_over_time_plot_preview(prediction_threshold=0.01)
df = pd.DataFrame.from_dict(plot.bins)
x = pd.date_range(

plot.start_date, plot.end_date, freq=df.end_date[0] - df.start_date[0]
)
plt.plot(x, [0] * len(x), label="Date range")
plt.plot(df.start_date, [0] * len(df.start_date), "ro", label="Anomaly")
plt.yticks([])
plt.legend()
plt.savefig("anomaly_over_time_preview.png")

initialize_anomaly_assessment(backtest, source, series_id=None)
Initialize the anomaly assessment insight and calculate Shapley explanations for the most anomalous points
in the subset. The insight is available for anomaly detection models in time series unsupervised projects
which also support calculation of Shapley values.

Parameters
backtest: int starting with 0 or “holdout” The backtest to compute insight for.

source: “training” or “validation” The source to compute insight for.

series_id: string Required for multiseries projects. The series id to compute insight for. Say
if there is a series column containing cities, the example of the series name to pass would
be “Boston”

Returns
AnomalyAssessmentRecord

get_anomaly_assessment_records(backtest=None, source=None, series_id=None, limit=100, offset=0,
with_data_only=False)

Retrieve computed Anomaly Assessment records for this model. Model must be an anomaly detection
model in time series unsupervised project which also supports calculation of Shapley values.

Records can be filtered by the data backtest, source and series_id. The results can be limited.

New in version v2.25.

Parameters
backtest: int starting with 0 or “holdout” The backtest of the data to filter records by.

source: “training” or “validation” The source of the data to filter records by.

series_id: string The series id to filter records by.

limit: int, optional
offset: int, optional
with_data_only: bool, optional Whether to return only records with preview and explana-

tions available. False by default.

Returns

476 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

records [list of AnomalyAssessmentRecord] a AnomalyAssessmentRecord representing
Anomaly Assessment Record

get_feature_impact(with_metadata=False, backtest=None)
Retrieve the computed Feature Impact results, a measure of the relevance of each feature in the model.

Feature Impact is computed for each column by creating new data with that column randomly permuted
(but the others left unchanged), and seeing how the error metric score for the predictions is affected. The
‘impactUnnormalized’ is how much worse the error metric score is when making predictions on this mod-
ified data. The ‘impactNormalized’ is normalized so that the largest value is 1. In both cases, larger values
indicate more important features.

If a feature is a redundant feature, i.e. once other features are considered it doesn’t contribute much in addi-
tion, the ‘redundantWith’ value is the name of feature that has the highest correlation with this feature. Note
that redundancy detection is only available for jobs run after the addition of this feature. When retrieving
data that predates this functionality, a NoRedundancyImpactAvailable warning will be used.

Elsewhere this technique is sometimes called ‘Permutation Importance’.

Requires that Feature Impact has already been computed with request_feature_impact.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

backtest [int or string] The index of the backtest unless it is holdout then it is string ‘holdout’.
This is supported only in DatetimeModels

Returns
list or dict The feature impact data response depends on the with_metadata parameter. The

response is either a dict with metadata and a list with actual data or just a list with that data.

Each List item is a dict with the keys featureName, impactNormalized, and
impactUnnormalized, redundantWith and count.

For dict response available keys are:

• featureImpacts - Feature Impact data as a dictionary. Each item is a dict with
keys: featureName, impactNormalized, and impactUnnormalized, and
redundantWith.

• shapBased - A boolean that indicates whether Feature Impact was calculated using
Shapley values.

• ranRedundancyDetection - A boolean that indicates whether redundant feature
identification was run while calculating this Feature Impact.

• rowCount - An integer or None that indicates the number of rows that was used to
calculate Feature Impact. For the Feature Impact calculated with the default logic,
without specifying the rowCount, we return None here.

• count - An integer with the number of features under the featureImpacts.

Raises
ClientError (404) If the feature impacts have not been computed.

request_feature_impact(row_count=None, with_metadata=False, backtest=None)
Request feature impacts to be computed for the model.

See get_feature_impact for more information on the result of the job.

Parameters

2.3. API Reference 477

DataRobot Python API Documentation, Release 3.2.2

row_count [int] The sample size (specified in rows) to use for Feature Impact computation.
This is not supported for unsupervised, multi-class (that has a separate method) and time
series projects.

backtest [int or string] The index of the backtest unless it is holdout then it is string ‘holdout’.
This is supported only in DatetimeModels

Returns
job [Job] A Job representing the feature impact computation. To get the completed feature

impact data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature impacts have already been requested.

get_or_request_feature_impact(max_wait=600, row_count=None, with_metadata=False,
backtest=None)

Retrieve feature impact for the model, requesting a job if it hasn’t been run previously

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature impact job to

complete before erroring

**kwargs Arbitrary keyword arguments passed to request_feature_impact.

Returns
feature_impacts [list or dict] The feature impact data. See get_feature_impact for the

exact schema.

advanced_tune(params, description=None)
Generate a new model with the specified advanced-tuning parameters

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Parameters
params [dict] Mapping of parameter ID to parameter value. The list of valid parameter

IDs for a model can be found by calling get_advanced_tuning_parameters(). This end-
point does not need to include values for all parameters. If a parameter is omitted, its
current_value will be used.

description [str] Human-readable string describing the newly advanced-tuned model

Returns
ModelJob The created job to build the model

Return type ModelJob

delete()
Delete a model from the project’s leaderboard.

Return type None

download_export(filepath)
Download an exportable model file for use in an on-premise DataRobot standalone prediction environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

Parameters

478 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

filepath [str] The path at which to save the exported model file.

Return type None

download_scoring_code(file_name, source_code=False)
Download the Scoring Code JAR.

Parameters
file_name [str] File path where scoring code will be saved.

source_code [bool, optional] Set to True to download source code archive. It will not be
executable.

download_training_artifact(file_name)
Retrieve trained artifact(s) from a model containing one or more custom tasks.

Artifact(s) will be downloaded to the specified local filepath.

Parameters
file_name [str] File path where trained model artifact(s) will be saved.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

get_advanced_tuning_parameters()
Get the advanced-tuning parameters available for this model.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
dict A dictionary describing the advanced-tuning parameters for the current model. There

are two top-level keys, tuning_description and tuning_parameters.

tuning_description an optional value. If not None, then it indicates the user-specified de-
scription of this set of tuning parameter.

tuning_parameters is a list of a dicts, each has the following keys

• parameter_name : (str) name of the parameter (unique per task, see below)

• parameter_id : (str) opaque ID string uniquely identifying parameter

• default_value : (*) the actual value used to train the model; either the single value of
the parameter specified before training, or the best value from the list of grid-searched
values (based on current_value)

• current_value : (*) the single value or list of values of the parameter that were grid
searched. Depending on the grid search specification, could be a single fixed value (no
grid search), a list of discrete values, or a range.

• task_name : (str) name of the task that this parameter belongs to

• constraints: (dict) see the notes below

• vertex_id: (str) ID of vertex that this parameter belongs to

2.3. API Reference 479

DataRobot Python API Documentation, Release 3.2.2

Notes

The type of default_value and current_value is defined by the constraints structure. It will be a string or
numeric Python type.

constraints is a dict with at least one, possibly more, of the following keys. The presence of a key indicates
that the parameter may take on the specified type. (If a key is absent, this means that the parameter may
not take on the specified type.) If a key on constraints is present, its value will be a dict containing all of
the fields described below for that key.

"constraints": {
"select": {

"values": [<list(basestring or number) : possible values>]
},
"ascii": {},
"unicode": {},
"int": {

"min": <int : minimum valid value>,
"max": <int : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"float": {

"min": <float : minimum valid value>,
"max": <float : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"intList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <int : minimum valid value>,
"max_val": <int : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"floatList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <float : minimum valid value>,
"max_val": <float : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
}

}

The keys have meaning as follows:

• select: Rather than specifying a specific data type, if present, it indicates that the parameter is permitted
to take on any of the specified values. Listed values may be of any string or real (non-complex) numeric
type.

• ascii: The parameter may be a unicode object that encodes simple ASCII characters. (A-Z, a-z, 0-9,
whitespace, and certain common symbols.) In addition to listed constraints, ASCII keys currently may
not contain either newlines or semicolons.

480 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• unicode: The parameter may be any Python unicode object.

• int: The value may be an object of type int within the specified range (inclusive). Please note that the
value will be passed around using the JSON format, and some JSON parsers have undefined behavior
with integers outside of the range [-(2**53)+1, (2**53)-1].

• float: The value may be an object of type float within the specified range (inclusive).

• intList, floatList: The value may be a list of int or float objects, respectively, following constraints as
specified respectively by the int and float types (above).

Many parameters only specify one key under constraints. If a parameter specifies multiple keys, the pa-
rameter may take on any value permitted by any key.

Return type AdvancedTuningParamsType
get_all_confusion_charts(fallback_to_parent_insights=False)

Retrieve a list of all confusion matrices available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

confusion chart data for this model’s parent for any source that is not available for this model
and if this has a defined parent model. If omitted or False, or this model has no parent, this
will not attempt to retrieve any data from this model’s parent.

Returns
list of ConfusionChart Data for all available confusion charts for model.

get_all_feature_impacts(data_slice_filter=None)
Retrieve a list of all feature impact results available for the model.

Parameters
data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on the

dataslice.id. By default, this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then no data_slice filtering will be applied
when requesting the roc_curve.

Returns
list of dicts Data for all available model feature impacts. Or an empty list if not data found.

Examples

model = datarobot.Model(id='model-id', project_id='project-id')

Get feature impact insights for sliced data
data_slice = datarobot.DataSlice(id='data-slice-id')
sliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get feature impact insights for unsliced data
data_slice = datarobot.DataSlice()
unsliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get all feature impact insights
all_fi = model.get_all_feature_impacts()

2.3. API Reference 481

DataRobot Python API Documentation, Release 3.2.2

get_all_lift_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool, optional] (New in version v2.14) Optional, if True, this

will return lift chart data for this model’s parent for any source that is not available for this
model and if this model has a defined parent model. If omitted or False, or this model has
no parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned lift chart by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of LiftChart Data for all available model lift charts. Or an empty list if no data found.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get lift chart insights for sliced data
sliced_lift_charts = model.get_all_lift_charts(data_slice_id='data-slice-id')

Get lift chart insights for unsliced data
unsliced_lift_charts = model.get_all_lift_charts(unsliced_only=True)

Get all lift chart insights
all_lift_charts = model.get_all_lift_charts()

get_all_multiclass_lift_charts(fallback_to_parent_insights=False)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

lift chart data for this model’s parent for any source that is not available for this model and
if this model has a defined parent model. If omitted or False, or this model has no parent,
this will not attempt to retrieve any data from this model’s parent.

Returns
list of LiftChart Data for all available model lift charts.

get_all_residuals_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all residuals charts available for the model.

Parameters
fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data

for this model’s parent for any source that is not available for this model and if this model
has a defined parent model. If omitted or False, or this model has no parent, this will not
attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned residuals charts by
data_slice_filter.id. If None (the default) applies no filter based on data_slice_id.

Returns
list of ResidualsChart Data for all available model residuals charts.

482 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get residuals chart insights for sliced data
sliced_residuals_charts = model.get_all_residuals_charts(data_slice_id='data-
→˓slice-id')

Get residuals chart insights for unsliced data
unsliced_residuals_charts = model.get_all_residuals_charts(unsliced_only=True)

Get all residuals chart insights
all_residuals_charts = model.get_all_residuals_charts()

get_all_roc_curves(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all ROC curves available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

ROC curve data for this model’s parent for any source that is not available for this model
and if this model has a defined parent model. If omitted or False, or this model has no
parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] filters the returned roc_curve by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of RocCurve Data for all available model ROC curves. Or an empty list if no RocCurves

are found.

Examples

model = datarobot.Model.get('project-id', 'model-id')
ds_filter=DataSlice(id='data-slice-id')

Get roc curve insights for sliced data
sliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get roc curve insights for unsliced data
data_slice_filter=DataSlice(id=None)
unsliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get all roc curve insights
all_roc_curves = model.get_all_roc_curves()

get_confusion_chart(source, fallback_to_parent_insights=False)
Retrieve them model’s confusion matrix for the specified source.

Parameters
source [str] Confusion chart source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
confusion chart data for this model’s parent if the confusion chart is not available for this

2.3. API Reference 483

DataRobot Python API Documentation, Release 3.2.2

model and the defined parent model. If omitted or False, or there is no parent model, will
not attempt to return insight data from this model’s parent.

Returns
ConfusionChart Model ConfusionChart data

Raises
ClientError If the insight is not available for this model

get_cross_class_accuracy_scores()
Retrieves a list of Cross Class Accuracy scores for the model.

Returns
json

get_data_disparity_insights(feature, class_name1, class_name2)
Retrieve a list of Cross Class Data Disparity insights for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

class_name1 [str] One of the compared classes

class_name2 [str] Another compared class

Returns
json

get_fairness_insights(fairness_metrics_set=None, offset=0, limit=100)
Retrieve a list of Per Class Bias insights for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
json

get_features_used()
Query the server to determine which features were used.

Note that the data returned by this method is possibly different than the names of the features in the featurelist
used by this model. This method will return the raw features that must be supplied in order for predictions
to be generated on a new set of data. The featurelist, in contrast, would also include the names of derived
features.

Returns
features [list of str] The names of the features used in the model.

Return type List[str]

get_frozen_child_models()
Retrieve the IDs for all models that are frozen from this model.

Returns

484 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

A list of Models
get_labelwise_roc_curves(source, fallback_to_parent_insights=False)

Retrieve a list of LabelwiseRocCurve instances for a multilabel model the given source and all labels.

New in version v2.24.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return ROC curve data for
this model’s parent if the ROC curve is not available for this model and the model has a
defined parent model. If omitted or False, or there is no parent model, will not attempt to
return data from this model’s parent.

Returns
list of [class:LabelwiseRocCurve <datarobot.models.roc_curve.LabelwiseRocCurve>] La-

belwise ROC Curve instances for source and all labels

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is binary

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_lift_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
lift chart data for this model’s parent if the lift chart is not available for this model and the
model has a defined parent model. If omitted or False, or there is no parent model, will not
attempt to return insight data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_lift_chart will raise a ValueError.

Returns
LiftChart Model lift chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

2.3. API Reference 485

DataRobot Python API Documentation, Release 3.2.2

get_missing_report_info()
Retrieve a report on missing training data that can be used to understand missing values treatment in the
model. The report consists of missing values resolutions for features numeric or categorical features that
were part of building the model.

Returns
An iterable of MissingReportPerFeature The queried model missing report, sorted by

missing count (DESCENDING order).

get_model_blueprint_chart()
Retrieve a diagram that can be used to understand data flow in the blueprint.

Returns
ModelBlueprintChart The queried model blueprint chart.

get_model_blueprint_documents()
Get documentation for tasks used in this model.

Returns
list of BlueprintTaskDocument All documents available for the model.

get_model_blueprint_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

Return type Dict[str, Tuple[List[str], List[str], str]]

get_multiclass_feature_impact()
For multiclass it’s possible to calculate feature impact separately for each target class. The method for
calculation is exactly the same, calculated in one-vs-all style for each target class.

Requires that Feature Impact has already been computed with request_feature_impact.

Returns
feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys

‘featureImpacts’ (list), ‘class’ (str). Each item in ‘featureImpacts’ is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
ClientError (404) If the multiclass feature impacts have not been computed.

get_multiclass_lift_chart(source, fallback_to_parent_insights=False)
Retrieve model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

486 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
ClientError If the insight is not available for this model

get_multilabel_lift_charts(source, fallback_to_parent_insights=False)
Retrieve model Lift charts for the specified source.

New in version v2.24.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_num_iterations_trained()
Retrieves the number of estimators trained by early-stopping tree-based models.

– versionadded:: v2.22

Returns
projectId: str id of project containing the model

modelId: str id of the model

data: array list of numEstimatorsItem objects, one for each modeling stage.

numEstimatorsItem will be of the form:
stage: str indicates the modeling stage (for multi-stage models); None of single-stage models

numIterations: int the number of estimators or iterations trained by the model

get_parameters()
Retrieve model parameters.

Returns
ModelParameters Model parameters for this model.

get_pareto_front()
Retrieve the Pareto Front for a Eureqa model.

This method is only supported for Eureqa models.

Returns
ParetoFront Model ParetoFront data

get_prime_eligibility()
Check if this model can be approximated with DataRobot Prime

Returns

2.3. API Reference 487

DataRobot Python API Documentation, Release 3.2.2

prime_eligibility [dict] a dict indicating whether a model can be approximated with
DataRobot Prime (key can_make_prime) and why it may be ineligible (key message)

get_residuals_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data
for this model’s parent if the residuals chart is not available for this model and the model
has a defined parent model. If omitted or False, or there is no parent model, will not attempt
to return residuals data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_residuals_chart will raise a
ValueError.

Returns
ResidualsChart Model residuals chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_roc_curve(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the ROC curve for a binary model for the specified source.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
ROC curve data for this model’s parent if the ROC curve is not available for this model and
the model has a defined parent model. If omitted or False, or there is no parent model, will
not attempt to return data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_roc_curve will raise a ValueError.

Returns
RocCurve Model ROC curve data

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is multilabel

ValueError If data_slice_filter passed as None

488 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_rulesets()
List the rulesets approximating this model generated by DataRobot Prime

If this model hasn’t been approximated yet, will return an empty list. Note that these are rulesets approxi-
mating this model, not rulesets used to construct this model.

Returns
rulesets [list of Ruleset]

Return type List[Ruleset]

get_supported_capabilities()
Retrieves a summary of the capabilities supported by a model.

New in version v2.14.

Returns
supportsBlending: bool whether the model supports blending

supportsMonotonicConstraints: bool whether the model supports monotonic constraints

hasWordCloud: bool whether the model has word cloud data available

eligibleForPrime: bool whether the model is eligible for Prime

hasParameters: bool whether the model has parameters that can be retrieved

supportsCodeGeneration: bool (New in version v2.18) whether the model supports code
generation

supportsShap: bool
(New in version v2.18) True if the model supports Shapley package. i.e. Shapley based

feature Importance

supportsEarlyStopping: bool (New in version v2.22) True if this is an early stopping tree-
based model and number of trained iterations can be retrieved.

get_uri()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_word_cloud(exclude_stop_words=False)
Retrieve word cloud data for the model.

Parameters
exclude_stop_words [bool, optional] Set to True if you want stopwords filtered out of re-

sponse.

Returns
WordCloud Word cloud data for the model.

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

2.3. API Reference 489

DataRobot Python API Documentation, Release 3.2.2

Return type None

open_model_browser()
Opens model at project leaderboard in web browser. Note: If text-mode browsers are used, the calling
process will block until the user exits the browser.

Return type None

request_approximation()
Request an approximation of this model using DataRobot Prime

This will create several rulesets that could be used to approximate this model. After comparing their scores
and rule counts, the code used in the approximation can be downloaded and run locally.

Returns
job [Job] the job generating the rulesets

request_cross_class_accuracy_scores()
Request data disparity insights to be computed for the model.

Returns
status_id [str] A statusId of computation request.

request_data_disparity_insights(feature, compared_class_names)
Request data disparity insights to be computed for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

compared_class_names [list(str)] List of two classes to compare

Returns
status_id [str] A statusId of computation request.

request_external_test(dataset_id, actual_value_column=None)
Request external test to compute scores and insights on an external test dataset

Parameters
dataset_id [string] The dataset to make predictions against (as uploaded from

Project.upload_dataset)

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

Returns
——-
job [Job] a Job representing external dataset insights computation

request_fairness_insights(fairness_metrics_set=None)
Request fairness insights to be computed for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

Returns
status_id [str] A statusId of computation request.

490 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

request_frozen_datetime_model(training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None)

Train a new frozen model with parameters from this model.

Requires that this model belongs to a datetime partitioned project. If it does not, an error will occur when
submitting the job.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

In addition of training_row_count and training_duration, frozen datetime models may be trained on an
exact date range. Only one of training_row_count, training_duration, or training_start_date and train-
ing_end_date should be specified.

Models specified using training_start_date and training_end_date are the only ones that can be trained into
the holdout data (once the holdout is unlocked).

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
training_row_count [int, optional] the number of rows of data that should be used to train

the model. If specified, training_duration may not be specified.

training_duration [str, optional] a duration string specifying what time range the data used
to train the model should span. If specified, training_row_count may not be specified.

training_start_date [datetime.datetime, optional] the start date of the data to train to model
on. Only rows occurring at or after this datetime will be used. If training_start_date is
specified, training_end_date must also be specified.

training_end_date [datetime.datetime, optional] the end date of the data to train the model
on. Only rows occurring strictly before this datetime will be used. If training_end_date is
specified, training_start_date must also be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

request_lift_chart(source, data_slice_id=None)
Request the model Lift Chart for the specified source.

2.3. API Reference 491

DataRobot Python API Documentation, Release 3.2.2

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_predictions(dataset_id=None, dataset=None, dataframe=None, file_path=None, file=None,
include_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, explanation_algorithm=None,
max_explanations=None, max_ngram_explanations=None)

Requests predictions against a previously uploaded dataset.

Parameters
dataset_id [string, optional] The ID of the dataset to make predictions against (as uploaded

from Project.upload_dataset)

dataset [Dataset, optional] The dataset to make predictions against (as uploaded from
Project.upload_dataset)

dataframe [pd.DataFrame, optional] (New in v3.0) The dataframe to make predictions
against

file_path [str, optional] (New in v3.0) Path to file to make predictions against

file [IOBase, optional] (New in v3.0) File to make predictions against

include_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Specifies whether prediction intervals should be calculated for this request. Defaults to
True if prediction_intervals_size is specified, otherwise defaults to False.

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Rep-
resents the percentile to use for the size of the prediction intervals. Defaults to 80 if in-
clude_prediction_intervals is True. Prediction intervals size must be between 1 and 100
(inclusive).

forecast_point [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. This is the default point relative to which predictions will be generated, based
on the forecast window of the project. See the time series prediction documentation for
more information.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should

492 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm: (New in version v2.21) optional; If set to ‘shap’, the response
will include prediction explanations based on the SHAP explainer (SHapley Additive
exPlanations). Defaults to null (no prediction explanations).

max_explanations: (New in version v2.21) int optional; specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value, greatest
to least. If null, no limit. In the case of ‘shap’: if the number of features is greater than the
limit, the sum of remaining values will also be returned as shapRemainingTotal. Defaults
to null. Cannot be set if explanation_algorithm is omitted.

max_ngram_explanations: optional; int or str (New in version v2.29) Specifies the max-
imum number of text explanation values that should be returned. If set to all, text explana-
tions will be computed and all the ngram explanations will be returned. If set to a non zero
positive integer value, text explanations will be computed and this amount of descendingly
sorted ngram explanations will be returned. By default text explanation won’t be triggered
to be computed.

Returns
job [PredictJob] The job computing the predictions

Return type PredictJob

request_residuals_chart(source, data_slice_id=None)
Request the model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_roc_curve(source, data_slice_id=None)
Request the model Roc Curve for the specified source.

Parameters
source [str] Roc Curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns

2.3. API Reference 493

DataRobot Python API Documentation, Release 3.2.2

status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status
check of an async job.

Return type StatusCheckJob

request_transferable_export(prediction_intervals_size=None)
Request generation of an exportable model file for use in an on-premise DataRobot standalone prediction
environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

This function does not download the exported file. Use download_export for that.

Parameters
prediction_intervals_size [int, optional] (New in v2.19) For time series projects only. Rep-

resents the percentile to use for the size of the prediction intervals. Prediction intervals size
must be between 1 and 100 (inclusive).

Returns
Job

Examples

model = datarobot.Model.get('project-id', 'model-id')
job = model.request_transferable_export()
job.wait_for_completion()
model.download_export('my_exported_model.drmodel')

Client must be configured to use standalone prediction server for import:
datarobot.Client(token='my-token-at-standalone-server',

endpoint='standalone-server-url/api/v2')

imported_model = datarobot.ImportedModel.create('my_exported_model.drmodel')

Return type Job

set_prediction_threshold(threshold)
Set a custom prediction threshold for the model.

May not be used once prediction_threshold_read_only is True for this model.

Parameters
threshold [float] only used for binary classification projects. The threshold to when deciding

between the positive and negative classes when making predictions. Should be between 0.0
and 1.0 (inclusive).

star_model()
Mark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

494 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

start_advanced_tuning_session()
Start an Advanced Tuning session. Returns an object that helps set up arguments for an Advanced Tuning
model execution.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
AdvancedTuningSession Session for setting up and running Advanced Tuning on a model

train_datetime(featurelist_id=None, training_row_count=None, training_duration=None,
time_window_sample_pct=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Trains this model on a different featurelist or sample size.

Requires that this model is part of a datetime partitioned project; otherwise, an error will occur.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
featurelist_id [str, optional] the featurelist to use to train the model. If not specified, the

featurelist of this model is used.

training_row_count [int, optional] the number of rows of data that should be used to train
the model. If specified, neither training_duration nor use_project_settings may
be specified.

training_duration [str, optional] a duration string specifying what time range the data
used to train the model should span. If specified, neither training_row_count nor
use_project_settings may be specified.

use_project_settings [bool, optional] (New in version v2.20) defaults to False. If True,
indicates that the custom backtest partitioning settings specified by the user will be used to
train the model and evaluate backtest scores. If specified, neither training_row_count
nor training_duration may be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

monotonic_increasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically increasing relation-
ship to the target. Passing None disables increasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

2.3. API Reference 495

DataRobot Python API Documentation, Release 3.2.2

monotonic_decreasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically decreasing relationship
to the target. Passing None disables decreasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters: int, optional (New in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
job [ModelJob] the created job to build the model

Return type ModelJob

unstar_model()
Unmark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

Frozen Model

class datarobot.models.FrozenModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
blueprint_id=None, metrics=None, parent_model_id=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None, prediction_threshold_read_only=None,
model_number=None, supports_composable_ml=None)

Represents a model tuned with parameters which are derived from another model

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float] the percentage of the project dataset used in training the model

training_row_count [int or None] the number of rows of the project dataset used in training
the model. In a datetime partitioned project, if specified, defines the number of rows used
to train the model and evaluate backtest scores; if unspecified, either training_duration or
training_start_date and training_end_date was used to determine that instead.

496 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

training_duration [str or None] only present for models in datetime partitioned projects. If
specified, a duration string specifying the duration spanned by the data used to train the
model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

model_type [str] what model this is, e.g. ‘Nystroem Kernel SVM Regressor’

model_category [str] what kind of model this is - ‘prime’ for DataRobot Prime models, ‘blend’
for blender models, and ‘model’ for other models

is_frozen [bool] whether this model is a frozen model

parent_model_id [str] the id of the model that tuning parameters are derived from

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

model_number [integer] model number assigned to a model

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

classmethod get(project_id, model_id)
Retrieve a specific frozen model.

Parameters
project_id [str] The project’s id.

model_id [str] The model_id of the leaderboard item to retrieve.

Returns
model [FrozenModel] The queried instance.

2.3. API Reference 497

DataRobot Python API Documentation, Release 3.2.2

Imported Model

Note: Imported Models are used in Stand Alone Scoring Engines. If you are not an administrator of such an engine,
they are not relevant to you.

class datarobot.models.ImportedModel(id, imported_at=None, model_id=None, target=None,
featurelist_name=None, dataset_name=None, model_name=None,
project_id=None, note=None, origin_url=None,
imported_by_username=None, project_name=None,
created_by_username=None, created_by_id=None,
imported_by_id=None, display_name=None)

Represents an imported model available for making predictions. These are only relevant for administrators of
on-premise Stand Alone Scoring Engines.

ImportedModels are trained in one DataRobot application, exported as a .drmodel file, and then imported for use
in a Stand Alone Scoring Engine.

Attributes
id [str] id of the import

model_name [str] model type describing the model generated by DataRobot

display_name [str] manually specified human-readable name of the imported model

note [str] manually added node about this imported model

imported_at [datetime] the time the model was imported

imported_by_username [str] username of the user who imported the model

imported_by_id [str] id of the user who imported the model

origin_url [str] URL of the application the model was exported from

model_id [str] original id of the model prior to export

featurelist_name [str] name of the featurelist used to train the model

project_id [str] id of the project the model belonged to prior to export

project_name [str] name of the project the model belonged to prior to export

target [str] the target of the project the model belonged to prior to export

dataset_name [str] filename of the dataset used to create the project the model belonged to

created_by_username [str] username of the user who created the model prior to export

created_by_id [str] id of the user who created the model prior to export

classmethod create(path, max_wait=600)
Import a previously exported model for predictions.

Parameters
path [str] The path to the exported model file

max_wait [int, optional] Time in seconds after which model import is considered unsuc-
cessful

Return type ImportedModel

498 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(import_id)
Retrieve imported model info

Parameters
import_id [str] The ID of the imported model.

Returns
imported_model [ImportedModel] The ImportedModel instance

Return type ImportedModel

classmethod list(limit=None, offset=None)
List the imported models.

Parameters
limit [int] The number of records to return. The server will use a (possibly finite) default if

not specified.

offset [int] The number of records to skip.

Returns
imported_models [list[ImportedModel]]

Return type List[ImportedModel]

update(display_name=None, note=None)
Update the display name or note for an imported model. The ImportedModel object is updated in place.

Parameters
display_name [str] The new display name.

note [str] The new note.

Return type None

delete()
Delete this imported model.

Return type None

RatingTableModel

class datarobot.models.RatingTableModel(id=None, processes=None, featurelist_name=None,
featurelist_id=None, project_id=None, sample_pct=None,
training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
model_type=None, model_category=None, is_frozen=None,
blueprint_id=None, metrics=None, rating_table_id=None,
monotonic_increasing_featurelist_id=None,
monotonic_decreasing_featurelist_id=None,
supports_monotonic_constraints=None, is_starred=None,
prediction_threshold=None,
prediction_threshold_read_only=None, model_number=None,
supports_composable_ml=None)

A model that has a rating table.

2.3. API Reference 499

DataRobot Python API Documentation, Release 3.2.2

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

processes [list of str] the processes used by the model

featurelist_name [str] the name of the featurelist used by the model

featurelist_id [str] the id of the featurelist used by the model

sample_pct [float or None] the percentage of the project dataset used in training the model. If
the project uses datetime partitioning, the sample_pct will be None. See training_row_count,
training_duration, and training_start_date and training_end_date instead.

training_row_count [int or None] the number of rows of the project dataset used in training
the model. In a datetime partitioned project, if specified, defines the number of rows used
to train the model and evaluate backtest scores; if unspecified, either training_duration or
training_start_date and training_end_date was used to determine that instead.

training_duration [str or None] only present for models in datetime partitioned projects. If
specified, a duration string specifying the duration spanned by the data used to train the
model and evaluate backtest scores.

training_start_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the start date of the data used to train the model.

training_end_date [datetime or None] only present for frozen models in datetime partitioned
projects. If specified, the end date of the data used to train the model.

model_type [str] what model this is, e.g. ‘Nystroem Kernel SVM Regressor’

model_category [str] what kind of model this is - ‘prime’ for DataRobot Prime models, ‘blend’
for blender models, and ‘model’ for other models

is_frozen [bool] whether this model is a frozen model

blueprint_id [str] the id of the blueprint used in this model

metrics [dict] a mapping from each metric to the model’s scores for that metric

rating_table_id [str] the id of the rating table that belongs to this model

monotonic_increasing_featurelist_id [str] optional, the id of the featurelist that defines the set
of features with a monotonically increasing relationship to the target. If None, no such con-
straints are enforced.

monotonic_decreasing_featurelist_id [str] optional, the id of the featurelist that defines the
set of features with a monotonically decreasing relationship to the target. If None, no such
constraints are enforced.

supports_monotonic_constraints [bool] optional, whether this model supports enforcing
monotonic constraints

is_starred [bool] whether this model marked as starred

prediction_threshold [float] for binary classification projects, the threshold used for predictions

500 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

prediction_threshold_read_only [bool] indicated whether modification of the prediction
threshold is forbidden. Threshold modification is forbidden once a model has had a de-
ployment created or predictions made via the dedicated prediction API.

model_number [integer] model number assigned to a model

supports_composable_ml [bool or None] (New in version v2.26) whether this model is sup-
ported in the Composable ML.

classmethod get(project_id, model_id)
Retrieve a specific rating table model

If the project does not have a rating table, a ClientError will occur.

Parameters
project_id [str] the id of the project the model belongs to

model_id [str] the id of the model to retrieve

Returns
model [RatingTableModel] the model

classmethod create_from_rating_table(project_id, rating_table_id)
Creates a new model from a validated rating table record. The RatingTable must not be associated with an
existing model.

Parameters
project_id [str] the id of the project the rating table belongs to

rating_table_id [str] the id of the rating table to create this model from

Returns
job: Job an instance of created async job

Raises
ClientError (422) Raised if creating model from a RatingTable that failed validation

JobAlreadyRequested Raised if creating model from a RatingTable that is already associ-
ated with a RatingTableModel

Return type Job

advanced_tune(params, description=None)
Generate a new model with the specified advanced-tuning parameters

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Parameters
params [dict] Mapping of parameter ID to parameter value. The list of valid parameter

IDs for a model can be found by calling get_advanced_tuning_parameters(). This end-
point does not need to include values for all parameters. If a parameter is omitted, its
current_value will be used.

description [str] Human-readable string describing the newly advanced-tuned model

Returns
ModelJob The created job to build the model

2.3. API Reference 501

DataRobot Python API Documentation, Release 3.2.2

Return type ModelJob

cross_validate()
Run cross validation on the model.

Note: To perform Cross Validation on a new model with new parameters, use train instead.

Returns
ModelJob The created job to build the model

delete()
Delete a model from the project’s leaderboard.

Return type None

download_export(filepath)
Download an exportable model file for use in an on-premise DataRobot standalone prediction environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

Parameters
filepath [str] The path at which to save the exported model file.

Return type None

download_scoring_code(file_name, source_code=False)
Download the Scoring Code JAR.

Parameters
file_name [str] File path where scoring code will be saved.

source_code [bool, optional] Set to True to download source code archive. It will not be
executable.

download_training_artifact(file_name)
Retrieve trained artifact(s) from a model containing one or more custom tasks.

Artifact(s) will be downloaded to the specified local filepath.

Parameters
file_name [str] File path where trained model artifact(s) will be saved.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

get_advanced_tuning_parameters()
Get the advanced-tuning parameters available for this model.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

502 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
dict A dictionary describing the advanced-tuning parameters for the current model. There

are two top-level keys, tuning_description and tuning_parameters.

tuning_description an optional value. If not None, then it indicates the user-specified de-
scription of this set of tuning parameter.

tuning_parameters is a list of a dicts, each has the following keys

• parameter_name : (str) name of the parameter (unique per task, see below)

• parameter_id : (str) opaque ID string uniquely identifying parameter

• default_value : (*) the actual value used to train the model; either the single value of
the parameter specified before training, or the best value from the list of grid-searched
values (based on current_value)

• current_value : (*) the single value or list of values of the parameter that were grid
searched. Depending on the grid search specification, could be a single fixed value (no
grid search), a list of discrete values, or a range.

• task_name : (str) name of the task that this parameter belongs to

• constraints: (dict) see the notes below

• vertex_id: (str) ID of vertex that this parameter belongs to

Notes

The type of default_value and current_value is defined by the constraints structure. It will be a string or
numeric Python type.

constraints is a dict with at least one, possibly more, of the following keys. The presence of a key indicates
that the parameter may take on the specified type. (If a key is absent, this means that the parameter may
not take on the specified type.) If a key on constraints is present, its value will be a dict containing all of
the fields described below for that key.

"constraints": {
"select": {

"values": [<list(basestring or number) : possible values>]
},
"ascii": {},
"unicode": {},
"int": {

"min": <int : minimum valid value>,
"max": <int : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"float": {

"min": <float : minimum valid value>,
"max": <float : maximum valid value>,
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"intList": {

"min_length": <int : minimum valid length>,
(continues on next page)

2.3. API Reference 503

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

"max_length": <int : maximum valid length>
"min_val": <int : minimum valid value>,
"max_val": <int : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
},
"floatList": {

"min_length": <int : minimum valid length>,
"max_length": <int : maximum valid length>
"min_val": <float : minimum valid value>,
"max_val": <float : maximum valid value>
"supports_grid_search": <bool : True if Grid Search may be

requested for this param>
}

}

The keys have meaning as follows:

• select: Rather than specifying a specific data type, if present, it indicates that the parameter is permitted
to take on any of the specified values. Listed values may be of any string or real (non-complex) numeric
type.

• ascii: The parameter may be a unicode object that encodes simple ASCII characters. (A-Z, a-z, 0-9,
whitespace, and certain common symbols.) In addition to listed constraints, ASCII keys currently may
not contain either newlines or semicolons.

• unicode: The parameter may be any Python unicode object.

• int: The value may be an object of type int within the specified range (inclusive). Please note that the
value will be passed around using the JSON format, and some JSON parsers have undefined behavior
with integers outside of the range [-(2**53)+1, (2**53)-1].

• float: The value may be an object of type float within the specified range (inclusive).

• intList, floatList: The value may be a list of int or float objects, respectively, following constraints as
specified respectively by the int and float types (above).

Many parameters only specify one key under constraints. If a parameter specifies multiple keys, the pa-
rameter may take on any value permitted by any key.

Return type AdvancedTuningParamsType
get_all_confusion_charts(fallback_to_parent_insights=False)

Retrieve a list of all confusion matrices available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

confusion chart data for this model’s parent for any source that is not available for this model
and if this has a defined parent model. If omitted or False, or this model has no parent, this
will not attempt to retrieve any data from this model’s parent.

Returns
list of ConfusionChart Data for all available confusion charts for model.

get_all_feature_impacts(data_slice_filter=None)
Retrieve a list of all feature impact results available for the model.

Parameters

504 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on the
dataslice.id. By default, this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then no data_slice filtering will be applied
when requesting the roc_curve.

Returns
list of dicts Data for all available model feature impacts. Or an empty list if not data found.

Examples

model = datarobot.Model(id='model-id', project_id='project-id')

Get feature impact insights for sliced data
data_slice = datarobot.DataSlice(id='data-slice-id')
sliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get feature impact insights for unsliced data
data_slice = datarobot.DataSlice()
unsliced_fi = model.get_all_feature_impacts(data_slice_filter=data_slice)

Get all feature impact insights
all_fi = model.get_all_feature_impacts()

get_all_lift_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all Lift charts available for the model.

Parameters
fallback_to_parent_insights [bool, optional] (New in version v2.14) Optional, if True, this

will return lift chart data for this model’s parent for any source that is not available for this
model and if this model has a defined parent model. If omitted or False, or this model has
no parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned lift chart by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of LiftChart Data for all available model lift charts. Or an empty list if no data found.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get lift chart insights for sliced data
sliced_lift_charts = model.get_all_lift_charts(data_slice_id='data-slice-id')

Get lift chart insights for unsliced data
unsliced_lift_charts = model.get_all_lift_charts(unsliced_only=True)

Get all lift chart insights
all_lift_charts = model.get_all_lift_charts()

get_all_multiclass_lift_charts(fallback_to_parent_insights=False)
Retrieve a list of all Lift charts available for the model.

2.3. API Reference 505

DataRobot Python API Documentation, Release 3.2.2

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

lift chart data for this model’s parent for any source that is not available for this model and
if this model has a defined parent model. If omitted or False, or this model has no parent,
this will not attempt to retrieve any data from this model’s parent.

Returns
list of LiftChart Data for all available model lift charts.

get_all_residuals_charts(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all residuals charts available for the model.

Parameters
fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data

for this model’s parent for any source that is not available for this model and if this model
has a defined parent model. If omitted or False, or this model has no parent, this will not
attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] Filters the returned residuals charts by
data_slice_filter.id. If None (the default) applies no filter based on data_slice_id.

Returns
list of ResidualsChart Data for all available model residuals charts.

Examples

model = datarobot.Model.get('project-id', 'model-id')

Get residuals chart insights for sliced data
sliced_residuals_charts = model.get_all_residuals_charts(data_slice_id='data-
→˓slice-id')

Get residuals chart insights for unsliced data
unsliced_residuals_charts = model.get_all_residuals_charts(unsliced_only=True)

Get all residuals chart insights
all_residuals_charts = model.get_all_residuals_charts()

get_all_roc_curves(fallback_to_parent_insights=False, data_slice_filter=None)
Retrieve a list of all ROC curves available for the model.

Parameters
fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return

ROC curve data for this model’s parent for any source that is not available for this model
and if this model has a defined parent model. If omitted or False, or this model has no
parent, this will not attempt to retrieve any data from this model’s parent.

data_slice_filter [DataSlice, optional] filters the returned roc_curve by data_slice_filter.id.
If None (the default) applies no filter based on data_slice_id.

Returns
list of RocCurve Data for all available model ROC curves. Or an empty list if no RocCurves

are found.

506 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

model = datarobot.Model.get('project-id', 'model-id')
ds_filter=DataSlice(id='data-slice-id')

Get roc curve insights for sliced data
sliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get roc curve insights for unsliced data
data_slice_filter=DataSlice(id=None)
unsliced_roc = model.get_all_roc_curves(data_slice_filter=ds_filter)

Get all roc curve insights
all_roc_curves = model.get_all_roc_curves()

get_confusion_chart(source, fallback_to_parent_insights=False)
Retrieve them model’s confusion matrix for the specified source.

Parameters
source [str] Confusion chart source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
confusion chart data for this model’s parent if the confusion chart is not available for this
model and the defined parent model. If omitted or False, or there is no parent model, will
not attempt to return insight data from this model’s parent.

Returns
ConfusionChart Model ConfusionChart data

Raises
ClientError If the insight is not available for this model

get_cross_class_accuracy_scores()
Retrieves a list of Cross Class Accuracy scores for the model.

Returns
json

get_cross_validation_scores(partition=None, metric=None)
Return a dictionary, keyed by metric, showing cross validation scores per partition.

Cross Validation should already have been performed using cross_validate or train.

Note: Models that computed cross validation before this feature was added will need to be deleted and
retrained before this method can be used.

Parameters
partition [float] optional, the id of the partition (1,2,3.0,4.0,etc. . .) to filter results by can be

a whole number positive integer or float value. 0 corresponds to the validation partition.

metric: unicode optional name of the metric to filter to resulting cross validation scores by

Returns

2.3. API Reference 507

DataRobot Python API Documentation, Release 3.2.2

cross_validation_scores: dict A dictionary keyed by metric showing cross validation scores
per partition.

get_data_disparity_insights(feature, class_name1, class_name2)
Retrieve a list of Cross Class Data Disparity insights for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

class_name1 [str] One of the compared classes

class_name2 [str] Another compared class

Returns
json

get_fairness_insights(fairness_metrics_set=None, offset=0, limit=100)
Retrieve a list of Per Class Bias insights for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
json

get_feature_effect(source, data_slice_id=None)
Retrieve Feature Effects for the model.

Feature Effects provides partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [string] The source Feature Effects are retrieved for.

data_slice_id [string, optional] ID for the data slice used in the request. If None, retrieve
unsliced insight data.

Returns
feature_effects [FeatureEffects] The feature effects data.

Raises
ClientError (404) If the feature effects have not been computed or source is not valid value.

get_feature_effect_metadata()
Retrieve Feature Effects metadata. Response contains status and available model sources.

508 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Feature Effect for the training partition is always available, with the exception of older projects that
only supported Feature Effect for validation.

• When a model is trained into validation or holdout without stacked predictions (i.e., no out-of-sample
predictions in those partitions), Feature Effects is not available for validation or holdout.

• Feature Effects for holdout is not available when holdout was not unlocked for the project.

Use source to retrieve Feature Effects, selecting one of the provided sources.

Returns
feature_effect_metadata: FeatureEffectMetadata

get_feature_effects_multiclass(source='training', class_=None)
Retrieve Feature Effects for the multiclass model.

Feature Effects provide partial dependence and predicted vs actual values for top-500 features ordered by
feature impact score.

The partial dependence shows marginal effect of a feature on the target variable after accounting for the
average effects of all other predictive features. It indicates how, holding all other variables except the feature
of interest as they were, the value of this feature affects your prediction.

Requires that Feature Effects has already been computed with request_feature_effect.

See get_feature_effect_metadata for retrieving information the available sources.

Parameters
source [str] The source Feature Effects are retrieved for.

class_ [str or None] The class name Feature Effects are retrieved for.

Returns
list The list of multiclass feature effects.

Raises
ClientError (404) If Feature Effects have not been computed or source is not valid value.

get_feature_impact(with_metadata=False, data_slice_filter=<datarobot.models.model.Sentinel object>)
Retrieve the computed Feature Impact results, a measure of the relevance of each feature in the model.

Feature Impact is computed for each column by creating new data with that column randomly permuted
(but the others left unchanged), and seeing how the error metric score for the predictions is affected. The
‘impactUnnormalized’ is how much worse the error metric score is when making predictions on this mod-
ified data. The ‘impactNormalized’ is normalized so that the largest value is 1. In both cases, larger values
indicate more important features.

If a feature is a redundant feature, i.e. once other features are considered it doesn’t contribute much in addi-
tion, the ‘redundantWith’ value is the name of feature that has the highest correlation with this feature. Note
that redundancy detection is only available for jobs run after the addition of this feature. When retrieving
data that predates this functionality, a NoRedundancyImpactAvailable warning will be used.

Elsewhere this technique is sometimes called ‘Permutation Importance’.

Requires that Feature Impact has already been computed with request_feature_impact.

Parameters
with_metadata [bool] The flag indicating if the result should include the metadata as well.

2.3. API Reference 509

DataRobot Python API Documentation, Release 3.2.2

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default, this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_feature_impact will raise a
ValueError.

Returns
list or dict The feature impact data response depends on the with_metadata parameter. The

response is either a dict with metadata and a list with actual data or just a list with that data.

Each List item is a dict with the keys featureName, impactNormalized, and
impactUnnormalized, redundantWith and count.

For dict response available keys are:

• featureImpacts - Feature Impact data as a dictionary. Each item is a dict with
keys: featureName, impactNormalized, and impactUnnormalized, and
redundantWith.

• shapBased - A boolean that indicates whether Feature Impact was calculated using
Shapley values.

• ranRedundancyDetection - A boolean that indicates whether redundant feature
identification was run while calculating this Feature Impact.

• rowCount - An integer or None that indicates the number of rows that was used to
calculate Feature Impact. For the Feature Impact calculated with the default logic,
without specifying the rowCount, we return None here.

• count - An integer with the number of features under the featureImpacts.

Raises
ClientError (404) If the feature impacts have not been computed.

ValueError If data_slice_filter passed as None

get_features_used()
Query the server to determine which features were used.

Note that the data returned by this method is possibly different than the names of the features in the featurelist
used by this model. This method will return the raw features that must be supplied in order for predictions
to be generated on a new set of data. The featurelist, in contrast, would also include the names of derived
features.

Returns
features [list of str] The names of the features used in the model.

Return type List[str]

get_frozen_child_models()
Retrieve the IDs for all models that are frozen from this model.

Returns
A list of Models

get_labelwise_roc_curves(source, fallback_to_parent_insights=False)
Retrieve a list of LabelwiseRocCurve instances for a multilabel model the given source and all labels.

New in version v2.24.

Parameters

510 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for
possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return ROC curve data for
this model’s parent if the ROC curve is not available for this model and the model has a
defined parent model. If omitted or False, or there is no parent model, will not attempt to
return data from this model’s parent.

Returns
list of [class:LabelwiseRocCurve <datarobot.models.roc_curve.LabelwiseRocCurve>] La-

belwise ROC Curve instances for source and all labels

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is binary

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_lift_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
lift chart data for this model’s parent if the lift chart is not available for this model and the
model has a defined parent model. If omitted or False, or there is no parent model, will not
attempt to return insight data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_lift_chart will raise a ValueError.

Returns
LiftChart Model lift chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_missing_report_info()
Retrieve a report on missing training data that can be used to understand missing values treatment in the
model. The report consists of missing values resolutions for features numeric or categorical features that
were part of building the model.

Returns

2.3. API Reference 511

DataRobot Python API Documentation, Release 3.2.2

An iterable of MissingReportPerFeature The queried model missing report, sorted by
missing count (DESCENDING order).

get_model_blueprint_chart()
Retrieve a diagram that can be used to understand data flow in the blueprint.

Returns
ModelBlueprintChart The queried model blueprint chart.

get_model_blueprint_documents()
Get documentation for tasks used in this model.

Returns
list of BlueprintTaskDocument All documents available for the model.

get_model_blueprint_json()
Get the blueprint json representation used by this model.

Returns
BlueprintJson Json representation of the blueprint stages.

Return type Dict[str, Tuple[List[str], List[str], str]]

get_multiclass_feature_impact()
For multiclass it’s possible to calculate feature impact separately for each target class. The method for
calculation is exactly the same, calculated in one-vs-all style for each target class.

Requires that Feature Impact has already been computed with request_feature_impact.

Returns
feature_impacts [list of dict] The feature impact data. Each item is a dict with the keys

‘featureImpacts’ (list), ‘class’ (str). Each item in ‘featureImpacts’ is a dict with the keys
‘featureName’, ‘impactNormalized’, and ‘impactUnnormalized’, and ‘redundantWith’.

Raises
ClientError (404) If the multiclass feature impacts have not been computed.

get_multiclass_lift_chart(source, fallback_to_parent_insights=False)
Retrieve model Lift chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

512 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_multilabel_lift_charts(source, fallback_to_parent_insights=False)
Retrieve model Lift charts for the specified source.

New in version v2.24.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return lift chart data for this
model’s parent if the lift chart is not available for this model and the model has a defined
parent model. If omitted or False, or there is no parent model, will not attempt to return
insight data from this model’s parent.

Returns
list of LiftChart Model lift chart data for each saved target class

Raises
ClientError If the insight is not available for this model

get_num_iterations_trained()
Retrieves the number of estimators trained by early-stopping tree-based models.

– versionadded:: v2.22

Returns
projectId: str id of project containing the model

modelId: str id of the model

data: array list of numEstimatorsItem objects, one for each modeling stage.

numEstimatorsItem will be of the form:
stage: str indicates the modeling stage (for multi-stage models); None of single-stage models

numIterations: int the number of estimators or iterations trained by the model

get_or_request_feature_effect(source, max_wait=600, row_count=None, data_slice_id=None)
Retrieve Feature Effects for the model, requesting a new job if it hasn’t been run previously.

See get_feature_effect_metadata for retrieving information of source.

Parameters
source [string] The source Feature Effects are retrieved for.

max_wait [int, optional] The maximum time to wait for a requested Feature Effect job to
complete before erroring.

row_count [int, optional] (New in version v2.21) The sample size to use for Feature Impact
computation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size
of the model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
feature_effects [FeatureEffects] The Feature Effects data.

2.3. API Reference 513

DataRobot Python API Documentation, Release 3.2.2

get_or_request_feature_effects_multiclass(source, top_n_features=None, features=None,
row_count=None, class_=None, max_wait=600)

Retrieve Feature Effects for the multiclass model, requesting a job if it hasn’t been run previously.

Parameters
source [string] The source Feature Effects retrieve for.

class_ [str or None] The class name Feature Effects retrieve for.

row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by Feature Impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

max_wait [int, optional] The maximum time to wait for a requested Feature Effects job to
complete before erroring.

Returns
feature_effects [list of FeatureEffectsMulticlass] The list of multiclass feature effects data.

get_or_request_feature_impact(max_wait=600, **kwargs)
Retrieve feature impact for the model, requesting a job if it hasn’t been run previously

Parameters
max_wait [int, optional] The maximum time to wait for a requested feature impact job to

complete before erroring

**kwargs Arbitrary keyword arguments passed to request_feature_impact.

Returns
feature_impacts [list or dict] The feature impact data. See get_feature_impact for the

exact schema.

get_parameters()
Retrieve model parameters.

Returns
ModelParameters Model parameters for this model.

get_pareto_front()
Retrieve the Pareto Front for a Eureqa model.

This method is only supported for Eureqa models.

Returns
ParetoFront Model ParetoFront data

get_prime_eligibility()
Check if this model can be approximated with DataRobot Prime

Returns
prime_eligibility [dict] a dict indicating whether a model can be approximated with

DataRobot Prime (key can_make_prime) and why it may be ineligible (key message)

get_residuals_chart(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve model residuals chart for the specified source.

514 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

fallback_to_parent_insights [bool] Optional, if True, this will return residuals chart data
for this model’s parent if the residuals chart is not available for this model and the model
has a defined parent model. If omitted or False, or there is no parent model, will not attempt
to return residuals data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which re-
turns an unsliced insight. If data_slice_filter is None then get_residuals_chart will raise a
ValueError.

Returns
ResidualsChart Model residuals chart data

Raises
ClientError If the insight is not available for this model

ValueError If data_slice_filter passed as None

get_roc_curve(source, fallback_to_parent_insights=False,
data_slice_filter=<datarobot.models.model.Sentinel object>)

Retrieve the ROC curve for a binary model for the specified source.

Parameters
source [str] ROC curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values. (New in version v2.23) For time series and OTV models, also accepts
values backtest_2, backtest_3, . . . , up to the number of backtests in the model.

fallback_to_parent_insights [bool] (New in version v2.14) Optional, if True, this will return
ROC curve data for this model’s parent if the ROC curve is not available for this model and
the model has a defined parent model. If omitted or False, or there is no parent model, will
not attempt to return data from this model’s parent.

data_slice_filter [DataSlice, optional] A dataslice used to filter the return values based on
the dataslice.id. By default this function will use data_slice_filter.id == None which returns
an unsliced insight. If data_slice_filter is None then get_roc_curve will raise a ValueError.

Returns
RocCurve Model ROC curve data

Raises
ClientError If the insight is not available for this model

(New in version v3.0) TypeError If the underlying project type is multilabel

ValueError If data_slice_filter passed as None

get_rulesets()
List the rulesets approximating this model generated by DataRobot Prime

If this model hasn’t been approximated yet, will return an empty list. Note that these are rulesets approxi-
mating this model, not rulesets used to construct this model.

Returns
rulesets [list of Ruleset]

2.3. API Reference 515

DataRobot Python API Documentation, Release 3.2.2

Return type List[Ruleset]

get_supported_capabilities()
Retrieves a summary of the capabilities supported by a model.

New in version v2.14.

Returns
supportsBlending: bool whether the model supports blending

supportsMonotonicConstraints: bool whether the model supports monotonic constraints

hasWordCloud: bool whether the model has word cloud data available

eligibleForPrime: bool whether the model is eligible for Prime

hasParameters: bool whether the model has parameters that can be retrieved

supportsCodeGeneration: bool (New in version v2.18) whether the model supports code
generation

supportsShap: bool
(New in version v2.18) True if the model supports Shapley package. i.e. Shapley based

feature Importance

supportsEarlyStopping: bool (New in version v2.22) True if this is an early stopping tree-
based model and number of trained iterations can be retrieved.

get_uri()

Returns
url [str] Permanent static hyperlink to this model at leaderboard.

Return type str

get_word_cloud(exclude_stop_words=False)
Retrieve word cloud data for the model.

Parameters
exclude_stop_words [bool, optional] Set to True if you want stopwords filtered out of re-

sponse.

Returns
WordCloud Word cloud data for the model.

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

open_model_browser()
Opens model at project leaderboard in web browser. Note: If text-mode browsers are used, the calling
process will block until the user exits the browser.

Return type None

516 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

request_approximation()
Request an approximation of this model using DataRobot Prime

This will create several rulesets that could be used to approximate this model. After comparing their scores
and rule counts, the code used in the approximation can be downloaded and run locally.

Returns
job [Job] the job generating the rulesets

request_cross_class_accuracy_scores()
Request data disparity insights to be computed for the model.

Returns
status_id [str] A statusId of computation request.

request_data_disparity_insights(feature, compared_class_names)
Request data disparity insights to be computed for the model.

Parameters
feature [str] Bias and Fairness protected feature name.

compared_class_names [list(str)] List of two classes to compare

Returns
status_id [str] A statusId of computation request.

request_external_test(dataset_id, actual_value_column=None)
Request external test to compute scores and insights on an external test dataset

Parameters
dataset_id [string] The dataset to make predictions against (as uploaded from

Project.upload_dataset)

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

Returns
——-
job [Job] a Job representing external dataset insights computation

request_fairness_insights(fairness_metrics_set=None)
Request fairness insights to be computed for the model.

Parameters
fairness_metrics_set [str, optional] Can be one of <datarobot.enums.FairnessMetricsSet>.

The fairness metric used to calculate the fairness scores.

Returns
status_id [str] A statusId of computation request.

request_feature_effect(row_count=None, data_slice_id=None)
Submit request to compute Feature Effects for the model.

See get_feature_effect for more information on the result of the job.

Parameters

2.3. API Reference 517

DataRobot Python API Documentation, Release 3.2.2

row_count [int] (New in version v2.21) The sample size to use for Feature Impact compu-
tation. Minimum is 10 rows. Maximum is 100000 rows or the training sample size of the
model, whichever is less.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job] A Job representing the feature effect computation. To get the completed feature

effect data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature effect have already been requested.

request_feature_effects_multiclass(row_count=None, top_n_features=None, features=None)
Request Feature Effects computation for the multiclass model.

See get_feature_effect for more information on the result of the job.

Parameters
row_count [int] The number of rows from dataset to use for Feature Impact calculation.

top_n_features [int or None] Number of top features (ranked by feature impact) used to
calculate Feature Effects.

features [list or None] The list of features used to calculate Feature Effects.

Returns
job [Job] A Job representing Feature Effect computation. To get the completed Feature Effect

data, use job.get_result or job.get_result_when_complete.

request_feature_impact(row_count=None, with_metadata=False, data_slice_id=None)
Request feature impacts to be computed for the model.

See get_feature_impact for more information on the result of the job.

Parameters
row_count [int, optional] The sample size (specified in rows) to use for Feature Impact com-

putation. This is not supported for unsupervised, multiclass (which has a separate method),
and time series projects.

with_metadata [bool, optional] Flag indicating whether the result should include the meta-
data. If true, metadata is included.

data_slice_id [str, optional] ID for the data slice used in the request. If None, request unsliced
insight data.

Returns
job [Job or status_id] Job representing the Feature Impact computation. To retrieve the com-

pleted Feature Impact data, use job.get_result or job.get_result_when_complete.

Raises
JobAlreadyRequested (422) If the feature impacts have already been requested.

request_frozen_datetime_model(training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None)

Train a new frozen model with parameters from this model.

518 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Requires that this model belongs to a datetime partitioned project. If it does not, an error will occur when
submitting the job.

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

In addition of training_row_count and training_duration, frozen datetime models may be trained on an
exact date range. Only one of training_row_count, training_duration, or training_start_date and train-
ing_end_date should be specified.

Models specified using training_start_date and training_end_date are the only ones that can be trained into
the holdout data (once the holdout is unlocked).

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
training_row_count [int, optional] the number of rows of data that should be used to train

the model. If specified, training_duration may not be specified.

training_duration [str, optional] a duration string specifying what time range the data used
to train the model should span. If specified, training_row_count may not be specified.

training_start_date [datetime.datetime, optional] the start date of the data to train to model
on. Only rows occurring at or after this datetime will be used. If training_start_date is
specified, training_end_date must also be specified.

training_end_date [datetime.datetime, optional] the end date of the data to train the model
on. Only rows occurring strictly before this datetime will be used. If training_end_date is
specified, training_start_date must also be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined
by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

request_frozen_model(sample_pct=None, training_row_count=None)
Train a new frozen model with parameters from this model

Note: This method only works if project the model belongs to is not datetime partitioned. If it is, use
request_frozen_datetime_model instead.

2.3. API Reference 519

DataRobot Python API Documentation, Release 3.2.2

Frozen models use the same tuning parameters as their parent model instead of independently optimizing
them to allow efficiently retraining models on larger amounts of the training data.

Parameters
sample_pct [float] optional, the percentage of the dataset to use with the model. If not pro-

vided, will use the value from this model.

training_row_count [int] (New in version v2.9) optional, the integer number of rows of the
dataset to use with the model. Only one of sample_pct and training_row_count should be
specified.

Returns
model_job [ModelJob] the modeling job training a frozen model

Return type ModelJob

request_lift_chart(source, data_slice_id=None)
Request the model Lift Chart for the specified source.

Parameters
source [str] Lift chart data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_predictions(dataset_id=None, dataset=None, dataframe=None, file_path=None, file=None,
include_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, explanation_algorithm=None,
max_explanations=None, max_ngram_explanations=None)

Requests predictions against a previously uploaded dataset.

Parameters
dataset_id [string, optional] The ID of the dataset to make predictions against (as uploaded

from Project.upload_dataset)

dataset [Dataset, optional] The dataset to make predictions against (as uploaded from
Project.upload_dataset)

dataframe [pd.DataFrame, optional] (New in v3.0) The dataframe to make predictions
against

file_path [str, optional] (New in v3.0) Path to file to make predictions against

file [IOBase, optional] (New in v3.0) File to make predictions against

include_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Specifies whether prediction intervals should be calculated for this request. Defaults to
True if prediction_intervals_size is specified, otherwise defaults to False.

520 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Rep-
resents the percentile to use for the size of the prediction intervals. Defaults to 80 if in-
clude_prediction_intervals is True. Prediction intervals size must be between 1 and 100
(inclusive).

forecast_point [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. This is the default point relative to which predictions will be generated, based
on the forecast window of the project. See the time series prediction documentation for
more information.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column can be used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm: (New in version v2.21) optional; If set to ‘shap’, the response
will include prediction explanations based on the SHAP explainer (SHapley Additive
exPlanations). Defaults to null (no prediction explanations).

max_explanations: (New in version v2.21) int optional; specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value, greatest
to least. If null, no limit. In the case of ‘shap’: if the number of features is greater than the
limit, the sum of remaining values will also be returned as shapRemainingTotal. Defaults
to null. Cannot be set if explanation_algorithm is omitted.

max_ngram_explanations: optional; int or str (New in version v2.29) Specifies the max-
imum number of text explanation values that should be returned. If set to all, text explana-
tions will be computed and all the ngram explanations will be returned. If set to a non zero
positive integer value, text explanations will be computed and this amount of descendingly
sorted ngram explanations will be returned. By default text explanation won’t be triggered
to be computed.

Returns
job [PredictJob] The job computing the predictions

Return type PredictJob

request_residuals_chart(source, data_slice_id=None)
Request the model residuals chart for the specified source.

Parameters
source [str] Residuals chart data source. Check datarobot.enums.CHART_DATA_SOURCE

for possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

2.3. API Reference 521

DataRobot Python API Documentation, Release 3.2.2

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_roc_curve(source, data_slice_id=None)
Request the model Roc Curve for the specified source.

Parameters
source [str] Roc Curve data source. Check datarobot.enums.CHART_DATA_SOURCE for

possible values.

data_slice_id [string, optional] ID for the data slice used in the request. If None, request
unsliced insight data.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Return type StatusCheckJob

request_training_predictions(data_subset, explanation_algorithm=None, max_explanations=None)
Start a job to build training predictions

Parameters
data_subset [str] data set definition to build predictions on. Choices are:

• dr.enums.DATA_SUBSET.ALL or string all for all data available. Not valid for
models in datetime partitioned projects

• dr.enums.DATA_SUBSET.VALIDATION_AND_HOLDOUT or string validationAndHoldout for
all data except training set. Not valid for models in datetime partitioned projects

• dr.enums.DATA_SUBSET.HOLDOUT or string holdout for holdout data set only

• dr.enums.DATA_SUBSET.ALL_BACKTESTS or string allBacktests for downloading
the predictions for all backtest validation folds. Requires the model to have success-
fully scored all backtests. Datetime partitioned projects only.

explanation_algorithm [dr.enums.EXPLANATIONS_ALGORITHM] (New in v2.21) Op-
tional. If set to dr.enums.EXPLANATIONS_ALGORITHM.SHAP, the response will in-
clude prediction explanations based on the SHAP explainer (SHapley Additive exPlana-
tions). Defaults to None (no prediction explanations).

max_explanations [int] (New in v2.21) Optional. Specifies the maximum number of
explanation values that should be returned for each row, ordered by absolute value,
greatest to least. In the case of dr.enums.EXPLANATIONS_ALGORITHM.SHAP: If not
set, explanations are returned for all features. If the number of features is greater
than the max_explanations, the sum of remaining values will also be returned as
shap_remaining_total. Max 100. Defaults to null for datasets narrower than
100 columns, defaults to 100 for datasets wider than 100 columns. Is ignored if
explanation_algorithm is not set.

Returns
Job an instance of created async job

522 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

request_transferable_export(prediction_intervals_size=None)
Request generation of an exportable model file for use in an on-premise DataRobot standalone prediction
environment.

This function can only be used if model export is enabled, and will only be useful if you have an on-premise
environment in which to import it.

This function does not download the exported file. Use download_export for that.

Parameters
prediction_intervals_size [int, optional] (New in v2.19) For time series projects only. Rep-

resents the percentile to use for the size of the prediction intervals. Prediction intervals size
must be between 1 and 100 (inclusive).

Returns
Job

Examples

model = datarobot.Model.get('project-id', 'model-id')
job = model.request_transferable_export()
job.wait_for_completion()
model.download_export('my_exported_model.drmodel')

Client must be configured to use standalone prediction server for import:
datarobot.Client(token='my-token-at-standalone-server',

endpoint='standalone-server-url/api/v2')

imported_model = datarobot.ImportedModel.create('my_exported_model.drmodel')

Return type Job

retrain(sample_pct=None, featurelist_id=None, training_row_count=None, n_clusters=None)
Submit a job to the queue to train a blender model.

Parameters
sample_pct: float, optional The sample size in percents (1 to 100) to use in training. If this

parameter is used then training_row_count should not be given.

featurelist_id [str, optional] The featurelist id

training_row_count [int, optional] The number of rows used to train the model. If this
parameter is used, then sample_pct should not be given.

n_clusters: int, optional (new in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that do
not determine the number of clusters automatically.

Returns
job [ModelJob] The created job that is retraining the model

Return type ModelJob

2.3. API Reference 523

DataRobot Python API Documentation, Release 3.2.2

set_prediction_threshold(threshold)
Set a custom prediction threshold for the model.

May not be used once prediction_threshold_read_only is True for this model.

Parameters
threshold [float] only used for binary classification projects. The threshold to when deciding

between the positive and negative classes when making predictions. Should be between 0.0
and 1.0 (inclusive).

star_model()
Mark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

start_advanced_tuning_session()
Start an Advanced Tuning session. Returns an object that helps set up arguments for an Advanced Tuning
model execution.

As of v2.17, all models other than blenders, open source, prime, baseline and user-created support Ad-
vanced Tuning.

Returns
AdvancedTuningSession Session for setting up and running Advanced Tuning on a model

train(sample_pct=None, featurelist_id=None, scoring_type=None, training_row_count=None,
monotonic_increasing_featurelist_id=<object object>, monotonic_decreasing_featurelist_id=<object
object>)

Train the blueprint used in model on a particular featurelist or amount of data.

This method creates a new training job for worker and appends it to the end of the queue for this project.
After the job has finished you can get the newly trained model by retrieving it from the project leaderboard,
or by retrieving the result of the job.

Either sample_pct or training_row_count can be used to specify the amount of data to use, but not both. If
neither are specified, a default of the maximum amount of data that can safely be used to train any blueprint
without going into the validation data will be selected.

In smart-sampled projects, sample_pct and training_row_count are assumed to be in terms of rows of the
minority class.

Note: For datetime partitioned projects, see train_datetime instead.

Parameters
sample_pct [float, optional] The amount of data to use for training, as a percentage of the

project dataset from 0 to 100.

featurelist_id [str, optional] The identifier of the featurelist to use. If not defined, the fea-
turelist of this model is used.

scoring_type [str, optional] Either validation or crossValidation (also
dr.SCORING_TYPE.validation or dr.SCORING_TYPE.cross_validation).
validation is available for every partitioning type, and indicates that the default
model validation should be used for the project. If the project uses a form of cross-
validation partitioning, crossValidation can also be used to indicate that all of the
available training/validation combinations should be used to evaluate the model.

524 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

training_row_count [int, optional] The number of rows to use to train the requested model.

monotonic_increasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. Passing None disables increasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str] (new in version 2.11) optional, the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the
target. Passing None disables decreasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

Returns
model_job_id [str] id of created job, can be used as parameter to ModelJob.get method or
wait_for_async_model_creation function

Examples

project = Project.get('project-id')
model = Model.get('project-id', 'model-id')
model_job_id = model.train(training_row_count=project.max_train_rows)

Return type str

train_datetime(featurelist_id=None, training_row_count=None, training_duration=None,
time_window_sample_pct=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Trains this model on a different featurelist or sample size.

Requires that this model is part of a datetime partitioned project; otherwise, an error will occur.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
featurelist_id [str, optional] the featurelist to use to train the model. If not specified, the

featurelist of this model is used.

training_row_count [int, optional] the number of rows of data that should be used to train
the model. If specified, neither training_duration nor use_project_settings may
be specified.

training_duration [str, optional] a duration string specifying what time range the data
used to train the model should span. If specified, neither training_row_count nor
use_project_settings may be specified.

use_project_settings [bool, optional] (New in version v2.20) defaults to False. If True,
indicates that the custom backtest partitioning settings specified by the user will be used to
train the model and evaluate backtest scores. If specified, neither training_row_count
nor training_duration may be specified.

time_window_sample_pct [int, optional] may only be specified when the requested model
is a time window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are determined

2.3. API Reference 525

DataRobot Python API Documentation, Release 3.2.2

by a random uniform sample. If specified, training_duration must be specified otherwise,
the number of rows used to train the model and evaluate backtest scores and an error will
occur.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

monotonic_increasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically increasing relation-
ship to the target. Passing None disables increasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically decreasing relationship
to the target. Passing None disables decreasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters: int, optional (New in version 2.27) number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
job [ModelJob] the created job to build the model

Return type ModelJob

unstar_model()
Unmark the model as starred.

Model stars propagate to the web application and the API, and can be used to filter when listing models.

Return type None

Combined Model

See API reference for Combined Model in Segmented Modeling API Reference

Advanced Tuning

class datarobot.models.advanced_tuning.AdvancedTuningSession(model)
A session enabling users to configure and run advanced tuning for a model.

Every model contains a set of one or more tasks. Every task contains a set of zero or more parameters. This
class allows tuning the values of each parameter on each task of a model, before running that model.

This session is client-side only and is not persistent. Only the final model, constructed when run is called, is
persisted on the DataRobot server.

Attributes
description [str] Description for the new advance-tuned model. Defaults to the same description

as the base model.

526 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_task_names()
Get the list of task names that are available for this model

Returns
list(str) List of task names

Return type List[str]

get_parameter_names(task_name)
Get the list of parameter names available for a specific task

Returns
list(str) List of parameter names

Return type List[str]

set_parameter(value, task_name=None, parameter_name=None, parameter_id=None)
Set the value of a parameter to be used

The caller must supply enough of the optional arguments to this function to uniquely identify
the parameter that is being set. For example, a less-common parameter name such as ‘build-
ing_block__complementary_error_function’ might only be used once (if at all) by a single task in a model.
In which case it may be sufficient to simply specify ‘parameter_name’. But a more-common name such
as ‘random_seed’ might be used by several of the model’s tasks, and it may be necessary to also specify
‘task_name’ to clarify which task’s random seed is to be set. This function only affects client-side state. It
will not check that the new parameter value(s) are valid.

Parameters
task_name [str] Name of the task whose parameter needs to be set

parameter_name [str] Name of the parameter to set

parameter_id [str] ID of the parameter to set

value [int, float, list, or str] New value for the parameter, with legal values determined by the
parameter being set

Raises
NoParametersFoundException if no matching parameters are found.

NonUniqueParametersException if multiple parameters matched the specified filtering cri-
teria

Return type None

get_parameters()
Returns the set of parameters available to this model

The returned parameters have one additional key, “value”, reflecting any new values that have been set in this
AdvancedTuningSession. When the session is run, “value” will be used, or if it is unset, “current_value”.

Returns
parameters [dict] “Parameters” dictionary, same as specified on

Model.get_advanced_tuning_params.

An additional field is added per parameter to the ‘tuning_parameters’ list in the dictionary:

2.3. API Reference 527

DataRobot Python API Documentation, Release 3.2.2

value [int, float, list, or str] The current value of the parameter. None if none has been spec-
ified.

Return type AdvancedTuningParamsType

run()
Submit this model for Advanced Tuning.

Returns
datarobot.models.modeljob.ModelJob The created job to build the model

Return type ModelJob

2.3.39 ModelJob

datarobot.models.modeljob.wait_for_async_model_creation(project_id, model_job_id, max_wait=600)
Given a Project id and ModelJob id poll for status of process responsible for model creation until model is created.

Parameters
project_id [str] The identifier of the project

model_job_id [str] The identifier of the ModelJob

max_wait [int, optional] Time in seconds after which model creation is considered unsuccessful

Returns
model [Model] Newly created model

Raises
AsyncModelCreationError Raised if status of fetched ModelJob object is error

AsyncTimeoutError Model wasn’t created in time, specified by max_wait parameter

Return type Model

class datarobot.models.ModelJob(data, completed_resource_url=None)
Tracks asynchronous work being done within a project

Attributes
id [int] the id of the job

project_id [str] the id of the project the job belongs to

status [str] the status of the job - will be one of datarobot.enums.QUEUE_STATUS

job_type [str] what kind of work the job is doing - will be ‘model’ for modeling jobs

is_blocked [bool] if true, the job is blocked (cannot be executed) until its dependencies are re-
solved

sample_pct [float] the percentage of the project’s dataset used in this modeling job

model_type [str] the model this job builds (e.g. ‘Nystroem Kernel SVM Regressor’)

processes [list of str] the processes used by the model

featurelist_id [str] the id of the featurelist used in this modeling job

blueprint [Blueprint] the blueprint used in this modeling job

528 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod from_job(job)
Transforms a generic Job into a ModelJob

Parameters
job: Job A generic job representing a ModelJob

Returns
model_job: ModelJob A fully populated ModelJob with all the details of the job

Raises
ValueError: If the generic Job was not a model job, e.g. job_type != JOB_TYPE.MODEL

Return type ModelJob

classmethod get(project_id, model_job_id)
Fetches one ModelJob. If the job finished, raises PendingJobFinished exception.

Parameters
project_id [str] The identifier of the project the model belongs to

model_job_id [str] The identifier of the model_job

Returns
model_job [ModelJob] The pending ModelJob

Raises
PendingJobFinished If the job being queried already finished, and the server is re-routing

to the finished model.

AsyncFailureError Querying this resource gave a status code other than 200 or 303

Return type ModelJob

classmethod get_model(project_id, model_job_id)
Fetches a finished model from the job used to create it.

Parameters
project_id [str] The identifier of the project the model belongs to

model_job_id [str] The identifier of the model_job

Returns
model [Model] The finished model

Raises
JobNotFinished If the job has not finished yet

AsyncFailureError Querying the model_job in question gave a status code other than 200
or 303

Return type Model

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

2.3. API Reference 529

DataRobot Python API Documentation, Release 3.2.2

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns
result [object]

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters
max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

refresh()
Update this object with the latest job data from the server.

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

530 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type None

2.3.40 Pareto Front

class datarobot.models.pareto_front.ParetoFront(project_id, error_metric, hyperparameters,
target_type, solutions)

Pareto front data for a Eureqa model.

The pareto front reflects the tradeoffs between error and complexity for particular model. The solutions reflect
possible Eureqa models that are different levels of complexity. By default, only one solution will have a corre-
sponding model, but models can be created for each solution.

Attributes
project_id [str] the ID of the project the model belongs to

error_metric [str] Eureqa error-metric identifier used to compute error metrics for this search.
Note that Eureqa error metrics do NOT correspond 1:1 with DataRobot error metrics – the
available metrics are not the same, and are computed from a subset of the training data rather
than from the validation data.

hyperparameters [dict] Hyperparameters used by this run of the Eureqa blueprint

target_type [str] Indicating what kind of modeling is being done in this project, either ‘Regres-
sion’, ‘Binary’ (Binary classification), or ‘Multiclass’ (Multiclass classification).

solutions [list(Solution)] Solutions that Eureqa has found to model this data. Some solutions
will have greater accuracy. Others will have slightly less accuracy but will use simpler ex-
pressions.

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [list] List of the dotted namespace notations for attributes to keep within the ob-
ject structure even if their values are None

class datarobot.models.pareto_front.Solution(eureqa_solution_id, complexity, error, expression,
expression_annotated, best_model, project_id)

Eureqa Solution.

A solution represents a possible Eureqa model; however not all solutions have models associated with them. It
must have a model created before it can be used to make predictions, etc.

Attributes
eureqa_solution_id: str ID of this Solution

complexity: int Complexity score for this solution. Complexity score is a function of the math-
ematical operators used in the current solution. The Complexity calculation can be tuned via
model hyperparameters.

error: float or None Error for the current solution, as computed by Eureqa using the ‘er-
ror_metric’ error metric. It will be None if model refitted existing solution.

expression: str Eureqa model equation string.

2.3. API Reference 531

DataRobot Python API Documentation, Release 3.2.2

expression_annotated: str Eureqa model equation string with variable names tagged for easy
identification.

best_model: bool True, if the model is determined to be the best

create_model()
Add this solution to the leaderboard, if it is not already present.

2.3.41 Partitioning

class datarobot.RandomCV(holdout_pct, reps, seed=0)
A partition in which observations are randomly assigned to cross-validation groups and the holdout set.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

reps [int] number of cross validation folds to use

seed [int] a seed to use for randomization

class datarobot.StratifiedCV(holdout_pct, reps, seed=0)
A partition in which observations are randomly assigned to cross-validation groups and the holdout set, preserv-
ing in each group the same ratio of positive to negative cases as in the original data.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

reps [int] number of cross validation folds to use

seed [int] a seed to use for randomization

class datarobot.GroupCV(holdout_pct, reps, partition_key_cols, seed=0)
A partition in which one column is specified, and rows sharing a common value for that column are guaranteed
to stay together in the partitioning into cross-validation groups and the holdout set.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

reps [int] number of cross validation folds to use

partition_key_cols [list] a list containing a single string, where the string is the name of the
column whose values should remain together in partitioning

seed [int] a seed to use for randomization

class datarobot.UserCV(user_partition_col, cv_holdout_level, seed=0)
A partition where the cross-validation folds and the holdout set are specified by the user.

Parameters
user_partition_col [string] the name of the column containing the partition assignments

cv_holdout_level the value of the partition column indicating a row is part of the holdout set

seed [int] a seed to use for randomization

class datarobot.RandomTVH(holdout_pct, validation_pct, seed=0)
Specifies a partitioning method in which rows are randomly assigned to training, validation, and holdout.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

532 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

validation_pct [int] the desired percentage of dataset to assign to validation set

seed [int] a seed to use for randomization

class datarobot.UserTVH(user_partition_col, training_level, validation_level, holdout_level, seed=0)
Specifies a partitioning method in which rows are assigned by the user to training, validation, and holdout sets.

Parameters
user_partition_col [string] the name of the column containing the partition assignments

training_level the value of the partition column indicating a row is part of the training set

validation_level the value of the partition column indicating a row is part of the validation set

holdout_level the value of the partition column indicating a row is part of the holdout set (use
None if you want no holdout set)

seed [int] a seed to use for randomization

class datarobot.StratifiedTVH(holdout_pct, validation_pct, seed=0)
A partition in which observations are randomly assigned to train, validation, and holdout sets, preserving in each
group the same ratio of positive to negative cases as in the original data.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

validation_pct [int] the desired percentage of dataset to assign to validation set

seed [int] a seed to use for randomization

class datarobot.GroupTVH(holdout_pct, validation_pct, partition_key_cols, seed=0)
A partition in which one column is specified, and rows sharing a common value for that column are guaranteed
to stay together in the partitioning into the training, validation, and holdout sets.

Parameters
holdout_pct [int] the desired percentage of dataset to assign to holdout set

validation_pct [int] the desired percentage of dataset to assign to validation set

partition_key_cols [list] a list containing a single string, where the string is the name of the
column whose values should remain together in partitioning

seed [int] a seed to use for randomization

2.3. API Reference 533

DataRobot Python API Documentation, Release 3.2.2

class datarobot.DatetimePartitioningSpecification(datetime_partition_column,
autopilot_data_selection_method=None,
validation_duration=None,
holdout_start_date=None,
holdout_duration=None, disable_holdout=None,
gap_duration=None, number_of_backtests=None,
backtests=None, use_time_series=False,
default_to_known_in_advance=False,
default_to_do_not_derive=False,
feature_derivation_window_start=None,
feature_derivation_window_end=None,
feature_settings=None,
forecast_window_start=None,
forecast_window_end=None,
windows_basis_unit=None,
treat_as_exponential=None,
differencing_method=None, periodicities=None,
multiseries_id_columns=None,
use_cross_series_features=None,
aggregation_type=None,
cross_series_group_by_columns=None,
calendar_id=None, holdout_end_date=None,
unsupervised_mode=False, model_splits=None, al-
low_partial_history_time_series_predictions=False,
unsupervised_type=None)

Uniquely defines a DatetimePartitioning for some project

Includes only the attributes of DatetimePartitioning that are directly controllable by users, not those determined
by the DataRobot application based on the project dataset and the user-controlled settings.

This is the specification that should be passed to Project.analyze_and_model via the
partitioning_method parameter. To see the full partitioning based on the project dataset, use
DatetimePartitioning.generate.

All durations should be specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Note that either (holdout_start_date, holdout_duration) or (holdout_start_date,
holdout_end_date) can be used to specify holdout partitioning settings.

Attributes
datetime_partition_column [str] the name of the column whose values as dates are used to

assign a row to a particular partition

autopilot_data_selection_method [str] one of datarobot.enums.
DATETIME_AUTOPILOT_DATA_SELECTION_METHOD. Whether models created by the
autopilot should use “rowCount” or “duration” as their data_selection_method.

validation_duration [str or None] the default validation_duration for the backtests

holdout_start_date [datetime.datetime or None] The start date of holdout scoring data. If
holdout_start_date is specified, either holdout_duration or holdout_end_date
must also be specified. If disable_holdout is set to True, holdout_start_date,
holdout_duration, and holdout_end_date may not be specified.

holdout_duration [str or None] The duration of the holdout scoring data. If
holdout_duration is specified, holdout_start_date must also be specified. If

534 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

disable_holdout is set to True, holdout_duration, holdout_start_date, and
holdout_end_date may not be specified.

holdout_end_date [datetime.datetime or None] The end date of holdout scoring data. If
holdout_end_date is specified, holdout_start_date must also be specified. If
disable_holdout is set to True, holdout_end_date, holdout_start_date, and
holdout_duration may not be specified.

disable_holdout [bool or None] (New in version v2.8) Whether to suppress allocating a holdout
fold. If set to True, holdout_start_date, holdout_duration, and holdout_end_date
may not be specified.

gap_duration [str or None] The duration of the gap between training and holdout scoring data

number_of_backtests [int or None] the number of backtests to use

backtests [list of BacktestSpecification] the exact specification of backtests to use. The
indices of the specified backtests should range from 0 to number_of_backtests - 1. If any
backtest is left unspecified, a default configuration will be chosen.

use_time_series [bool] (New in version v2.8) Whether to create a time series project (if True)
or an OTV project which uses datetime partitioning (if False). The default behavior is to
create an OTV project.

default_to_known_in_advance [bool] (New in version v2.11) Optional, default False. Used
for time series projects only. Sets whether all features default to being treated as known
in advance. Known in advance features are expected to be known for dates in the future
when making predictions, e.g., “is this a holiday?”. Individual features can be set to a value
different than the default using the feature_settings parameter.

default_to_do_not_derive [bool] (New in v2.17) Optional, default False. Used for time series
projects only. Sets whether all features default to being treated as do-not-derive features,
excluding them from feature derivation. Individual features can be set to a value different
than the default by using the feature_settings parameter.

feature_derivation_window_start [int or None] (New in version v2.8) Only used for time se-
ries projects. Offset into the past to define how far back relative to the forecast point the
feature derivation window should start. Expressed in terms of the windows_basis_unit
and should be negative value or zero.

feature_derivation_window_end [int or None] (New in version v2.8) Only used for time series
projects. Offset into the past to define how far back relative to the forecast point the feature
derivation window should end. Expressed in terms of the windows_basis_unit and should
be a negative value or zero.

feature_settings [list of FeatureSettings] (New in version v2.9) Optional, a list specifying
per feature settings, can be left unspecified.

forecast_window_start [int or None] (New in version v2.8) Only used for time series projects.
Offset into the future to define how far forward relative to the forecast point the forecast
window should start. Expressed in terms of the windows_basis_unit.

forecast_window_end [int or None] (New in version v2.8) Only used for time series projects.
Offset into the future to define how far forward relative to the forecast point the forecast
window should end. Expressed in terms of the windows_basis_unit.

windows_basis_unit [string, optional] (New in version v2.14) Only used for time series
projects. Indicates which unit is a basis for feature derivation window and forecast win-
dow. Valid options are detected time unit (one of the datarobot.enums.TIME_UNITS) or
“ROW”. If omitted, the default value is the detected time unit.

2.3. API Reference 535

DataRobot Python API Documentation, Release 3.2.2

treat_as_exponential [string, optional] (New in version v2.9) defaults to “auto”. Used to spec-
ify whether to treat data as exponential trend and apply transformations like log-transform.
Use values from the datarobot.enums.TREAT_AS_EXPONENTIAL enum.

differencing_method [string, optional] (New in version v2.9) defaults to “auto”. Used to
specify which differencing method to apply of case if data is stationary. Use values from
datarobot.enums.DIFFERENCING_METHOD enum.

periodicities [list of Periodicity, optional] (New in version v2.9) a list of datarobot.
Periodicity. Periodicities units should be “ROW”, if the windows_basis_unit is
“ROW”.

multiseries_id_columns [list of str or null] (New in version v2.11) a list of the names of multi-
series id columns to define series within the training data. Currently only one multiseries id
column is supported.

use_cross_series_features [bool] (New in version v2.14) Whether to use cross series features.

aggregation_type [str, optional] (New in version v2.14) The aggregation type to apply when
creating cross series features. Optional, must be one of “total” or “average”.

cross_series_group_by_columns [list of str, optional] (New in version v2.15) List of columns
(currently of length 1). Optional setting that indicates how to further split series into related
groups. For example, if every series is sales of an individual product, the series group-by
could be the product category with values like “men’s clothing”, “sports equipment”, etc..
Can only be used in a multiseries project with use_cross_series_features set to True.

calendar_id [str, optional] (New in version v2.15) The id of the CalendarFile to use with this
project.

unsupervised_mode: bool, optional (New in version v2.20) defaults to False, indicates
whether partitioning should be constructed for the unsupervised project.

model_splits: int, optional (New in version v2.21) Sets the cap on the number of jobs per model
used when building models to control number of jobs in the queue. Higher number of model
splits will allow for less downsampling leading to the use of more post-processed data.

allow_partial_history_time_series_predictions: bool, optional (New in version v2.24)
Whether to allow time series models to make predictions using partial historical data.

unsupervised_type: str, optional (New in version v3.2) The unsupervised project type,
only valid if unsupervised_mode is True. Use values from datarobot.enums.
UnsupervisedTypeEnum enum. If not specified then the project defaults to ‘anomaly’ when
unsupervised_mode is True.

collect_payload()
Set up the dict that should be sent to the server when setting the target Returns ——- partitioning_spec :
dict

Return type Dict[str, Any]

prep_payload(project_id, max_wait=600)
Run any necessary validation and prep of the payload, including async operations

Mainly used for the datetime partitioning spec but implemented in general for consistency

Return type None

update(**kwargs)
Update this instance, matching attributes to kwargs

Mainly used for the datetime partitioning spec but implemented in general for consistency

536 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type None

class datarobot.BacktestSpecification(index, gap_duration=None, validation_start_date=None,
validation_duration=None, validation_end_date=None,
primary_training_start_date=None,
primary_training_end_date=None)

Uniquely defines a Backtest used in a DatetimePartitioning

Includes only the attributes of a backtest directly controllable by users. The other attributes are assigned by the
DataRobot application based on the project dataset and the user-controlled settings.

There are two ways to specify an individual backtest:

Option 1: Use index, gap_duration, validation_start_date, and validation_duration. All du-
rations should be specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method.

import datarobot as dr

partitioning_spec = dr.DatetimePartitioningSpecification(
backtests=[

modify the first backtest using option 1
dr.BacktestSpecification(

index=0,
gap_duration=dr.partitioning_methods.construct_duration_string(),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_duration=dr.partitioning_methods.construct_duration_

→˓string(years=1),
)

],
other partitioning settings...

)

Option 2 (New in version v2.20): Use index, primary_training_start_date,
primary_training_end_date, validation_start_date, and validation_end_date. In this case,
note that setting primary_training_end_date and validation_start_date to the same timestamp will
result with no gap being created.

import datarobot as dr

partitioning_spec = dr.DatetimePartitioningSpecification(
backtests=[

modify the first backtest using option 2
dr.BacktestSpecification(

index=0,
primary_training_start_date=datetime(year=2005, month=1, day=1),
primary_training_end_date=datetime(year=2010, month=1, day=1),
validation_start_date=datetime(year=2010, month=1, day=1),
validation_end_date=datetime(year=2011, month=1, day=1),

)
],
other partitioning settings...

)

All durations should be specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more

2.3. API Reference 537

DataRobot Python API Documentation, Release 3.2.2

information on duration strings.

Attributes
index [int] the index of the backtest to update

gap_duration [str] a duration string specifying the desired duration of the gap between training
and validation scoring data for the backtest

validation_start_date [datetime.datetime] the desired start date of the validation scoring data
for this backtest

validation_duration [str] a duration string specifying the desired duration of the validation scor-
ing data for this backtest

validation_end_date [datetime.datetime] the desired end date of the validation scoring data for
this backtest

primary_training_start_date [datetime.datetime] the desired start date of the training partition
for this backtest

primary_training_end_date [datetime.datetime] the desired end date of the training partition
for this backtest

class datarobot.FeatureSettings(feature_name, known_in_advance=None, do_not_derive=None)
Per feature settings

Attributes
feature_name [string] name of the feature

known_in_advance [bool] (New in version v2.11) Optional, for time series projects only. Sets
whether the feature is known in advance, i.e., values for future dates are known at prediction
time. If not specified, the feature uses the value from the default_to_known_in_advance flag.

do_not_derive [bool] (New in v2.17) Optional, for time series projects only. Sets whether the
feature is excluded from feature derivation. If not specified, the feature uses the value from
the default_to_do_not_derive flag.

collect_payload(use_a_priori=False)

Parameters
use_a_priori [bool][Switch to using the older a_priori key name instead of

known_in_advance. Default: False]

Returns
BacktestSpecification dictionary representation

Return type FeatureSettingsPayload

class datarobot.Periodicity(time_steps, time_unit)
Periodicity configuration

Parameters
time_steps [int] Time step value

time_unit [string] Time step unit, valid options are values from datarobot.enums.TIME_UNITS

538 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

from datarobot as dr
periodicities = [

dr.Periodicity(time_steps=10, time_unit=dr.enums.TIME_UNITS.HOUR),
dr.Periodicity(time_steps=600, time_unit=dr.enums.TIME_UNITS.MINUTE)]

spec = dr.DatetimePartitioningSpecification(
...
periodicities=periodicities

)

class datarobot.DatetimePartitioning(project_id=None, datetime_partitioning_id=None,
datetime_partition_column=None, date_format=None,
autopilot_data_selection_method=None,
validation_duration=None, available_training_start_date=None,
available_training_duration=None,
available_training_row_count=None,
available_training_end_date=None,
primary_training_start_date=None,
primary_training_duration=None,
primary_training_row_count=None,
primary_training_end_date=None, gap_start_date=None,
gap_duration=None, gap_row_count=None, gap_end_date=None,
disable_holdout=None, holdout_start_date=None,
holdout_duration=None, holdout_row_count=None,
holdout_end_date=None, number_of_backtests=None,
backtests=None, total_row_count=None, use_time_series=False,
default_to_known_in_advance=False,
default_to_do_not_derive=False,
feature_derivation_window_start=None,
feature_derivation_window_end=None, feature_settings=None,
forecast_window_start=None, forecast_window_end=None,
windows_basis_unit=None, treat_as_exponential=None,
differencing_method=None, periodicities=None,
multiseries_id_columns=None,
number_of_known_in_advance_features=0,
number_of_do_not_derive_features=0,
use_cross_series_features=None, aggregation_type=None,
cross_series_group_by_columns=None, calendar_id=None,
calendar_name=None, model_splits=None,
allow_partial_history_time_series_predictions=False,
unsupervised_mode=False, unsupervised_type=None)

Full partitioning of a project for datetime partitioning.

To instantiate, use DatetimePartitioning.get(project_id).

Includes both the attributes specified by the user, as well as those determined by the DataRobot applica-
tion based on the project dataset. In order to use a partitioning to set the target, call to_specification
and pass the resulting DatetimePartitioningSpecification to Project.analyze_and_model via the
partitioning_method parameter.

The available training data corresponds to all the data available for training, while the primary training data
corresponds to the data that can be used to train while ensuring that all backtests are available. If a model is
trained with more data than is available in the primary training data, then all backtests may not have scores
available.

2.3. API Reference 539

DataRobot Python API Documentation, Release 3.2.2

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
project_id [str] the id of the project this partitioning applies to

datetime_partitioning_id [str or None] the id of the datetime partitioning it is an optimized
partitioning

datetime_partition_column [str] the name of the column whose values as dates are used to
assign a row to a particular partition

date_format [str] the format (e.g. “%Y-%m-%d %H:%M:%S”) by which the partition column
was interpreted (compatible with strftime)

autopilot_data_selection_method [str] one of datarobot.enums.
DATETIME_AUTOPILOT_DATA_SELECTION_METHOD. Whether models created by the
autopilot use “rowCount” or “duration” as their data_selection_method.

validation_duration [str or None] the validation duration specified when initializing the parti-
tioning - not directly significant if the backtests have been modified, but used as the default
validation_duration for the backtests. Can be absent if this is a time series project with an
irregular primary date/time feature.

available_training_start_date [datetime.datetime] The start date of the available training data
for scoring the holdout

available_training_duration [str] The duration of the available training data for scoring the
holdout

available_training_row_count [int or None] The number of rows in the available training data
for scoring the holdout. Only available when retrieving the partitioning after setting the
target.

available_training_end_date [datetime.datetime] The end date of the available training data
for scoring the holdout

primary_training_start_date [datetime.datetime or None] The start date of primary training
data for scoring the holdout. Unavailable when the holdout fold is disabled.

primary_training_duration [str] The duration of the primary training data for scoring the hold-
out

primary_training_row_count [int or None] The number of rows in the primary training data
for scoring the holdout. Only available when retrieving the partitioning after setting the
target.

primary_training_end_date [datetime.datetime or None] The end date of the primary training
data for scoring the holdout. Unavailable when the holdout fold is disabled.

gap_start_date [datetime.datetime or None] The start date of the gap between training and hold-
out scoring data. Unavailable when the holdout fold is disabled.

gap_duration [str] The duration of the gap between training and holdout scoring data

gap_row_count [int or None] The number of rows in the gap between training and holdout
scoring data. Only available when retrieving the partitioning after setting the target.

gap_end_date [datetime.datetime or None] The end date of the gap between training and hold-
out scoring data. Unavailable when the holdout fold is disabled.

540 Chapter 2. Table of contents

https://docs.python.org/2/library/time.html#time.strftime

DataRobot Python API Documentation, Release 3.2.2

disable_holdout [bool or None] Whether to suppress allocating a holdout fold. If set to True,
holdout_start_date, holdout_duration, and holdout_end_date may not be speci-
fied.

holdout_start_date [datetime.datetime or None] The start date of holdout scoring data. Un-
available when the holdout fold is disabled.

holdout_duration [str] The duration of the holdout scoring data

holdout_row_count [int or None] The number of rows in the holdout scoring data. Only avail-
able when retrieving the partitioning after setting the target.

holdout_end_date [datetime.datetime or None] The end date of the holdout scoring data. Un-
available when the holdout fold is disabled.

number_of_backtests [int] the number of backtests used.

backtests [list of Backtest] the configured backtests.

total_row_count [int] the number of rows in the project dataset. Only available when retrieving
the partitioning after setting the target.

use_time_series [bool] (New in version v2.8) Whether to create a time series project (if True)
or an OTV project which uses datetime partitioning (if False). The default behavior is to
create an OTV project.

default_to_known_in_advance [bool] (New in version v2.11) Optional, default False. Used
for time series projects only. Sets whether all features default to being treated as known
in advance. Known in advance features are expected to be known for dates in the future
when making predictions, e.g., “is this a holiday?”. Individual features can be set to a value
different from the default using the feature_settings parameter.

default_to_do_not_derive [bool] (New in v2.17) Optional, default False. Used for time series
projects only. Sets whether all features default to being treated as do-not-derive features,
excluding them from feature derivation. Individual features can be set to a value different
from the default by using the feature_settings parameter.

feature_derivation_window_start [int or None] (New in version v2.8) Only used for time series
projects. Offset into the past to define how far back relative to the forecast point the feature
derivation window should start. Expressed in terms of the windows_basis_unit.

feature_derivation_window_end [int or None] (New in version v2.8) Only used for time series
projects. Offset into the past to define how far back relative to the forecast point the feature
derivation window should end. Expressed in terms of the windows_basis_unit.

feature_settings [list of FeatureSettings] (New in version v2.9) Optional, a list specifying
per feature settings, can be left unspecified.

forecast_window_start [int or None] (New in version v2.8) Only used for time series projects.
Offset into the future to define how far forward relative to the forecast point the forecast
window should start. Expressed in terms of the windows_basis_unit.

forecast_window_end [int or None] (New in version v2.8) Only used for time series projects.
Offset into the future to define how far forward relative to the forecast point the forecast
window should end. Expressed in terms of the windows_basis_unit.

windows_basis_unit [string, optional] (New in version v2.14) Only used for time series
projects. Indicates which unit is a basis for feature derivation window and forecast win-
dow. Valid options are detected time unit (one of the datarobot.enums.TIME_UNITS) or
“ROW”. If omitted, the default value is detected time unit.

2.3. API Reference 541

DataRobot Python API Documentation, Release 3.2.2

treat_as_exponential [string, optional] (New in version v2.9) defaults to “auto”. Used to spec-
ify whether to treat data as exponential trend and apply transformations like log-transform.
Use values from the datarobot.enums.TREAT_AS_EXPONENTIAL enum.

differencing_method [string, optional] (New in version v2.9) defaults to “auto”. Used to spec-
ify which differencing method to apply of case if data is stationary. Use values from the
datarobot.enums.DIFFERENCING_METHOD enum.

periodicities [list of Periodicity, optional] (New in version v2.9) a list of datarobot.
Periodicity. Periodicities units should be “ROW”, if the windows_basis_unit is
“ROW”.

multiseries_id_columns [list of str or null] (New in version v2.11) a list of the names of multi-
series id columns to define series within the training data. Currently only one multiseries id
column is supported.

number_of_known_in_advance_features [int] (New in version v2.14) Number of features that
are marked as known in advance.

number_of_do_not_derive_features [int] (New in v2.17) Number of features that are excluded
from derivation.

use_cross_series_features [bool] (New in version v2.14) Whether to use cross series features.

aggregation_type [str, optional] (New in version v2.14) The aggregation type to apply when
creating cross series features. Optional, must be one of “total” or “average”.

cross_series_group_by_columns [list of str, optional] (New in version v2.15) List of columns
(currently of length 1). Optional setting that indicates how to further split series into related
groups. For example, if every series is sales of an individual product, the series group-by
could be the product category with values like “men’s clothing”, “sports equipment”, etc..
Can only be used in a multiseries project with use_cross_series_features set to True.

calendar_id [str, optional] (New in version v2.15) Only available for time series projects. The
id of the CalendarFile to use with this project.

calendar_name [str, optional] (New in version v2.17) Only available for time series projects.
The name of the CalendarFile used with this project.

model_splits: int, optional (New in version v2.21) Sets the cap on the number of jobs per model
used when building models to control number of jobs in the queue. Higher number of model
splits will allow for less downsampling leading to the use of more post-processed data.

allow_partial_history_time_series_predictions: bool, optional (New in version v2.24)
Whether to allow time series models to make predictions using partial historical data.

unsupervised_mode: bool, optional (New in version v3.1) Whether the date/time partitioning
is for an unsupervised project

unsupervised_type: str, optional (New in version v3.2) The unsupervised project type,
only valid if unsupervised_mode is True. Use values from datarobot.enums.
UnsupervisedTypeEnum enum. If not specified then the project defaults to ‘anomaly’ when
unsupervised_mode is True.

classmethod generate(project_id, spec, max_wait=600, target=None)
Preview the full partitioning determined by a DatetimePartitioningSpecification

Based on the project dataset and the partitioning specification, inspect the full partitioning that would be
used if the same specification were passed into Project.analyze_and_model.

Parameters
project_id [str] the id of the project

542 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

spec [DatetimePartitioningSpec] the desired partitioning

max_wait [int, optional] For some settings (e.g. generating a partitioning preview for a mul-
tiseries project for the first time), an asynchronous task must be run to analyze the dataset.
max_wait governs the maximum time (in seconds) to wait before giving up. In all non-
multiseries projects, this is unused.

target [str, optional] the name of the target column. For unsupervised projects target may be
None. Providing a target will ensure that partitions are correctly optimized for your dataset.

Returns
DatetimePartitioning [] the full generated partitioning

classmethod get(project_id)
Retrieve the DatetimePartitioning from a project

Only available if the project has already set the target as a datetime project.

Parameters
project_id [str] the id of the project to retrieve partitioning for

Returns
DatetimePartitioning [the full partitioning for the project]

Return type DatetimePartitioning

classmethod generate_optimized(project_id, spec, target, max_wait=600)
Preview the full partitioning determined by a DatetimePartitioningSpecification

Based on the project dataset and the partitioning specification, inspect the full partitioning that would be
used if the same specification were passed into Project.analyze_and_model.

Parameters
project_id [str] the id of the project

spec [DatetimePartitioningSpecification] the desired partitioning

target [str] the name of the target column. For unsupervised projects target may be None.

max_wait [int, optional] Governs the maximum time (in seconds) to wait before giving up.

Returns
DatetimePartitioning [] the full generated partitioning

Return type DatetimePartitioning

classmethod get_optimized(project_id, datetime_partitioning_id)
Retrieve an Optimized DatetimePartitioning from a project for the specified datetime_partitioning_id. A
datetime_partitioning_id is created by using the generate_optimized function.

Parameters
project_id [str] the id of the project to retrieve partitioning for

datetime_partitioning_id [ObjectId] the ObjectId associated with the project to retrieve
from mongo

Returns
DatetimePartitioning [the full partitioning for the project]

2.3. API Reference 543

DataRobot Python API Documentation, Release 3.2.2

Return type DatetimePartitioning

classmethod feature_log_list(project_id, offset=None, limit=None)
Retrieve the feature derivation log content and log length for a time series project.

The Time Series Feature Log provides details about the feature generation process for a time series project.
It includes information about which features are generated and their priority, as well as the detected prop-
erties of the time series data such as whether the series is stationary, and periodicities detected.

This route is only supported for time series projects that have finished partitioning.

The feature derivation log will include information about:

• Detected stationarity of the series:
e.g. ‘Series detected as non-stationary’

• Detected presence of multiplicative trend in the series:
e.g. ‘Multiplicative trend detected’

• Detected presence of multiplicative trend in the series:
e.g. ‘Detected periodicities: 7 day’

• Maximum number of feature to be generated:
e.g. ‘Maximum number of feature to be generated is 1440’

• Window sizes used in rolling statistics / lag extractors
e.g. ‘The window sizes chosen to be: 2 months
(because the time step is 1 month and Feature Derivation Window is 2 months)’

• Features that are specified as known-in-advance
e.g. ‘Variables treated as apriori: holiday’

• Details about why certain variables are transformed in the input data
e.g. ‘Generating variable “y (log)” from “y” because multiplicative trend
is detected’

• Details about features generated as timeseries features, and their priority
e.g. ‘Generating feature “date (actual)” from “date” (priority: 1)’

Parameters
project_id [str] project id to retrieve a feature derivation log for.

offset [int] optional, defaults is 0, this many results will be skipped.

limit [int] optional, defaults to 100, at most this many results are returned. To specify no
limit, use 0. The default may change without notice.

classmethod feature_log_retrieve(project_id)
Retrieve the feature derivation log content and log length for a time series project.

The Time Series Feature Log provides details about the feature generation process for a time series project.
It includes information about which features are generated and their priority, as well as the detected prop-
erties of the time series data such as whether the series is stationary, and periodicities detected.

This route is only supported for time series projects that have finished partitioning.

The feature derivation log will include information about:

• Detected stationarity of the series:
e.g. ‘Series detected as non-stationary’

544 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Detected presence of multiplicative trend in the series:
e.g. ‘Multiplicative trend detected’

• Detected presence of multiplicative trend in the series:
e.g. ‘Detected periodicities: 7 day’

• Maximum number of feature to be generated:
e.g. ‘Maximum number of feature to be generated is 1440’

• Window sizes used in rolling statistics / lag extractors
e.g. ‘The window sizes chosen to be: 2 months
(because the time step is 1 month and Feature Derivation Window is 2 months)’

• Features that are specified as known-in-advance
e.g. ‘Variables treated as apriori: holiday’

• Details about why certain variables are transformed in the input data
e.g. ‘Generating variable “y (log)” from “y” because multiplicative trend
is detected’

• Details about features generated as timeseries features, and their priority
e.g. ‘Generating feature “date (actual)” from “date” (priority: 1)’

Parameters
project_id [str] project id to retrieve a feature derivation log for.

Return type str

to_specification(use_holdout_start_end_format=False, use_backtest_start_end_format=False)
Render the DatetimePartitioning as a DatetimePartitioningSpecification

The resulting specification can be used when setting the target, and contains only the attributes directly
controllable by users.

Parameters
use_holdout_start_end_format [bool, optional] Defaults to False. If True, will use
holdout_end_date when configuring the holdout partition. If False, will use
holdout_duration instead.

use_backtest_start_end_format [bool, optional] Defaults to False. If False,
will use a duration-based approach for specifying backtests (gap_duration,
validation_start_date, and validation_duration). If True, will use a
start/end date approach for specifying backtests (primary_training_start_date,
primary_training_end_date, validation_start_date, validation_end_date).
In contrast, projects created in the Web UI will use the start/end date approach for
specifying backtests. Set this parameter to True to mirror the behavior in the Web UI.

Returns
DatetimePartitioningSpecification the specification for this partitioning

Return type DatetimePartitioningSpecification

to_dataframe()
Render the partitioning settings as a dataframe for convenience of display

Excludes project_id, datetime_partition_column, date_format, autopilot_data_selection_method, valida-
tion_duration, and number_of_backtests, as well as the row count information, if present.

2.3. API Reference 545

DataRobot Python API Documentation, Release 3.2.2

Also excludes the time series specific parameters for use_time_series, default_to_known_in_advance, de-
fault_to_do_not_derive, and defining the feature derivation and forecast windows.

Return type DataFrame

classmethod datetime_partitioning_log_retrieve(project_id, datetime_partitioning_id)
Retrieve the datetime partitioning log content for an optimized datetime partitioning.

The datetime partitioning log provides details about the partitioning process for an OTV or time series
project.

Parameters
project_id [str] The project ID of the project associated with the datetime partitioning.

datetime_partitioning_id [str] id of the optimized datetime partitioning

Return type Any

classmethod datetime_partitioning_log_list(project_id, datetime_partitioning_id, offset=None,
limit=None)

Retrieve the datetime partitioning log content and log length for an optimized datetime partitioning.

The Datetime Partitioning Log provides details about the partitioning process for an OTV or Time Series
project.

Parameters
project_id [str] project id of the project associated with the datetime partitioning.

datetime_partitioning_id [str] id of the optimized datetime partitioning

offset [int or None] optional, defaults is 0, this many results will be skipped.

limit [int or None] optional, defaults to 100, at most this many results are returned. To specify
no limit, use 0. The default may change without notice.

Return type Any

classmethod get_input_data(project_id, datetime_partitioning_id)
Retrieve the input used to create an optimized DatetimePartitioning from a project for the specified date-
time_partitioning_id. A datetime_partitioning_id is created by using the generate_optimized function.

Parameters
project_id [str] The ID of the project to retrieve partitioning for.

datetime_partitioning_id [ObjectId] The ObjectId associated with the project to retrieve
from Mongo.

Returns
DatetimePartitioningInput [The input to optimized datetime partitioning.]

Return type DatetimePartitioningSpecification

class datarobot.helpers.partitioning_methods.DatetimePartitioningId(datetime_partitioning_id,
project_id)

Defines a DatetimePartitioningId used for datetime partitioning.

This class only includes the datetime_partitioning_id that identifies a previously optimized datetime partitioning
and the project_id for the associated project.

546 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

This is the specification that should be passed to Project.analyze_and_model via the
partitioning_method parameter. To see the full partitioning use DatetimePartitioning.
get_optimized .

Attributes
datetime_partitioning_id [str] The ID of the datetime partitioning to use.

project_id [str] The ID of the project that the datetime partitioning is associated with.

collect_payload()
Set up the dict that should be sent to the server when setting the target Returns ——- partitioning_spec :
dict

Return type Dict[str, Any]

prep_payload(project_id, max_wait=600)
Run any necessary validation and prep of the payload, including async operations

Mainly used for the datetime partitioning spec but implemented in general for consistency

Return type None

update(**kwargs)
Update this instance, matching attributes to kwargs

Mainly used for the datetime partitioning spec but implemented in general for consistency

Return type NoReturn

class datarobot.helpers.partitioning_methods.Backtest(index=None,
available_training_start_date=None,
available_training_duration=None,
available_training_row_count=None,
available_training_end_date=None,
primary_training_start_date=None,
primary_training_duration=None,
primary_training_row_count=None,
primary_training_end_date=None,
gap_start_date=None, gap_duration=None,
gap_row_count=None, gap_end_date=None,
validation_start_date=None,
validation_duration=None,
validation_row_count=None,
validation_end_date=None,
total_row_count=None)

A backtest used to evaluate models trained in a datetime partitioned project

When setting up a datetime partitioning project, backtests are specified by a BacktestSpecification.

The available training data corresponds to all the data available for training, while the primary training data
corresponds to the data that can be used to train while ensuring that all backtests are available. If a model is
trained with more data than is available in the primary training data, then all backtests may not have scores
available.

All durations are specified with a duration string such as those returned by the partitioning_methods.
construct_duration_string helper method. Please see datetime partitioned project documentation for more
information on duration strings.

Attributes
index [int] the index of the backtest

2.3. API Reference 547

DataRobot Python API Documentation, Release 3.2.2

available_training_start_date [datetime.datetime] the start date of the available training data
for this backtest

available_training_duration [str] the duration of available training data for this backtest

available_training_row_count [int or None] the number of rows of available training data for
this backtest. Only available when retrieving from a project where the target is set.

available_training_end_date [datetime.datetime] the end date of the available training data for
this backtest

primary_training_start_date [datetime.datetime] the start date of the primary training data for
this backtest

primary_training_duration [str] the duration of the primary training data for this backtest

primary_training_row_count [int or None] the number of rows of primary training data for
this backtest. Only available when retrieving from a project where the target is set.

primary_training_end_date [datetime.datetime] the end date of the primary training data for
this backtest

gap_start_date [datetime.datetime] the start date of the gap between training and validation
scoring data for this backtest

gap_duration [str] the duration of the gap between training and validation scoring data for this
backtest

gap_row_count [int or None] the number of rows in the gap between training and validation
scoring data for this backtest. Only available when retrieving from a project where the target
is set.

gap_end_date [datetime.datetime] the end date of the gap between training and validation scor-
ing data for this backtest

validation_start_date [datetime.datetime] the start date of the validation scoring data for this
backtest

validation_duration [str] the duration of the validation scoring data for this backtest

validation_row_count [int or None] the number of rows of validation scoring data for this back-
test. Only available when retrieving from a project where the target is set.

validation_end_date [datetime.datetime] the end date of the validation scoring data for this
backtest

total_row_count [int or None] the number of rows in this backtest. Only available when retriev-
ing from a project where the target is set.

to_specification(use_start_end_format=False)
Render this backtest as a BacktestSpecification.

The resulting specification includes only the attributes users can directly control, not those indirectly de-
termined by the project dataset.

Parameters
use_start_end_format [bool] Default False. If False, will use a duration-based

approach for specifying backtests (gap_duration, validation_start_date, and
validation_duration). If True, will use a start/end date approach for spec-
ifying backtests (primary_training_start_date, primary_training_end_date,
validation_start_date, validation_end_date). In contrast, projects created in the
Web UI will use the start/end date approach for specifying backtests. Set this parameter to
True to mirror the behavior in the Web UI.

548 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
BacktestSpecification the specification for this backtest

Return type BacktestSpecification

to_dataframe()
Render this backtest as a dataframe for convenience of display

Returns
backtest_partitioning [pandas.Dataframe] the backtest attributes, formatted into a

dataframe

Return type DataFrame

class datarobot.helpers.partitioning_methods.FeatureSettingsPayload() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from a
mapping object's (key,
value) pairs dict(iterable)
-> new dictionary
initialized as if via: d = {}
for k, v in iterable: d[k] = v
dict(**kwargs) -> new
dictionary initialized with
the name=value pairs in the
keyword argument list. For
example: dict(one=1,
two=2)

datarobot.helpers.partitioning_methods.construct_duration_string(years=0, months=0, days=0,
hours=0, minutes=0,
seconds=0)

Construct a valid string representing a duration in accordance with ISO8601

A duration of six months, 3 days, and 12 hours could be represented as P6M3DT12H.

Parameters
years [int] the number of years in the duration

months [int] the number of months in the duration

days [int] the number of days in the duration

hours [int] the number of hours in the duration

minutes [int] the number of minutes in the duration

seconds [int] the number of seconds in the duration

Returns
duration_string: str The duration string, specified compatibly with ISO8601

Return type str

2.3. API Reference 549

DataRobot Python API Documentation, Release 3.2.2

2.3.42 PayoffMatrix

class datarobot.models.PayoffMatrix(project_id, id, name=None, true_positive_value=None,
true_negative_value=None, false_positive_value=None,
false_negative_value=None)

Represents a Payoff Matrix, a costs/benefit scenario used for creating a profit curve.

Examples

import datarobot as dr

create a payoff matrix
payoff_matrix = dr.PayoffMatrix.create(

project_id,
name,
true_positive_value=100,
true_negative_value=10,
false_positive_value=0,
false_negative_value=-10,

)

list available payoff matrices
payoff_matrices = dr.PayoffMatrix.list(project_id)
payoff_matrix = payoff_matrices[0]

Attributes
project_id [str] id of the project with which the payoff matrix is associated.

id [str] id of the payoff matrix.

name [str] User-supplied label for the payoff matrix.

true_positive_value [float] Cost or benefit of a true positive classification

true_negative_value [float] Cost or benefit of a true negative classification

false_positive_value [float] Cost or benefit of a false positive classification

false_negative_value [float] Cost or benefit of a false negative classification

classmethod create(project_id, name, true_positive_value=1, true_negative_value=1,
false_positive_value=- 1, false_negative_value=- 1)

Create a payoff matrix associated with a specific project.

Parameters
project_id [str] id of the project with which the payoff matrix will be associated

Returns
payoff_matrix [PayoffMatrix] The newly created payoff matrix

Return type PayoffMatrix

classmethod list(project_id)
Fetch all the payoff matrices for a project.

550 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
project_id [str] id of the project

Returns
——-
List of PayoffMatrix A list of PayoffMatrix objects

Raises
——
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[PayoffMatrix]

classmethod get(project_id, id)
Retrieve a specified payoff matrix.

Parameters
project_id [str] id of the project the model belongs to

id [str] id of the payoff matrix

Returns
PayoffMatrix object representing specified
payoff matrix

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type PayoffMatrix

classmethod update(project_id, id, name, true_positive_value, true_negative_value, false_positive_value,
false_negative_value)

Update (replace) a payoff matrix. Note that all data fields are required.

Parameters
project_id [str] id of the project to which the payoff matrix belongs

id [str] id of the payoff matrix

name [str] User-supplied label for the payoff matrix

true_positive_value [float] True positive payoff value to use for the profit curve

true_negative_value [float] True negative payoff value to use for the profit curve

false_positive_value [float] False positive payoff value to use for the profit curve

false_negative_value [float] False negative payoff value to use for the profit curve

Returns
payoff_matrix PayoffMatrix with updated values

Raises

2.3. API Reference 551

DataRobot Python API Documentation, Release 3.2.2

datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type PayoffMatrix

classmethod delete(project_id, id)
Delete a specified payoff matrix.

Parameters
project_id [str] id of the project the model belongs to

id [str] id of the payoff matrix

Returns
response [requests.Response] Empty response (204)

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type Response

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

2.3.43 PredictJob

datarobot.models.predict_job.wait_for_async_predictions(project_id, predict_job_id, max_wait=600)
Given a Project id and PredictJob id poll for status of process responsible for predictions generation until it’s
finished

Parameters
project_id [str] The identifier of the project

predict_job_id [str] The identifier of the PredictJob

552 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait [int, optional] Time in seconds after which predictions creation is considered unsuc-
cessful

Returns
predictions [pandas.DataFrame] Generated predictions.

Raises
AsyncPredictionsGenerationError Raised if status of fetched PredictJob object is error

AsyncTimeoutError Predictions weren’t generated in time, specified by max_wait parameter

Return type DataFrame

class datarobot.models.PredictJob(data, completed_resource_url=None)
Tracks asynchronous work being done within a project

Attributes
id [int] the id of the job

project_id [str] the id of the project the job belongs to

status [str] the status of the job - will be one of datarobot.enums.QUEUE_STATUS

job_type [str] what kind of work the job is doing - will be ‘predict’ for predict jobs

is_blocked [bool] if true, the job is blocked (cannot be executed) until its dependencies are re-
solved

message [str] a message about the state of the job, typically explaining why an error occurred

classmethod from_job(job)
Transforms a generic Job into a PredictJob

Parameters
job: Job A generic job representing a PredictJob

Returns
predict_job: PredictJob A fully populated PredictJob with all the details of the job

Raises
ValueError: If the generic Job was not a predict job, e.g. job_type != JOB_TYPE.PREDICT

Return type PredictJob

classmethod get(project_id, predict_job_id)
Fetches one PredictJob. If the job finished, raises PendingJobFinished exception.

Parameters
project_id [str] The identifier of the project the model on which prediction was started be-

longs to

predict_job_id [str] The identifier of the predict_job

Returns
predict_job [PredictJob] The pending PredictJob

Raises

2.3. API Reference 553

DataRobot Python API Documentation, Release 3.2.2

PendingJobFinished If the job being queried already finished, and the server is re-routing
to the finished predictions.

AsyncFailureError Querying this resource gave a status code other than 200 or 303

Return type PredictJob

classmethod get_predictions(project_id, predict_job_id, class_prefix='class_')
Fetches finished predictions from the job used to generate them.

Note: The prediction API for classifications now returns an additional prediction_values dictionary that
is converted into a series of class_prefixed columns in the final dataframe. For example, <label> = 1.0 is
converted to ‘class_1.0’. If you are on an older version of the client (prior to v2.8), you must update to v2.8
to correctly pivot this data.

Parameters
project_id [str] The identifier of the project to which belongs the model used for predictions

generation

predict_job_id [str] The identifier of the predict_job

class_prefix [str] The prefix to append to labels in the final dataframe (e.g., apple ->
class_apple)

Returns
predictions [pandas.DataFrame] Generated predictions

Raises
JobNotFinished If the job has not finished yet

AsyncFailureError Querying the predict_job in question gave a status code other than 200
or 303

Return type DataFrame

cancel()
Cancel this job. If this job has not finished running, it will be removed and canceled.

get_result(params=None)

Parameters
params [dict or None] Query parameters to be added to request to get results.

For featureEffects, source param is required to define source,
otherwise the default is `training`

Returns
result [object]

Return type depends on the job type:
• for model jobs, a Model is returned

• for predict jobs, a pandas.DataFrame (with predictions) is returned

554 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• for featureImpact jobs, a list of dicts by default (see with_metadata parameter of the
FeatureImpactJob class and its get() method).

• for primeRulesets jobs, a list of Rulesets

• for primeModel jobs, a PrimeModel

• for primeDownloadValidation jobs, a PrimeFile

• for predictionExplanationInitialization jobs, a PredictionExplanationsInitialization

• for predictionExplanations jobs, a PredictionExplanations

• for featureEffects, a FeatureEffects

Raises
JobNotFinished If the job is not finished, the result is not available.

AsyncProcessUnsuccessfulError If the job errored or was aborted

get_result_when_complete(max_wait=600, params=None)

Parameters
max_wait [int, optional] How long to wait for the job to finish.

params [dict, optional] Query parameters to be added to request.

Returns
result: object Return type is the same as would be returned by Job.get_result.

Raises
AsyncTimeoutError If the job does not finish in time

AsyncProcessUnsuccessfulError If the job errored or was aborted

refresh()
Update this object with the latest job data from the server.

wait_for_completion(max_wait=600)
Waits for job to complete.

Parameters
max_wait [int, optional] How long to wait for the job to finish.

Return type None

2.3. API Reference 555

DataRobot Python API Documentation, Release 3.2.2

2.3.44 Prediction Dataset

class datarobot.models.PredictionDataset(project_id, id, name, created, num_rows, num_columns,
forecast_point=None, predictions_start_date=None,
predictions_end_date=None,
relax_known_in_advance_features_check=None,
data_quality_warnings=None, forecast_point_range=None,
data_start_date=None, data_end_date=None,
max_forecast_date=None, actual_value_column=None,
detected_actual_value_columns=None,
contains_target_values=None,
secondary_datasets_config_id=None)

A dataset uploaded to make predictions

Typically created via project.upload_dataset

Attributes
id [str] the id of the dataset

project_id [str] the id of the project the dataset belongs to

created [str] the time the dataset was created

name [str] the name of the dataset

num_rows [int] the number of rows in the dataset

num_columns [int] the number of columns in the dataset

forecast_point [datetime.datetime or None] For time series projects only. This is the default
point relative to which predictions will be generated, based on the forecast window of the
project. See the time series predictions documentation for more information.

predictions_start_date [datetime.datetime or None, optional] For time series projects only. The
start date for bulk predictions. Note that this parameter is for generating historical pre-
dictions using the training data. This parameter should be provided in conjunction with
predictions_end_date. Can’t be provided with the forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] For time series projects only. The
end date for bulk predictions, exclusive. Note that this parameter is for generating historical
predictions using the training data. This parameter should be provided in conjunction with
predictions_start_date. Can’t be provided with the forecast_point parameter.

relax_known_in_advance_features_check [bool, optional] (New in version v2.15) For time
series projects only. If True, missing values in the known in advance features are allowed
in the forecast window at the prediction time. If omitted or False, missing values are not
allowed.

data_quality_warnings [dict, optional] (New in version v2.15) A dictionary that contains avail-
able warnings about potential problems in this prediction dataset. Available warnings in-
clude:

has_kia_missing_values_in_forecast_window [bool] Applicable for time series projects.
If True, known in advance features have missing values in forecast window which may
decrease prediction accuracy.

insufficient_rows_for_evaluating_models [bool] Applicable for datasets which are used
as external test sets. If True, there is not enough rows in dataset to calculate insights.

single_class_actual_value_column [bool] Applicable for datasets which are used as exter-
nal test sets. If True, actual value column has only one class and such insights as ROC

556 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

curve can not be calculated. Only applies for binary classification projects or unsupervised
projects.

forecast_point_range [list[datetime.datetime] or None, optional] (New in version v2.20) For
time series projects only. Specifies the range of dates available for use as a forecast point.

data_start_date [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. The minimum primary date of this prediction dataset.

data_end_date [datetime.datetime or None, optional] (New in version v2.20) For time series
projects only. The maximum primary date of this prediction dataset.

max_forecast_date [datetime.datetime or None, optional] (New in version v2.20) For time se-
ries projects only. The maximum forecast date of this prediction dataset.

actual_value_column [string, optional] (New in version v2.21) Optional, only available for un-
supervised projects, in case dataset was uploaded with actual value column specified. Name
of the column which will be used to calculate the classification metrics and insights.

detected_actual_value_columns [list of dict, optional] (New in version v2.21) For unsuper-
vised projects only, list of detected actual value columns information containing missing
count and name for each column.

contains_target_values [bool, optional] (New in version v2.21) Only for supervised projects.
If True, dataset contains target values and can be used to calculate the classification metrics
and insights.

secondary_datasets_config_id: string or None, optional (New in version v2.23) The Id of the
alternative secondary dataset config to use during prediction for Feature discovery project.

classmethod get(project_id, dataset_id)
Retrieve information about a dataset uploaded for predictions

Parameters
project_id: the id of the project to query

dataset_id: the id of the dataset to retrieve

Returns
dataset: PredictionDataset A dataset uploaded to make predictions

Return type PredictionDataset

delete()
Delete a dataset uploaded for predictions

Will also delete predictions made using this dataset and cancel any predict jobs using this dataset.

Return type None

2.3. API Reference 557

DataRobot Python API Documentation, Release 3.2.2

2.3.45 Prediction Explanations

class datarobot.PredictionExplanationsInitialization(project_id, model_id,
prediction_explanations_sample=None)

Represents a prediction explanations initialization of a model.

Attributes
project_id [str] id of the project the model belongs to

model_id [str] id of the model the prediction explanations initialization is for

prediction_explanations_sample [list of dict] a small sample of prediction explanations that
could be generated for the model

classmethod get(project_id, model_id)
Retrieve the prediction explanations initialization for a model.

Prediction explanations initializations are a prerequisite for computing prediction explanations, and include
a sample what the computed prediction explanations for a prediction dataset would look like.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model the prediction explanations initialization is for

Returns
prediction_explanations_initialization [PredictionExplanationsInitialization] The queried

instance.

Raises
ClientError (404) If the project or model does not exist or the initialization has not been

computed.

classmethod create(project_id, model_id)
Create a prediction explanations initialization for the specified model.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model for which initialization is requested

Returns
job [Job] an instance of created async job

delete()
Delete this prediction explanations initialization.

class datarobot.PredictionExplanations(id, project_id, model_id, dataset_id, max_explanations,
num_columns, finish_time, prediction_explanations_location,
threshold_low=None, threshold_high=None, class_names=None,
num_top_classes=None)

Represents prediction explanations metadata and provides access to computation results.

558 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

prediction_explanations = dr.PredictionExplanations.get(project_id, explanations_id)
for row in prediction_explanations.get_rows():

print(row) # row is an instance of PredictionExplanationsRow

Attributes
id [str] id of the record and prediction explanations computation result

project_id [str] id of the project the model belongs to

model_id [str] id of the model the prediction explanations are for

dataset_id [str] id of the prediction dataset prediction explanations were computed for

max_explanations [int] maximum number of prediction explanations to supply per row of the
dataset

threshold_low [float] the lower threshold, below which a prediction must score in order for
prediction explanations to be computed for a row in the dataset

threshold_high [float] the high threshold, above which a prediction must score in order for pre-
diction explanations to be computed for a row in the dataset

num_columns [int] the number of columns prediction explanations were computed for

finish_time [float] timestamp referencing when computation for these prediction explanations
finished

prediction_explanations_location [str] where to retrieve the prediction explanations

classmethod get(project_id, prediction_explanations_id)
Retrieve a specific prediction explanations metadata.

Parameters
project_id [str] id of the project the explanations belong to

prediction_explanations_id [str] id of the prediction explanations

Returns
prediction_explanations [PredictionExplanations] The queried instance.

classmethod create(project_id, model_id, dataset_id, max_explanations=None, threshold_low=None,
threshold_high=None, mode=None)

Create prediction explanations for the specified dataset.

In order to create PredictionExplanations for a particular model and dataset, you must first:

• Compute feature impact for the model via datarobot.Model.get_feature_impact()

• Compute a PredictionExplanationsInitialization for the model via datarobot.
PredictionExplanationsInitialization.create(project_id, model_id)

• Compute predictions for the model and dataset via datarobot.Model.
request_predictions(dataset_id)

threshold_high and threshold_low are optional filters applied to speed up computation. When at least
one is specified, only the selected outlier rows will have prediction explanations computed. Rows are consid-
ered to be outliers if their predicted value (in case of regression projects) or probability of being the positive
class (in case of classification projects) is less than threshold_low or greater than thresholdHigh. If
neither is specified, prediction explanations will be computed for all rows.

2.3. API Reference 559

DataRobot Python API Documentation, Release 3.2.2

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model for which prediction explanations are requested

dataset_id [str] id of the prediction dataset for which prediction explanations are requested

threshold_low [float, optional] the lower threshold, below which a prediction must score
in order for prediction explanations to be computed for a row in the dataset. If neither
threshold_high nor threshold_low is specified, prediction explanations will be com-
puted for all rows.

threshold_high [float, optional] the high threshold, above which a prediction must score
in order for prediction explanations to be computed. If neither threshold_high nor
threshold_low is specified, prediction explanations will be computed for all rows.

max_explanations [int, optional] the maximum number of prediction explanations to supply
per row of the dataset, default: 3.

mode [PredictionExplanationsMode, optional] mode of calculation for multiclass models,
if not specified - server default is to explain only the predicted class, identical to passing
TopPredictionsMode(1).

Returns
job: Job an instance of created async job

classmethod list(project_id, model_id=None, limit=None, offset=None)
List of prediction explanations metadata for a specified project.

Parameters
project_id [str] id of the project to list prediction explanations for

model_id [str, optional] if specified, only prediction explanations computed for this model
will be returned

limit [int or None] at most this many results are returned, default: no limit

offset [int or None] this many results will be skipped, default: 0

Returns
prediction_explanations [list[PredictionExplanations]]

get_rows(batch_size=None, exclude_adjusted_predictions=True)
Retrieve prediction explanations rows.

Parameters
batch_size [int or None, optional] maximum number of prediction explanations rows to re-

trieve per request

exclude_adjusted_predictions [bool] Optional, defaults to True. Set to False to include
adjusted predictions, which will differ from the predictions on some projects, e.g. those
with an exposure column specified.

Yields
prediction_explanations_row [PredictionExplanationsRow] Represents prediction expla-

nations computed for a prediction row.

is_multiclass()
Whether these explanations are for a multiclass project or a non-multiclass project

560 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

is_unsupervised_clustering_or_multiclass()
Clustering and muliclass XEMP always has either one of num_top_classes or class_names parameters set

get_number_of_explained_classes()
How many classes we attempt to explain for each row

get_all_as_dataframe(exclude_adjusted_predictions=True)
Retrieve all prediction explanations rows and return them as a pandas.DataFrame.

Returned dataframe has the following structure:

• row_id : row id from prediction dataset

• prediction : the output of the model for this row

• adjusted_prediction : adjusted prediction values (only appears for projects that utilize prediction ad-
justments, e.g. projects with an exposure column)

• class_0_label : a class level from the target (only appears for classification projects)

• class_0_probability : the probability that the target is this class (only appears for classification projects)

• class_1_label : a class level from the target (only appears for classification projects)

• class_1_probability : the probability that the target is this class (only appears for classification projects)

• explanation_0_feature : the name of the feature contributing to the prediction for this explanation

• explanation_0_feature_value : the value the feature took on

• explanation_0_label : the output being driven by this explanation. For regression projects, this is
the name of the target feature. For classification projects, this is the class label whose probability
increasing would correspond to a positive strength.

• explanation_0_qualitative_strength : a human-readable description of how strongly the feature affected
the prediction (e.g. ‘+++’, ‘–’, ‘+’) for this explanation

• explanation_0_per_ngram_text_explanations : Text prediction explanations data in json formatted
string.

• explanation_0_strength : the amount this feature’s value affected the prediction

• . . .

• explanation_N_feature : the name of the feature contributing to the prediction for this explanation

• explanation_N_feature_value : the value the feature took on

• explanation_N_label : the output being driven by this explanation. For regression projects, this is
the name of the target feature. For classification projects, this is the class label whose probability
increasing would correspond to a positive strength.

• explanation_N_qualitative_strength : a human-readable description of how strongly the feature af-
fected the prediction (e.g. ‘+++’, ‘–’, ‘+’) for this explanation

• explanation_N_per_ngram_text_explanations : Text prediction explanations data in json formatted
string.

• explanation_N_strength : the amount this feature’s value affected the prediction

For classification projects, the server does not guarantee any ordering on the prediction values, however
within this function we sort the values so that class_X corresponds to the same class from row to row.

Parameters
exclude_adjusted_predictions [bool] Optional, defaults to True. Set this to False to include

adjusted prediction values in the returned dataframe.

2.3. API Reference 561

DataRobot Python API Documentation, Release 3.2.2

Returns
dataframe: pandas.DataFrame

download_to_csv(filename, encoding='utf-8', exclude_adjusted_predictions=True)
Save prediction explanations rows into CSV file.

Parameters
filename [str or file object] path or file object to save prediction explanations rows

encoding [string, optional] A string representing the encoding to use in the output file, de-
faults to ‘utf-8’

exclude_adjusted_predictions [bool] Optional, defaults to True. Set to False to include
adjusted predictions, which will differ from the predictions on some projects, e.g. those
with an exposure column specified.

get_prediction_explanations_page(limit=None, offset=None, exclude_adjusted_predictions=True)
Get prediction explanations.

If you don’t want use a generator interface, you can access paginated prediction explanations directly.

Parameters
limit [int or None] the number of records to return, the server will use a (possibly finite)

default if not specified

offset [int or None] the number of records to skip, default 0

exclude_adjusted_predictions [bool] Optional, defaults to True. Set to False to include
adjusted predictions, which will differ from the predictions on some projects, e.g. those
with an exposure column specified.

Returns
prediction_explanations [PredictionExplanationsPage]

delete()
Delete these prediction explanations.

class datarobot.models.prediction_explanations.PredictionExplanationsRow(row_id, prediction,
prediction_values,
predic-
tion_explanations=None,
ad-
justed_prediction=None,
ad-
justed_prediction_values=None)

Represents prediction explanations computed for a prediction row.

Notes

PredictionValue contains:

• label : describes what this model output corresponds to. For regression projects, it is the name of the
target feature. For classification projects, it is a level from the target feature.

• value : the output of the prediction. For regression projects, it is the predicted value of the target. For
classification projects, it is the predicted probability the row belongs to the class identified by the label.

PredictionExplanation contains:

562 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• label : described what output was driven by this explanation. For regression projects, it is the name of
the target feature. For classification projects, it is the class whose probability increasing would correspond
to a positive strength of this prediction explanation.

• feature : the name of the feature contributing to the prediction

• feature_value : the value the feature took on for this row

• strength : the amount this feature’s value affected the prediction

• qualitative_strength : a human-readable description of how strongly the feature affected the predic-
tion (e.g. ‘+++’, ‘–’, ‘+’)

Attributes
row_id [int] which row this PredictionExplanationsRow describes

prediction [float] the output of the model for this row

adjusted_prediction [float or None] adjusted prediction value for projects that provide this in-
formation, None otherwise

prediction_values [list] an array of dictionaries with a schema described as PredictionValue

adjusted_prediction_values [list] same as prediction_values but for adjusted predictions

prediction_explanations [list] an array of dictionaries with a schema described as
PredictionExplanation

class datarobot.models.prediction_explanations.PredictionExplanationsPage(id, count=None,
previous=None,
next=None,
data=None, predic-
tion_explanations_record_location=None,
adjust-
ment_method=None)

Represents a batch of prediction explanations received by one request.

Attributes
id [str] id of the prediction explanations computation result

data [list[dict]] list of raw prediction explanations; each row corresponds to a row of the predic-
tion dataset

count [int] total number of rows computed

previous_page [str] where to retrieve previous page of prediction explanations, None if current
page is the first

next_page [str] where to retrieve next page of prediction explanations, None if current page is
the last

prediction_explanations_record_location [str] where to retrieve the prediction explanations
metadata

adjustment_method [str] Adjustment method that was applied to predictions, or ‘N/A’ if no
adjustments were done.

classmethod get(project_id, prediction_explanations_id, limit=None, offset=0,
exclude_adjusted_predictions=True)

Retrieve prediction explanations.

Parameters

2.3. API Reference 563

DataRobot Python API Documentation, Release 3.2.2

project_id [str] id of the project the model belongs to

prediction_explanations_id [str] id of the prediction explanations

limit [int or None] the number of records to return; the server will use a (possibly finite)
default if not specified

offset [int or None] the number of records to skip, default 0

exclude_adjusted_predictions [bool] Optional, defaults to True. Set to False to include
adjusted predictions, which will differ from the predictions on some projects, e.g. those
with an exposure column specified.

Returns
prediction_explanations [PredictionExplanationsPage] The queried instance.

class datarobot.models.ShapMatrix(project_id, id, model_id=None, dataset_id=None)
Represents SHAP based prediction explanations and provides access to score values.

Examples

import datarobot as dr

request SHAP matrix calculation
shap_matrix_job = dr.ShapMatrix.create(project_id, model_id, dataset_id)
shap_matrix = shap_matrix_job.get_result_when_complete()

list available SHAP matrices
shap_matrices = dr.ShapMatrix.list(project_id)
shap_matrix = shap_matrices[0]

get SHAP matrix as dataframe
shap_matrix_values = shap_matrix.get_as_dataframe()

Attributes
project_id [str] id of the project the model belongs to

shap_matrix_id [str] id of the generated SHAP matrix

model_id [str] id of the model used to

dataset_id [str] id of the prediction dataset SHAP values were computed for

classmethod create(project_id, model_id, dataset_id)
Calculate SHAP based prediction explanations against previously uploaded dataset.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model for which prediction explanations are requested

dataset_id [str] id of the prediction dataset for which prediction explanations are requested
(as uploaded from Project.upload_dataset)

Returns
job [ShapMatrixJob] The job computing the SHAP based prediction explanations

564 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
ClientError If the server responded with 4xx status. Possible reasons are project, model or

dataset don’t exist, user is not allowed or model doesn’t support SHAP based prediction
explanations

ServerError If the server responded with 5xx status

Return type ShapMatrixJob

classmethod list(project_id)
Fetch all the computed SHAP prediction explanations for a project.

Parameters
project_id [str] id of the project

Returns
List of ShapMatrix A list of ShapMatrix objects

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[ShapMatrix]

classmethod get(project_id, id)
Retrieve the specific SHAP matrix.

Parameters
project_id [str] id of the project the model belongs to

id [str] id of the SHAP matrix

Returns
ShapMatrix object representing specified record

Return type ShapMatrix

get_as_dataframe(read_timeout=60)
Retrieve SHAP matrix values as dataframe.

Returns
dataframe [pandas.DataFrame] A dataframe with SHAP scores

read_timeout [int (optional, default 60)] New in version 2.29.

Wait this many seconds for the server to respond.

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

Return type DataFrame

2.3. API Reference 565

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.ClassListMode(class_names)
Calculate prediction explanations for the specified classes in each row.

Attributes
class_names [list] List of class names that will be explained for each dataset row.

get_api_parameters(batch_route=False)
Get parameters passed in corresponding API call

Parameters
batch_route [bool] Batch routes describe prediction calls with all possible parameters, so to

distinguish explanation parameters from others they have prefix in parameters.

Returns
dict

class datarobot.models.TopPredictionsMode(num_top_classes)
Calculate prediction explanations for the number of top predicted classes in each row.

Attributes
num_top_classes [int] Number of top predicted classes [1..10] that will be explained for each

dataset row.

get_api_parameters(batch_route=False)
Get parameters passed in corresponding API call

Parameters
batch_route [bool] Batch routes describe prediction calls with all possible parameters, so to

distinguish explanation parameters from others they have prefix in parameters.

Returns
dict

2.3.46 Predictions

class datarobot.models.Predictions(project_id, prediction_id, model_id=None, dataset_id=None,
includes_prediction_intervals=None, prediction_intervals_size=None,
forecast_point=None, predictions_start_date=None,
predictions_end_date=None, actual_value_column=None,
explanation_algorithm=None, max_explanations=None,
shap_warnings=None)

Represents predictions metadata and provides access to prediction results.

Examples

List all predictions for a project

import datarobot as dr

Fetch all predictions for a project
all_predictions = dr.Predictions.list(project_id)

Inspect all calculated predictions
(continues on next page)

566 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

for predictions in all_predictions:
print(predictions) # repr includes project_id, model_id, and dataset_id

Retrieve predictions by id

import datarobot as dr

Getting predictions by id
predictions = dr.Predictions.get(project_id, prediction_id)

Dump actual predictions
df = predictions.get_all_as_dataframe()
print(df)

Attributes
project_id [str] id of the project the model belongs to

model_id [str] id of the model

prediction_id [str] id of generated predictions

includes_prediction_intervals [bool, optional] (New in v2.16) For time series projects only.
Indicates if prediction intervals will be part of the response. Defaults to False.

prediction_intervals_size [int, optional] (New in v2.16) For time series projects only. Indi-
cates the percentile used for prediction intervals calculation. Will be present only if in-
cludes_prediction_intervals is True.

forecast_point [datetime.datetime, optional] (New in v2.20) For time series projects only. This
is the default point relative to which predictions will be generated, based on the forecast
window of the project. See the time series prediction documentation for more information.

predictions_start_date [datetime.datetime or None, optional] (New in v2.20) For time series
projects only. The start date for bulk predictions. Note that this parameter is for gener-
ating historical predictions using the training data. This parameter should be provided in
conjunction with predictions_end_date. Can’t be provided with the forecast_point
parameter.

predictions_end_date [datetime.datetime or None, optional] (New in v2.20) For time series
projects only. The end date for bulk predictions, exclusive. Note that this parameter is
for generating historical predictions using the training data. This parameter should be
provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) For time series unsupervised
projects only. Actual value column which was used to calculate the classification metrics and
insights on the prediction dataset. Can’t be provided with the forecast_point parameter.

explanation_algorithm [datarobot.enums.EXPLANATIONS_ALGORITHM, optional] (New
in version v2.21) If set to ‘shap’, the response will include prediction explanations based
on the SHAP explainer (SHapley Additive exPlanations). Defaults to null (no prediction
explanations).

max_explanations [int, optional] (New in version v2.21) The maximum number of explanation
values that should be returned for each row, ordered by absolute value, greatest to least. If
null, no limit. In the case of ‘shap’: if the number of features is greater than the limit, the sum

2.3. API Reference 567

DataRobot Python API Documentation, Release 3.2.2

of remaining values will also be returned as shapRemainingTotal. Defaults to null. Cannot
be set if explanation_algorithm is omitted.

shap_warnings [dict, optional] (New in version v2.21) Will be present if explanation_algorithm
was set to datarobot.enums.EXPLANATIONS_ALGORITHM.SHAP and there were additiv-
ity failures during SHAP values calculation.

classmethod list(project_id, model_id=None, dataset_id=None)
Fetch all the computed predictions metadata for a project.

Parameters
project_id [str] id of the project

model_id [str, optional] if specified, only predictions metadata for this model will be re-
trieved

dataset_id [str, optional] if specified, only predictions metadata for this dataset will be re-
trieved

Returns
A list of [py:class:Predictions <datarobot.models.Predictions> objects]

Return type List[Predictions]

classmethod get(project_id, prediction_id)
Retrieve the specific predictions metadata

Parameters
project_id [str] id of the project the model belongs to

prediction_id [str] id of the prediction set

Returns
Predictions object representing specified
predictions

Return type Predictions

get_all_as_dataframe(class_prefix='class_', serializer='json')
Retrieve all prediction rows and return them as a pandas.DataFrame.

Parameters
class_prefix [str, optional] The prefix to append to labels in the final dataframe. Default is
class_ (e.g., apple -> class_apple)

serializer [str, optional] Serializer to use for the download. Options: json (default) or csv.

Returns
dataframe: pandas.DataFrame

Raises
datarobot.errors.ClientError if the server responded with 4xx status.

datarobot.errors.ServerError if the server responded with 5xx status.

Return type DataFrame

568 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

download_to_csv(filename, encoding='utf-8', serializer='json')
Save prediction rows into CSV file.

Parameters
filename [str or file object] path or file object to save prediction rows

encoding [string, optional] A string representing the encoding to use in the output file, de-
faults to ‘utf-8’

serializer [str, optional] Serializer to use for the download. Options: json (default) or csv.

Return type None

2.3.47 PredictionServer

class datarobot.PredictionServer(id=None, url=None, datarobot_key=None)
A prediction server can be used to make predictions.

Attributes
id [str, optional] The id of the prediction server.

url [str] The url of the prediction server.

datarobot_key [str, optional] The Datarobot-Key HTTP header used in requests to this pre-
diction server. Note that in the datarobot.models.Deployment instance there is the
default_prediction_server property which has this value as a “kebab-cased” key as
opposed to “snake_cased”.

classmethod list()
Returns a list of prediction servers a user can use to make predictions.

New in version v2.17.

Returns
prediction_servers [list of PredictionServer instances] Contains a list of prediction servers

that can be used to make predictions.

Examples

prediction_servers = PredictionServer.list()
prediction_servers
>>> [PredictionServer('https://example.com')]

Return type List[PredictionServer]

2.3. API Reference 569

DataRobot Python API Documentation, Release 3.2.2

2.3.48 PrimeFile

class datarobot.models.PrimeFile(id=None, project_id=None, parent_model_id=None, model_id=None,
ruleset_id=None, language=None, is_valid=None)

Represents an executable file available for download of the code for a DataRobot Prime model

Attributes
id [str] the id of the PrimeFile

project_id [str] the id of the project this PrimeFile belongs to

parent_model_id [str] the model being approximated by this PrimeFile

model_id [str] the prime model this file represents

ruleset_id [int] the ruleset being used in this PrimeFile

language [str] the language of the code in this file - see enums.LANGUAGE for possibilities

is_valid [bool] whether the code passed basic validation

download(filepath)
Download the code and save it to a file

Parameters
filepath: string the location to save the file to

Return type None

2.3.49 Project

class datarobot.models.Project(id=None, project_name=None, mode=None, target=None,
target_type=None, holdout_unlocked=None, metric=None, stage=None,
partition=None, positive_class=None, created=None,
advanced_options=None, max_train_pct=None, max_train_rows=None,
file_name=None, credentials=None,
feature_engineering_prediction_point=None, unsupervised_mode=None,
use_feature_discovery=None, relationships_configuration_id=None,
project_description=None, query_generator_id=None, segmentation=None,
partitioning_method=None, catalog_id=None, catalog_version_id=None,
use_gpu=None)

A project built from a particular training dataset

Attributes
id [str] the id of the project

project_name [str] the name of the project

project_description [str] an optional description for the project

mode [int] The current autopilot mode. 0: Full Autopilot. 2: Manual Mode. 4: Comprehensive
Autopilot. null: Mode not set.

target [str] the name of the selected target features

target_type [str] Indicating what kind of modeling is being done in this project Options are:
‘Regression’, ‘Binary’ (Binary classification), ‘Multiclass’ (Multiclass classification), ‘Mul-
tilabel’ (Multilabel classification)

570 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

holdout_unlocked [bool] whether the holdout has been unlocked

metric [str] the selected project metric (e.g. LogLoss)

stage [str] the stage the project has reached - one of datarobot.enums.PROJECT_STAGE

partition [dict] information about the selected partitioning options

positive_class [str] for binary classification projects, the selected positive class; otherwise, None

created [datetime] the time the project was created

advanced_options [AdvancedOptions] information on the advanced options that were selected
for the project settings, e.g. a weights column or a cap of the runtime of models that can
advance autopilot stages

max_train_pct [float] The maximum percentage of the project dataset that can be used without
going into the validation data or being too large to submit any blueprint for training

max_train_rows [int] the maximum number of rows that can be trained on without going into
the validation data or being too large to submit any blueprint for training

file_name [str] The name of the file uploaded for the project dataset

credentials [list, optional] A list of credentials for the datasets used in relationship configuration
(previously graphs). For Feature Discovery projects, the list must be formatted in dictionary
record format. Provide the catalogVersionId and credentialId for each dataset that is to be
used in the project that requires authentication.

feature_engineering_prediction_point [str, optional] For time-aware Feature Engineering,
this parameter specifies the column from the primary dataset to use as the prediction point.

unsupervised_mode [bool, optional] (New in version v2.20) defaults to False, indicates whether
this is an unsupervised project.

relationships_configuration_id [str, optional] (New in version v2.21) id of the relationships
configuration to use

query_generator_id: str, optional (New in version v2.27) id of the query generator applied for
time series data prep

segmentation [dict, optional] information on the segmentation options for segmented project

partitioning_method [PartitioningMethod, optional] (New in version v3.0) The partitioning
class for this project. This attribute should only be used with newly-created projects
and before calling Project.analyze_and_model(). After the project has been aimed, see
Project.partition for actual partitioning options.

catalog_id [str] (New in version v3.0) ID of the dataset used during creation of the project.

catalog_version_id [str] (New in version v3.0) The object ID of the catalog_version which
the project’s dataset belongs to.

use_gpu: bool (New in version v3.2) Whether project allows usage of GPUs

set_options(options=None, **kwargs)
Update the advanced options of this project.

Either accepts an AdvancedOptions object or indiviudal keyword arguments. This is an inplace update.

Raises
ValueError Raised if an object passed to the options parameter is not an
AdvancedOptions instance, a valid keyword argument from the AdvancedOptions
class, or a combination of an AdvancedOptions instance AND keyword arguments.

2.3. API Reference 571

DataRobot Python API Documentation, Release 3.2.2

Return type None

get_options()
Return the stored advanced options for this project.

Returns
AdvancedOptions

Return type AdvancedOptions

classmethod get(project_id)
Gets information about a project.

Parameters
project_id [str] The identifier of the project you want to load.

Returns
project [Project] The queried project

Examples

import datarobot as dr
p = dr.Project.get(project_id='54e639a18bd88f08078ca831')
p.id
>>>'54e639a18bd88f08078ca831'
p.project_name
>>>'Some project name'

Return type TypeVar(TProject, bound= Project)

classmethod create(cls, sourcedata, project_name='Untitled Project', max_wait=600, read_timeout=600,
dataset_filename=None, *, use_case=None)

Creates a project with provided data.

Project creation is asynchronous process, which means that after initial request we will keep polling status
of async process that is responsible for project creation until it’s finished. For SDK users this only means
that this method might raise exceptions related to it’s async nature.

Parameters
sourcedata [basestring, file, pathlib.Path or pandas.DataFrame] Dataset to use for the

project. If string can be either a path to a local file, url to publicly available file or raw
file content. If using a file, the filename must consist of ASCII characters only.

project_name [str, unicode, optional] The name to assign to the empty project.

max_wait [int, optional] Time in seconds after which project creation is considered unsuc-
cessful

read_timeout: int The maximum number of seconds to wait for the server to respond indi-
cating that the initial upload is complete

dataset_filename [string or None, optional] (New in version v2.14) File name to use for
dataset. Ignored for url and file path sources.

572 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

use_case: UseCase | string, optional A single UseCase object or ID to add this new Project
to. Must be a kwarg.

Returns
project [Project] Instance with initialized data.

Raises
InputNotUnderstoodError Raised if sourcedata isn’t one of supported types.

AsyncFailureError Polling for status of async process resulted in response with unsup-
ported status code. Beginning in version 2.1, this will be ProjectAsyncFailureError, a
subclass of AsyncFailureError

AsyncProcessUnsuccessfulError Raised if project creation was unsuccessful

AsyncTimeoutError Raised if project creation took more time, than specified by max_wait
parameter

Examples

p = Project.create('/home/datasets/somedataset.csv',
project_name="New API project")

p.id
>>> '5921731dkqshda8yd28h'
p.project_name
>>> 'New API project'

Return type TypeVar(TProject, bound= Project)

classmethod encrypted_string(plaintext)
Sends a string to DataRobot to be encrypted

This is used for passwords that DataRobot uses to access external data sources

Parameters
plaintext [str] The string to encrypt

Returns
ciphertext [str] The encrypted string

Return type str

classmethod create_from_hdfs(cls, url, port=None, project_name=None, max_wait=600)
Create a project from a datasource on a WebHDFS server.

Parameters
url [str] The location of the WebHDFS file, both server and full path. Per the DataRobot

specification, must begin with hdfs://, e.g. hdfs:///tmp/10kDiabetes.csv

port [int, optional] The port to use. If not specified, will default to the server default (50070)

project_name [str, optional] A name to give to the project

max_wait [int] The maximum number of seconds to wait before giving up.

Returns

2.3. API Reference 573

DataRobot Python API Documentation, Release 3.2.2

Project

Examples

p = Project.create_from_hdfs('hdfs:///tmp/somedataset.csv',
project_name="New API project")

p.id
>>> '5921731dkqshda8yd28h'
p.project_name
>>> 'New API project'

classmethod create_from_data_source(cls, data_source_id, username=None, password=None,
credential_id=None, use_kerberos=None,
credential_data=None, project_name=None, max_wait=600, *,
use_case=None)

Create a project from a data source. Either data_source or data_source_id should be specified.

Parameters
data_source_id [str] the identifier of the data source.

username [str, optional] The username for database authentication. If supplied password
must also be supplied.

password [str, optional] The password for database authentication. The password is en-
crypted at server side and never saved / stored. If supplied usernamemust also be supplied.

credential_id: str, optional The ID of the set of credentials to use instead of user and pass-
word. Note that with this change, username and password will become optional.

use_kerberos: bool, optional Server default is False. If true, use kerberos authentication
for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

project_name [str, optional] optional, a name to give to the project.

max_wait [int] optional, the maximum number of seconds to wait before giving up.

use_case: UseCase | string, optional A single UseCase object or ID to add this new Project
to. Must be a kwarg.

Returns
Project

Raises
InvalidUsageError Raised if either username or password is passed without the other.

classmethod create_from_dataset(cls, dataset_id, dataset_version_id=None, project_name=None,
user=None, password=None, credential_id=None,
use_kerberos=None, credential_data=None, max_wait=600, *,
use_case=None)

Create a Project from a datarobot.models.Dataset

Parameters
dataset_id: string The ID of the dataset entry to user for the project’s Dataset

574 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

dataset_version_id: string, optional The ID of the dataset version to use for the project
dataset. If not specified - uses latest version associated with dataset_id

project_name: string, optional The name of the project to be created. If not specified, will
be “Untitled Project” for database connections, otherwise the project name will be based
on the file used.

user: string, optional The username for database authentication.

password: string, optional The password (in cleartext) for database authentication. The
password will be encrypted on the server side in scope of HTTP request and never saved
or stored

credential_id: string, optional The ID of the set of credentials to use instead of user and
password.

use_kerberos: bool, optional Server default is False. If true, use kerberos authentication
for database authentication.

credential_data: dict, optional The credentials to authenticate with the database, to use in-
stead of user/password or credential ID.

max_wait: int optional, the maximum number of seconds to wait before giving up.

use_case: UseCase | string, optional A single UseCase object or ID to add this new Project
to. Must be a kwarg.

Returns
Project

Return type TypeVar(TProject, bound= Project)

classmethod create_segmented_project_from_clustering_model(cls, clustering_project_id,
clustering_model_id, target,
max_wait=600, *,
use_case=None)

Create a new segmented project from a clustering model

Parameters
clustering_project_id [str] The identifier of the clustering project you want to use as the

base.

clustering_model_id [str] The identifier of the clustering model you want to use as the seg-
mentation method.

target [str] The name of the target column that will be used from the clustering project.

max_wait: int optional, the maximum number of seconds to wait before giving up.

use_case: UseCase | string, optional A single UseCase object or ID to add this new Project
to. Must be a kwarg.

Returns
project [Project] The created project

Return type TypeVar(TProject, bound= Project)

classmethod from_async(async_location, max_wait=600)
Given a temporary async status location poll for no more than max_wait seconds until the async process
(project creation or setting the target, for example) finishes successfully, then return the ready project

2.3. API Reference 575

DataRobot Python API Documentation, Release 3.2.2

Parameters
async_location [str] The URL for the temporary async status resource. This is returned as a

header in the response to a request that initiates an async process

max_wait [int] The maximum number of seconds to wait before giving up.

Returns
project [Project] The project, now ready

Raises
ProjectAsyncFailureError If the server returned an unexpected response while polling for

the asynchronous operation to resolve

AsyncProcessUnsuccessfulError If the final result of the asynchronous operation was a fail-
ure

AsyncTimeoutError If the asynchronous operation did not resolve within the time specified

Return type TypeVar(TProject, bound= Project)

classmethod start(cls, sourcedata, target=None, project_name='Untitled Project', worker_count=None,
metric=None, autopilot_on=True, blueprint_threshold=None, response_cap=None,
partitioning_method=None, positive_class=None, target_type=None,
unsupervised_mode=False, blend_best_models=None,
prepare_model_for_deployment=None, consider_blenders_in_recommendation=None,
scoring_code_only=None, min_secondary_validation_model_count=None,
shap_only_mode=None, relationships_configuration_id=None,
autopilot_with_feature_discovery=None,
feature_discovery_supervised_feature_reduction=None, unsupervised_type=None,
autopilot_cluster_list=None, bias_mitigation_feature_name=None,
bias_mitigation_technique=None,
include_bias_mitigation_feature_as_predictor_variable=None, *, use_case=None)

Chain together project creation, file upload, and target selection.

Note: While this function provides a simple means to get started, it does not expose all possible parame-
ters. For advanced usage, using create, set_advanced_options and analyze_and_model directly is
recommended.

Parameters
sourcedata [str or pandas.DataFrame] The path to the file to upload. Can be either a path to

a local file or a publicly accessible URL (starting with http://, https://, file://, or
s3://). If the source is a DataFrame, it will be serialized to a temporary buffer. If using a
file, the filename must consist of ASCII characters only.

target [str, optional] The name of the target column in the uploaded file. Should not be
provided if unsupervised_mode is True.

project_name [str] The project name.

Returns
project [Project] The newly created and initialized project.

Other Parameters
worker_count [int, optional] The number of workers that you want to allocate to this project.

576 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

metric [str, optional] The name of metric to use.

autopilot_on [boolean, default True] Whether or not to begin modeling automatically.

blueprint_threshold [int, optional] Number of hours the model is permitted to run. Mini-
mum 1

response_cap [float, optional] Quantile of the response distribution to use for response cap-
ping Must be in range 0.5 .. 1.0

partitioning_method [PartitioningMethod object, optional] Instance of one of the
Partition Classes defined in datarobot.helpers.partitioning_methods.
As an alternative, use Project.set_partitioning_method or Project.
set_datetime_partitioning to set the partitioning for the project.

positive_class [str, float, or int; optional] Specifies a level of the target column that should
be treated as the positive class for binary classification. May only be specified for binary
classification targets.

target_type [str, optional] Override the automatically selected target_type. An example
usage would be setting the target_type=’Multiclass’ when you want to preform a mul-
ticlass classification task on a numeric column that has a low cardinality. You can use
TARGET_TYPE enum.

unsupervised_mode [boolean, default False] Specifies whether to create an unsupervised
project.

blend_best_models: bool, optional blend best models during Autopilot run

scoring_code_only: bool, optional Keep only models that can be converted to scorable java
code during Autopilot run.

shap_only_mode: bool, optional Keep only models that support SHAP values during Au-
topilot run. Use SHAP-based insights wherever possible. Defaults to False.

prepare_model_for_deployment: bool, optional Prepare model for deployment during
Autopilot run. The preparation includes creating reduced feature list models, retraining
best model on higher sample size, computing insights and assigning “RECOMMENDED
FOR DEPLOYMENT” label.

consider_blenders_in_recommendation: bool, optional Include blenders when selecting
a model to prepare for deployment in an Autopilot Run. Defaults to False.

min_secondary_validation_model_count: int, optional Compute “All backtest” scores
(datetime models) or cross validation scores for the specified number of highest ranking
models on the Leaderboard, if over the Autopilot default.

relationships_configuration_id [str, optional] (New in version v2.23) id of the relationships
configuration to use

autopilot_with_feature_discovery: bool, optional. (New in version v2.23) If true, autopi-
lot will run on a feature list that includes features found via search for interactions.

feature_discovery_supervised_feature_reduction: bool, optional (New in version v2.23)
Run supervised feature reduction for feature discovery projects.

unsupervised_type [UnsupervisedTypeEnum, optional] (New in version v2.27) Specifies
whether an unsupervised project is anomaly detection or clustering.

autopilot_cluster_list [list(int), optional] (New in version v2.27) Specifies the list of clusters
to build for each model during Autopilot. Specifying multiple values in a list will build
models with each number of clusters for the Leaderboard.

2.3. API Reference 577

DataRobot Python API Documentation, Release 3.2.2

bias_mitigation_feature_name [str, optional] The feature from protected features that will
be used in a bias mitigation task to mitigate bias

bias_mitigation_technique [str, optional] One of datarobot.enums.BiasMitigationTechnique
Options: - ‘preprocessingReweighing’ - ‘postProcessingRejectionOptionBasedClassifica-
tion’ The technique by which we’ll mitigate bias, which will inform which bias mitigation
task we insert into blueprints

include_bias_mitigation_feature_as_predictor_variable [bool, optional] Whether we
should also use the mitigation feature as in input to the modeler just like any other cat-
egorical used for training, i.e. do we want the model to “train on” this feature in addition
to using it for bias mitigation

use_case: UseCase | string, optional A single UseCase object or ID to add this new Project
to. Must be a kwarg.

Raises
AsyncFailureError Polling for status of async process resulted in response with unsup-

ported status code

AsyncProcessUnsuccessfulError Raised if project creation or target setting was unsuccess-
ful

AsyncTimeoutError Raised if project creation or target setting timed out

Examples

Project.start("./tests/fixtures/file.csv",
"a_target",
project_name="test_name",
worker_count=4,
metric="a_metric")

This is an example of using a URL to specify the datasource:

Project.start("https://example.com/data/file.csv",
"a_target",
project_name="test_name",
worker_count=4,
metric="a_metric")

Return type TypeVar(TProject, bound= Project)

classmethod list(search_params=None, use_cases=None, offset=None, limit=None)
Returns the projects associated with this account.

Parameters
search_params [dict, optional.] If not None, the returned projects are filtered by lookup.

Currently you can query projects by:

• project_name

use_cases [Union[UseCase, List[UseCase], str, List[str]], optional.] If not None, the returned
projects are filtered to those associated with a specific Use Case or Use Cases. Accepts
either the entity or the ID.

offset [int, optional] If provided, specifies the number of results to skip.

578 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

limit [int, optional] If provided, specifies the maximum number of results to return. If not
provided, returns a maximum of 1000 results.

Returns
projects [list of Project instances] Contains a list of projects associated with this user ac-

count.

Raises
TypeError Raised if search_params parameter is provided, but is not of supported type.

Examples

List all projects .. code-block:: python

p_list = Project.list() p_list >>> [Project(‘Project One’), Project(‘Two’)]

Search for projects by name .. code-block:: python

Project.list(search_params={‘project_name’: ‘red’}) >>> [Project(‘Predtime’), Project(‘Fred
Project’)]

List 2nd and 3rd projects .. code-block:: python

Project.list(offset=1, limit=2) >>> [Project(‘Project 2’), Project(‘Project 3’)]

Return type List[Project]

refresh()
Fetches the latest state of the project, and updates this object with that information. This is an in place
update, not a new object.

Returns
self [Project] the now-updated project

Return type None

delete()
Removes this project from your account.

Return type None

analyze_and_model(target=None, mode='quick', metric=None, worker_count=None, positive_class=None,
partitioning_method=None, featurelist_id=None, advanced_options=None,
max_wait=600, target_type=None, credentials=None,
feature_engineering_prediction_point=None, unsupervised_mode=False,
relationships_configuration_id=None, class_mapping_aggregation_settings=None,
segmentation_task_id=None, unsupervised_type=None, autopilot_cluster_list=None,
use_gpu=None)

Set target variable of an existing project and begin the autopilot process or send data to DataRobot for
feature analysis only if manual mode is specified.

Any options saved using set_options will be used if nothing is passed to advanced_options. However,
saved options will be ignored if advanced_options are passed.

Target setting is an asynchronous process, which means that after initial request we will keep polling status
of async process that is responsible for target setting until it’s finished. For SDK users this only means that
this method might raise exceptions related to it’s async nature.

2.3. API Reference 579

DataRobot Python API Documentation, Release 3.2.2

When execution returns to the caller, the autopilot process will already have commenced (again, unless
manual mode is specified).

Parameters
target [str, optional] The name of the target column in the uploaded file. Should not be

provided if unsupervised_mode is True.

mode [str, optional] You can use AUTOPILOT_MODE enum to choose between

• AUTOPILOT_MODE.FULL_AUTO

• AUTOPILOT_MODE.MANUAL

• AUTOPILOT_MODE.QUICK

• AUTOPILOT_MODE.COMPREHENSIVE: Runs all blueprints in the repository (warning:
this may be extremely slow).

If unspecified, QUICK is used. If the MANUAL value is used, the model creation process will
need to be started by executing the start_autopilot function with the desired featurelist.
It will start immediately otherwise.

metric [str, optional] Name of the metric to use for evaluating models. You can query the
metrics available for the target by way of Project.get_metrics. If none is specified,
then the default recommended by DataRobot is used.

worker_count [int, optional] The number of concurrent workers to request for this project.
If None, then the default is used. (New in version v2.14) Setting this to -1 will request the
maximum number available to your account.

partitioning_method [PartitioningMethod object, optional] Instance of one of the
Partition Classes defined in datarobot.helpers.partitioning_methods.
As an alternative, use Project.set_partitioning_method or Project.
set_datetime_partitioning to set the partitioning for the project.

positive_class [str, float, or int; optional] Specifies a level of the target column that should
be treated as the positive class for binary classification. May only be specified for binary
classification targets.

featurelist_id [str, optional] Specifies which feature list to use.

advanced_options [AdvancedOptions, optional] Used to set advanced options of project cre-
ation. Will override any options saved using set_options.

max_wait [int, optional] Time in seconds after which target setting is considered unsuccess-
ful.

target_type [str, optional] Override the automatically selected target_type. An example
usage would be setting the target_type=’Multiclass’ when you want to preform a mul-
ticlass classification task on a numeric column that has a low cardinality. You can use
TARGET_TYPE enum.

credentials: list, optional, a list of credentials for the datasets used in relationship configu-
ration (previously graphs).

feature_engineering_prediction_point [str, optional] additional aim parameter.

unsupervised_mode [boolean, default False] (New in version v2.20) Specifies whether to
create an unsupervised project. If True, target may not be provided.

relationships_configuration_id [str, optional] (New in version v2.21) ID of the relation-
ships configuration to use.

580 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

segmentation_task_id [str or SegmentationTask, optional] (New in version v2.28) The seg-
mentation task that should be used to split the project for segmented modeling.

unsupervised_type [UnsupervisedTypeEnum, optional] (New in version v2.27) Specifies
whether an unsupervised project is anomaly detection or clustering.

autopilot_cluster_list [list(int), optional] (New in version v2.27) Specifies the list of clusters
to build for each model during Autopilot. Specifying multiple values in a list will build
models with each number of clusters for the Leaderboard.

use_gpu [bool, optional] (New in version v3.2) Specifies whether project should use GPUs

Returns
project [Project] The instance with updated attributes.

Raises
AsyncFailureError Polling for status of async process resulted in response with unsup-

ported status code

AsyncProcessUnsuccessfulError Raised if target setting was unsuccessful

AsyncTimeoutError Raised if target setting took more time, than specified by max_wait
parameter

TypeError Raised if advanced_options, partitioning_method or target_type is
provided, but is not of supported type

See also:

datarobot.models.Project.start combines project creation, file upload, and target selection. Pro-
vides fewer options, but is useful for getting started quickly.

set_target(target=None, mode='quick', metric=None, worker_count=None, positive_class=None,
partitioning_method=None, featurelist_id=None, advanced_options=None, max_wait=600,
target_type=None, credentials=None, feature_engineering_prediction_point=None,
unsupervised_mode=False, relationships_configuration_id=None,
class_mapping_aggregation_settings=None, segmentation_task_id=None,
unsupervised_type=None, autopilot_cluster_list=None)

Set target variable of an existing project and begin the Autopilot process (unless manual mode is specified).

Target setting is an asynchronous process, which means that after initial request DataRobot keeps polling
status of an async process that is responsible for target setting until it’s finished. For SDK users, this method
might raise exceptions related to its async nature.

When execution returns to the caller, the Autopilot process will already have commenced (again, unless
manual mode is specified).

Parameters
target [str, optional] The name of the target column in the uploaded file. Should not be

provided if unsupervised_mode is True.

mode [str, optional] You can use AUTOPILOT_MODE enum to choose between

• AUTOPILOT_MODE.FULL_AUTO

• AUTOPILOT_MODE.MANUAL

• AUTOPILOT_MODE.QUICK

• AUTOPILOT_MODE.COMPREHENSIVE: Runs all blueprints in the repository (warning:
this may be extremely slow).

2.3. API Reference 581

DataRobot Python API Documentation, Release 3.2.2

If unspecified, QUICKmode is used. If the MANUAL value is used, the model creation process
needs to be started by executing the start_autopilot function with the desired feature
list. It will start immediately otherwise.

metric [str, optional] Name of the metric to use for evaluating models. You can query the
metrics available for the target by way of Project.get_metrics. If none is specified,
then the default recommended by DataRobot is used.

worker_count [int, optional] The number of concurrent workers to request for this project.
If None, then the default is used. (New in version v2.14) Setting this to -1 will request the
maximum number available to your account.

positive_class [str, float, or int; optional] Specifies a level of the target column that should
be treated as the positive class for binary classification. May only be specified for binary
classification targets.

partitioning_method [PartitioningMethod object, optional] Instance of one of the
Partition Classes defined in datarobot.helpers.partitioning_methods.
As an alternative, use Project.set_partitioning_method or Project.
set_datetime_partitioning to set the partitioning for the project.

featurelist_id [str, optional] Specifies which feature list to use.

advanced_options [AdvancedOptions, optional] Used to set advanced options of project cre-
ation.

max_wait [int, optional] Time in seconds after which target setting is considered unsuccess-
ful.

target_type [str, optional] Override the automatically selected target_type. An example us-
age would be setting the target_type=Multiclass’ when you want to preform a multiclass
classification task on a numeric column that has a low cardinality. You can use ``TAR-
GET_TYPE` enum.

credentials: list, optional, A list of credentials for the datasets used in relationship config-
uration (previously graphs).

feature_engineering_prediction_point [str, optional] For time-aware Feature Engineering,
this parameter specifies the column from the primary dataset to use as the prediction point.

unsupervised_mode [boolean, default False] (New in version v2.20) Specifies whether to
create an unsupervised project. If True, target may not be provided.

relationships_configuration_id [str, optional] (New in version v2.21) ID of the relation-
ships configuration to use.

class_mapping_aggregation_settings [ClassMappingAggregationSettings, optional] In-
stance of datarobot.helpers.ClassMappingAggregationSettings

segmentation_task_id [str or SegmentationTask, optional] (New in version v2.28) The seg-
mentation task that should be used to split the project for segmented modeling.

unsupervised_type [UnsupervisedTypeEnum, optional] (New in version v2.27) Specifies
whether an unsupervised project is anomaly detection or clustering.

autopilot_cluster_list [list(int), optional] (New in version v2.27) Specifies the list of clusters
to build for each model during Autopilot. Specifying multiple values in a list will build
models with each number of clusters for the Leaderboard.

Returns
project [Project] The instance with updated attributes.

582 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
AsyncFailureError Polling for status of async process resulted in response with unsup-

ported status code.

AsyncProcessUnsuccessfulError Raised if target setting was unsuccessful.

AsyncTimeoutError Raised if target setting took more time, than specified by max_wait
parameter.

TypeError Raised if advanced_options, partitioning_method or target_type is
provided, but is not of supported type.

See also:

datarobot.models.Project.start Combines project creation, file upload, and target selection. Pro-
vides fewer options, but is useful for getting started quickly.

datarobot.models.Project.analyze_and_model the method replacing set_target after it is re-
moved.

get_models(order_by=None, search_params=None, with_metric=None)
List all completed, successful models in the leaderboard for the given project.

Parameters
order_by [str or list of strings, optional] If not None, the returned models are ordered by this

attribute. If None, the default return is the order of default project metric.

Allowed attributes to sort by are:

• metric

• sample_pct

If the sort attribute is preceded by a hyphen, models will be sorted in descending order,
otherwise in ascending order.

Multiple sort attributes can be included as a comma-delimited string or in a list e.g.
order_by=`sample_pct,-metric` or order_by=[sample_pct, -metric]

Using metric to sort by will result in models being sorted according to their validation score
by how well they did according to the project metric.

search_params [dict, optional.] If not None, the returned models are filtered by lookup.
Currently you can query models by:

• name

• sample_pct

• is_starred

with_metric [str, optional.] If not None, the returned models will only have scores for this
metric. Otherwise all the metrics are returned.

Returns
models [a list of Model instances.] All of the models that have been trained in this project.

Raises
TypeError Raised if order_by or search_params parameter is provided, but is not of

supported type.

2.3. API Reference 583

DataRobot Python API Documentation, Release 3.2.2

Examples

Project.get('pid').get_models(order_by=['-sample_pct',
'metric'])

Getting models that contain "Ridge" in name
and with sample_pct more than 64
Project.get('pid').get_models(

search_params={
'sample_pct__gt': 64,
'name': "Ridge"

})

Filtering models based on 'starred' flag:
Project.get('pid').get_models(search_params={'is_starred': True})

Return type List[Optional[Model]]

recommended_model()
Returns the default recommended model, or None if there is no default recommended model.

Returns
recommended_model [Model or None] The default recommended model.

Return type Optional[Model]

get_top_model(metric=None)
Obtain the top ranked model for a given metric/ If no metric is passed in, it uses the project’s default metric.
Models that display score of N/A in the UI are not included in the ranking (see https://docs.datarobot.com/
en/docs/modeling/reference/model-detail/leaderboard-ref.html#na-scores).

Parameters
metric [str, optional] Metric to sort models

Returns
model [Model] The top model

Raises
ValueError Raised if the project is unsupervised. Raised if the project has no target set.

Raised if no metric was passed or the project has no metric. Raised if the metric passed is
not used by the models on the leaderboard.

Examples

from datarobot.models.project import Project

project = Project.get("<MY_PROJECT_ID>")
top_model = project.get_top_model()

Return type Model

584 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/modeling/reference/model-detail/leaderboard-ref.html#na-scores
https://docs.datarobot.com/en/docs/modeling/reference/model-detail/leaderboard-ref.html#na-scores

DataRobot Python API Documentation, Release 3.2.2

get_datetime_models()
List all models in the project as DatetimeModels

Requires the project to be datetime partitioned. If it is not, a ClientError will occur.

Returns
models [list of DatetimeModel] the datetime models

Return type List[DatetimeModel]

get_prime_models()
List all DataRobot Prime models for the project Prime models were created to approximate a parent model,
and have downloadable code.

Returns
models [list of PrimeModel]

Return type List[PrimeModel]

get_prime_files(parent_model_id=None, model_id=None)
List all downloadable code files from DataRobot Prime for the project

Parameters
parent_model_id [str, optional] Filter for only those prime files approximating this parent

model

model_id [str, optional] Filter for only those prime files with code for this prime model

Returns
files: list of PrimeFile

get_dataset()
Retrieve the dataset used to create a project.

Returns
Dataset Dataset used for creation of project or None if no catalog_id present.

Examples

from datarobot.models.project import Project

project = Project.get("<MY_PROJECT_ID>")
dataset = project.get_dataset()

Return type Optional[Dataset]

get_datasets()
List all the datasets that have been uploaded for predictions

Returns
datasets [list of PredictionDataset instances]

Return type List[PredictionDataset]

2.3. API Reference 585

DataRobot Python API Documentation, Release 3.2.2

upload_dataset(sourcedata, max_wait=600, read_timeout=600, forecast_point=None,
predictions_start_date=None, predictions_end_date=None, dataset_filename=None,
relax_known_in_advance_features_check=None, credentials=None,
actual_value_column=None, secondary_datasets_config_id=None)

Upload a new dataset to make predictions against

Parameters
sourcedata [str, file or pandas.DataFrame] Data to be used for predictions. If string, can be

either a path to a local file, a publicly accessible URL (starting with http://, https://,
file://), or raw file content. If using a file on disk, the filename must consist of ASCII
characters only.

max_wait [int, optional] The maximum number of seconds to wait for the uploaded dataset
to be processed before raising an error.

read_timeout [int, optional] The maximum number of seconds to wait for the server to re-
spond indicating that the initial upload is complete

forecast_point [datetime.datetime or None, optional] (New in version v2.8) May only be
specified for time series projects, otherwise the upload will be rejected. The time in the
dataset relative to which predictions should be generated in a time series project. See the
Time Series documentation for more information. If not provided, will default to using the
latest forecast point in the dataset.

predictions_start_date [datetime.datetime or None, optional] (New in version v2.11) May
only be specified for time series projects. The start date for bulk predictions. Note that this
parameter is for generating historical predictions using the training data. This parameter
should be provided in conjunction with predictions_end_date. Cannot be provided
with the forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.11) May
only be specified for time series projects. The end date for bulk predictions, exclusive.
Note that this parameter is for generating historical predictions using the training data. This
parameter should be provided in conjunction with predictions_start_date. Cannot be
provided with the forecast_point parameter.

actual_value_column [string, optional] (New in version v2.21) Actual value column name,
valid for the prediction files if the project is unsupervised and the dataset is considered as
bulk predictions dataset. Cannot be provided with the forecast_point parameter.

dataset_filename [string or None, optional] (New in version v2.14) File name to use for the
dataset. Ignored for url and file path sources.

relax_known_in_advance_features_check [bool, optional] (New in version v2.15) For
time series projects only. If True, missing values in the known in advance features are
allowed in the forecast window at the prediction time. If omitted or False, missing values
are not allowed.

credentials: list, optional, a list of credentials for the datasets used in Feature discovery
project

secondary_datasets_config_id: string or None, optional (New in version v2.23) The Id of
the alternative secondary dataset config to use during prediction for Feature discovery
project.

Returns
——-
dataset [PredictionDataset] The newly uploaded dataset.

586 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
InputNotUnderstoodError Raised if sourcedata isn’t one of supported types.

AsyncFailureError Raised if polling for the status of an async process resulted in a response
with an unsupported status code.

AsyncProcessUnsuccessfulError Raised if project creation was unsuccessful (i.e. the
server reported an error in uploading the dataset).

AsyncTimeoutError Raised if processing the uploaded dataset took more time than speci-
fied by the max_wait parameter.

ValueError Raised if forecast_point or predictions_start_date and
predictions_end_date are provided, but are not of the supported type.

Return type PredictionDataset

upload_dataset_from_data_source(data_source_id, username, password, max_wait=600,
forecast_point=None,
relax_known_in_advance_features_check=None, credentials=None,
predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, secondary_datasets_config_id=None)

Upload a new dataset from a data source to make predictions against

Parameters
data_source_id [str] The identifier of the data source.

username [str] The username for database authentication.

password [str] The password for database authentication. The password is encrypted at
server side and never saved / stored.

max_wait [int, optional] Optional, the maximum number of seconds to wait before giving
up.

forecast_point [datetime.datetime or None, optional] (New in version v2.8) For time series
projects only. This is the default point relative to which predictions will be generated,
based on the forecast window of the project. See the time series prediction documentation
for more information.

relax_known_in_advance_features_check [bool, optional] (New in version v2.15) For
time series projects only. If True, missing values in the known in advance features are
allowed in the forecast window at the prediction time. If omitted or False, missing values
are not allowed.

credentials: list, optional, a list of credentials for the datasets used in Feature discovery
project

predictions_start_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The start date for bulk predictions. Note that this parameter
is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_end_date. Can’t be provided with the
forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] (New in version v2.20) For
time series projects only. The end date for bulk predictions, exclusive. Note that this param-
eter is for generating historical predictions using the training data. This parameter should
be provided in conjunction with predictions_start_date. Can’t be provided with the
forecast_point parameter.

2.3. API Reference 587

DataRobot Python API Documentation, Release 3.2.2

actual_value_column [string, optional] (New in version v2.21) Actual value column name,
valid for the prediction files if the project is unsupervised and the dataset is considered as
bulk predictions dataset. Cannot be provided with the forecast_point parameter.

secondary_datasets_config_id: string or None, optional (New in version v2.23) The Id of
the alternative secondary dataset config to use during prediction for Feature discovery
project.

Returns
——-
dataset [PredictionDataset] the newly uploaded dataset

Return type PredictionDataset

upload_dataset_from_catalog(dataset_id, credential_id=None, credential_data=None,
dataset_version_id=None, max_wait=600, forecast_point=None,
relax_known_in_advance_features_check=None, credentials=None,
predictions_start_date=None, predictions_end_date=None,
actual_value_column=None, secondary_datasets_config_id=None)

Upload a new dataset from a catalog dataset to make predictions against

Parameters
dataset_id [str] The identifier of the dataset.

credential_id [str, optional] The credential ID of the AI Catalog dataset to upload.

credential_data [BasicCredentialsDataDict | S3CredentialsDataDict | OAuthCredentials-
DataDict, optional] Credential data of the catalog dataset to upload. credential_data can
be in one of the following forms:

Basic Credentials
credentialType [str] The credential type. For basic credentials, this value must be Cre-

dentialTypes.BASIC.

user [str] The username for database authentication.

password [str] The password for database authentication. The password is encrypted at
rest and never saved or stored.

S3 Credentials
credentialType [str] The credential type. For S3 credentials, this value must be Cre-

dentialTypes.S3.

awsAccessKeyId [str] The S3 AWS access key ID.

awsSecretAccessKey [str] The S3 AWS secret access key.

awsSessionToken [str] The S3 AWS session token.

OAuth Credentials
credentialType [str] The credential type. For OAuth credentials, this value must be

CredentialTypes.OAUTH.

oauthRefreshToken [str] The oauth refresh token.

oauthClientId [str] The oauth client ID.

oauthClientSecret [str] The oauth client secret.

588 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

oauthAccessToken [str] The oauth access token.

dataset_version_id [str, optional] The version id of the dataset to use.

max_wait [int, optional] Optional, the maximum number of seconds to wait before giving
up.

forecast_point [datetime.datetime or None, optional] For time series projects only. This
is the default point relative to which predictions will be generated, based on the forecast
window of the project. See the time series prediction documentation for more information.

relax_known_in_advance_features_check [bool, optional] For time series projects only. If
True, missing values in the known in advance features are allowed in the forecast window
at the prediction time. If omitted or False, missing values are not allowed.

credentials: list[BasicCredentialsDict | CredentialIdCredentialsDict], optional A list of
credentials for the datasets used in Feature discovery project.

Items in credentials can have the following forms:

Basic Credentials
user [str] The username for database authentication.

password [str] The password (in cleartext) for database authentication. The password
will be encrypted on the server side in scope of HTTP request and never saved or
stored.

Credential ID
credentialId [str] The ID of the set of credentials to use instead of user and password.

Note that with this change, username and password will become optional.

predictions_start_date [datetime.datetime or None, optional] For time series projects only.
The start date for bulk predictions. Note that this parameter is for generating historical
predictions using the training data. This parameter should be provided in conjunction with
predictions_end_date. Can’t be provided with the forecast_point parameter.

predictions_end_date [datetime.datetime or None, optional] For time series projects only.
The end date for bulk predictions, exclusive. Note that this parameter is for generating
historical predictions using the training data. This parameter should be provided in con-
junction with predictions_start_date. Can’t be provided with the forecast_point
parameter.

actual_value_column [string, optional] Actual value column name, valid for the prediction
files if the project is unsupervised and the dataset is considered as bulk predictions dataset.
Cannot be provided with the forecast_point parameter.

secondary_datasets_config_id: string or None, optional The Id of the alternative sec-
ondary dataset config to use during prediction for Feature discovery project.

Returns
——-
dataset [PredictionDataset] the newly uploaded dataset

Return type PredictionDataset

get_blueprints()
List all blueprints recommended for a project.

Returns

2.3. API Reference 589

DataRobot Python API Documentation, Release 3.2.2

menu [list of Blueprint instances] All the blueprints recommended by DataRobot for a
project

get_features()
List all features for this project

Returns
list of Feature all features for this project

Return type List[Feature]

get_modeling_features(batch_size=None)
List all modeling features for this project

Only available once the target and partitioning settings have been set. For more information on the distinc-
tion between input and modeling features, see the time series documentation.

Parameters
batch_size [int, optional] The number of features to retrieve in a single API call. If specified,

the client may make multiple calls to retrieve the full list of features. If not specified, an
appropriate default will be chosen by the server.

Returns
list of ModelingFeature All modeling features in this project

Return type List[ModelingFeature]

get_featurelists()
List all featurelists created for this project

Returns
list of Featurelist All featurelists created for this project

Return type List[Featurelist]

get_associations(assoc_type, metric, featurelist_id=None)
Get the association statistics and metadata for a project’s informative features

New in version v2.17.

Parameters
assoc_type [string or None] The type of association, must be either ‘association’ or ‘corre-

lation’

metric [string or None] The specified association metric, belongs under either association or
correlation umbrella

featurelist_id [string or None] The desired featurelist for which to get association statistics
(New in version v2.19)

Returns
association_data [dict] Pairwise metric strength data, feature clustering data, and ordering

data for Feature Association Matrix visualization

590 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

get_association_featurelists()
List featurelists and get feature association status for each

New in version v2.19.

Returns
feature_lists [dict] Dict with ‘featurelists’ as key, with list of featurelists as values

get_association_matrix_details(feature1, feature2)
Get a sample of the actual values used to measure the association between a pair of features

New in version v2.17.

Parameters
feature1 [str] Feature name for the first feature of interest

feature2 [str] Feature name for the second feature of interest

Returns
dict This data has 3 keys: chart_type, features, values, and types

chart_type [str] Type of plotting the pair of features gets in the UI. e.g. ‘HORIZON-
TAL_BOX’, ‘VERTICAL_BOX’, ‘SCATTER’ or ‘CONTINGENCY’

values [list] A list of triplet lists e.g. {“values”: [[460.0, 428.5, 0.001], [1679.3, 259.0,
0.001], . . .] The first entry of each list is a value of feature1, the second entry of each list
is a value of feature2, and the third is the relative frequency of the pair of datapoints in the
sample.

features [list of str] A list of the passed features, [feature1, feature2]

types [list of str] A list of the passed features’ types inferred by DataRobot. e.g. [‘NU-
MERIC’, ‘CATEGORICAL’]

get_modeling_featurelists(batch_size=None)
List all modeling featurelists created for this project

Modeling featurelists can only be created after the target and partitioning options have been set for a project.
In time series projects, these are the featurelists that can be used for modeling; in other projects, they behave
the same as regular featurelists.

See the time series documentation for more information.

Parameters
batch_size [int, optional] The number of featurelists to retrieve in a single API call. If spec-

ified, the client may make multiple calls to retrieve the full list of features. If not specified,
an appropriate default will be chosen by the server.

Returns
list of ModelingFeaturelist all modeling featurelists in this project

Return type List[ModelingFeaturelist]

get_discarded_features()
Retrieve discarded during feature generation features. Applicable for time series projects. Can be called at
the modeling stage.

Returns
discarded_features_info: DiscardedFeaturesInfo

2.3. API Reference 591

DataRobot Python API Documentation, Release 3.2.2

Return type DiscardedFeaturesInfo

restore_discarded_features(features, max_wait=600)
Restore discarded during feature generation features. Applicable for time series projects. Can be called at
the modeling stage.

Returns
status: FeatureRestorationStatus information about features requested to be restored.

Return type FeatureRestorationStatus

create_type_transform_feature(name, parent_name, variable_type, replacement=None,
date_extraction=None, max_wait=600)

Create a new feature by transforming the type of an existing feature in the project

Note that only the following transformations are supported:

1. Text to categorical or numeric

2. Categorical to text or numeric

3. Numeric to categorical

4. Date to categorical or numeric

Note: Special considerations when casting numeric to categorical
There are two parameters which can be used for variableType to convert numeric data to categorical
levels. These differ in the assumptions they make about the input data, and are very important when con-
sidering the data that will be used to make predictions. The assumptions that each makes are:

• categorical : The data in the column is all integral, and there are no missing values. If either of
these conditions do not hold in the training set, the transformation will be rejected. During predictions,
if any of the values in the parent column are missing, the predictions will error.

• categoricalInt : New in v2.6 All of the data in the column should be considered categorical in its
string form when cast to an int by truncation. For example the value 3 will be cast as the string 3 and
the value 3.14 will also be cast as the string 3. Further, the value -3.6 will become the string -3.
Missing values will still be recognized as missing.

For convenience these are represented in the enum VARIABLE_TYPE_TRANSFORM with the names
CATEGORICAL and CATEGORICAL_INT.

Parameters
name [str] The name to give to the new feature

parent_name [str] The name of the feature to transform

variable_type [str] The type the new column should have. See the values within
datarobot.enums.VARIABLE_TYPE_TRANSFORM.

replacement [str or float, optional] The value that missing or unconvertable data should have

date_extraction [str, optional] Must be specified when parent_name is a date column (and
left None otherwise). Specifies which value from a date should be extracted. See the list
of values in datarobot.enums.DATE_EXTRACTION

592 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

max_wait [int, optional] The maximum amount of time to wait for DataRobot to finish pro-
cessing the new column. This process can take more time with more data to process. If
this operation times out, an AsyncTimeoutError will occur. DataRobot continues the pro-
cessing and the new column may successfully be constructed.

Returns
Feature The data of the new Feature

Raises
AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the job being waited for has failed or has been cancelled

AsyncTimeoutError If the resource did not resolve in time

Return type Feature

get_featurelist_by_name(name)
Creates a new featurelist

Parameters
name [str, optional] The name of the Project’s featurelist to get.

Returns
Featurelist featurelist found by name, optional

Examples

project = Project.get('5223deadbeefdeadbeef0101')
featurelist = project.get_featurelist_by_name("Raw Features")

Return type Optional[Featurelist]

create_featurelist(name=None, features=None, starting_featurelist=None,
starting_featurelist_id=None, starting_featurelist_name=None,
features_to_include=None, features_to_exclude=None)

Creates a new featurelist

Parameters
name [str, optional] The name to give to this new featurelist. Names must be unique, so an

error will be returned from the server if this name has already been used in this project.
We dynamically create a name if none is provided.

features [list of str, optional] The names of the features. Each feature must exist in the project
already.

starting_featurelist [Featurelist, optional] The featurelist to use as the basis when creating
a new featurelist. starting_featurelist.features will be read to get the list of features that we
will manipulate.

starting_featurelist_id [str, optional] The featurelist ID used instead of passing an object
instance.

starting_featurelist_name [str, optional] The featurelist name like “Informative Features”
to find a featurelist via the API, and use to fetch features.

2.3. API Reference 593

DataRobot Python API Documentation, Release 3.2.2

features_to_include [list of str, optional] The list of the feature names to include in new
featurelist. Throws an error if an item in this list is not in the featurelist that was passed,
or that was retrieved from the API. If nothing is passed, all features are included from the
starting featurelist.

features_to_exclude [list of str, optional] The list of the feature names to exclude in the new
featurelist. Throws an error if an item in this list is not in the featurelist that was passed,
also throws an error if a feature is in this list as well as features_to_include. Method cannot
use both at the same time.

Returns
Featurelist newly created featurelist

Raises
DuplicateFeaturesError Raised if features variable contains duplicate features

InvalidUsageError Raised method is called with incompatible arguments

Examples

project = Project.get('5223deadbeefdeadbeef0101')
flists = project.get_featurelists()

Create a new featurelist using a subset of features from an
existing featurelist
flist = flists[0]
features = flist.features[::2] # Half of the features

new_flist = project.create_featurelist(
name='Feature Subset',
features=features,

)

project = Project.get('5223deadbeefdeadbeef0101')

Create a new featurelist using a subset of features from an
existing featurelist by using features_to_exclude param

new_flist = project.create_featurelist(
name='Feature Subset of Existing Featurelist',
starting_featurelist_name="Informative Features",
features_to_exclude=["metformin", "weight", "age"],

)

Return type Featurelist

create_modeling_featurelist(name, features, skip_datetime_partition_column=False)
Create a new modeling featurelist

Modeling featurelists can only be created after the target and partitioning options have been set for a project.
In time series projects, these are the featurelists that can be used for modeling; in other projects, they behave
the same as regular featurelists.

See the time series documentation for more information.

594 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Parameters
name [str] the name of the modeling featurelist to create. Names must be unique within the

project, or the server will return an error.

features [list of str] the names of the features to include in the modeling featurelist. Each
feature must be a modeling feature.

skip_datetime_partition_column: boolean, optional False by default. If True, featurelist
will not contain datetime partition column. Use to create monotonic feature lists in Time
Series projects. Setting makes no difference for not Time Series projects. Monotonic fea-
turelists can not be used for modeling.

Returns
featurelist [ModelingFeaturelist] the newly created featurelist

Examples

project = Project.get('1234deadbeeffeeddead4321')
modeling_features = project.get_modeling_features()
selected_features = [feat.name for feat in modeling_features][:5] # select␣
→˓first five
new_flist = project.create_modeling_featurelist('Model This', selected_features)

Return type ModelingFeaturelist

get_metrics(feature_name)
Get the metrics recommended for modeling on the given feature.

Parameters
feature_name [str] The name of the feature to query regarding which metrics are recom-

mended for modeling.

Returns
feature_name: str The name of the feature that was looked up

available_metrics: list of str An array of strings representing the appropriate metrics. If the
feature cannot be selected as the target, then this array will be empty.

metric_details: list of dict The list of metricDetails objects

metric_name: str Name of the metric

supports_timeseries: boolean This metric is valid for timeseries

supports_multiclass: boolean This metric is valid for multiclass classification

supports_binary: boolean This metric is valid for binary classification

supports_regression: boolean This metric is valid for regression

ascending: boolean Should the metric be sorted in ascending order

get_status()
Query the server for project status.

Returns
status [dict] Contains:

2.3. API Reference 595

DataRobot Python API Documentation, Release 3.2.2

• autopilot_done : a boolean.

• stage : a short string indicating which stage the project is in.

• stage_description : a description of what stage means.

Examples

{"autopilot_done": False,
"stage": "modeling",
"stage_description": "Ready for modeling"}

pause_autopilot()
Pause autopilot, which stops processing the next jobs in the queue.

Returns
paused [boolean] Whether the command was acknowledged

Return type bool

unpause_autopilot()
Unpause autopilot, which restarts processing the next jobs in the queue.

Returns
unpaused [boolean] Whether the command was acknowledged.

Return type bool

start_autopilot(featurelist_id, mode='quick', blend_best_models=False, scoring_code_only=False,
prepare_model_for_deployment=True, consider_blenders_in_recommendation=False,
run_leakage_removed_feature_list=True, autopilot_cluster_list=None)

Start Autopilot on provided featurelist with the specified Autopilot settings, halting the current Autopilot
run.

Only one autopilot can be running at the time. That’s why any ongoing autopilot on a different featurelist
will be halted - modeling jobs in queue would not be affected but new jobs would not be added to queue by
the halted autopilot.

Parameters
featurelist_id [str] Identifier of featurelist that should be used for autopilot

mode [str, optional] The Autopilot mode to run. You can use AUTOPILOT_MODE enum to
choose between

• AUTOPILOT_MODE.FULL_AUTO

• AUTOPILOT_MODE.QUICK

• AUTOPILOT_MODE.COMPREHENSIVE

If unspecified, AUTOPILOT_MODE.QUICK is used.

blend_best_models [bool, optional] Blend best models during Autopilot run. This option is
not supported in SHAP-only ‘ ‘mode.

scoring_code_only [bool, optional] Keep only models that can be converted to scorable java
code during Autopilot run.

596 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

prepare_model_for_deployment [bool, optional] Prepare model for deployment during
Autopilot run. The preparation includes creating reduced feature list models, retraining
best model on higher sample size, computing insights and assigning “RECOMMENDED
FOR DEPLOYMENT” label.

consider_blenders_in_recommendation [bool, optional] Include blenders when selecting
a model to prepare for deployment in an Autopilot Run. This option is not supported in
SHAP-only mode or for multilabel projects.

run_leakage_removed_feature_list [bool, optional] Run Autopilot on Leakage Removed
feature list (if exists).

autopilot_cluster_list [list of int, optional] (New in v2.27) A list of integers, where each
value will be used as the number of clusters in Autopilot model(s) for unsupervised clus-
tering projects. Cannot be specified unless project unsupervisedMode is true and unsuper-
visedType is set to ‘clustering’.

Raises
AppPlatformError Raised project’s target was not selected or the settings for Autopilot are

invalid for the project project.

Return type None

train(trainable, sample_pct=None, featurelist_id=None, source_project_id=None, scoring_type=None,
training_row_count=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, n_clusters=None)

Submit a job to the queue to train a model.

Either sample_pct or training_row_count can be used to specify the amount of data to use, but not both. If
neither are specified, a default of the maximum amount of data that can safely be used to train any blueprint
without going into the validation data will be selected.

In smart-sampled projects, sample_pct and training_row_count are assumed to be in terms of rows of the
minority class.

Note: If the project uses datetime partitioning, use Project.train_datetime instead.

Parameters
trainable [str or Blueprint] For str, this is assumed to be a blueprint_id. If no
source_project_id is provided, the project_id will be assumed to be the project that
this instance represents.

Otherwise, for a Blueprint, it contains the blueprint_id and source_project_id that we
want to use. featurelist_id will assume the default for this project if not provided, and
sample_pct will default to using the maximum training value allowed for this project’s
partition setup. source_project_id will be ignored if a Blueprint instance is used for
this parameter

sample_pct [float, optional] The amount of data to use for training, as a percentage of the
project dataset from 0 to 100.

featurelist_id [str, optional] The identifier of the featurelist to use. If not defined, the default
for this project is used.

source_project_id [str, optional] Which project created this blueprint_id. If None, it defaults
to looking in this project. Note that you must have read permissions in this project.

2.3. API Reference 597

DataRobot Python API Documentation, Release 3.2.2

scoring_type [str, optional] Either validation or crossValidation (also
dr.SCORING_TYPE.validation or dr.SCORING_TYPE.cross_validation).
validation is available for every partitioning type, and indicates that the default
model validation should be used for the project. If the project uses a form of cross-
validation partitioning, crossValidation can also be used to indicate that all of the
available training/validation combinations should be used to evaluate the model.

training_row_count [int, optional] The number of rows to use to train the requested model.

monotonic_increasing_featurelist_id [str, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically increasing relationship to the
target. Passing None disables increasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str, optional] (new in version 2.11) the id of the fea-
turelist that defines the set of features with a monotonically decreasing relationship to the
target. Passing None disables decreasing monotonicity constraint. Default (dr.enums.
MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters: int, optional (new in version 2.27) Number of clusters to use in an unsupervised
clustering model. This parameter is used only for unsupervised clustering models that don’t
automatically determine the number of clusters.

Returns
model_job_id [str] id of created job, can be used as parameter to ModelJob.get method or
wait_for_async_model_creation function

Examples

Use a Blueprint instance:

blueprint = project.get_blueprints()[0]
model_job_id = project.train(blueprint, training_row_count=project.max_train_
→˓rows)

Use a blueprint_id, which is a string. In the first case, it is assumed that the blueprint was created by
this project. If you are using a blueprint used by another project, you will need to pass the id of that other
project as well.

blueprint_id = 'e1c7fc29ba2e612a72272324b8a842af'
project.train(blueprint, training_row_count=project.max_train_rows)

another_project.train(blueprint, source_project_id=project.id)

You can also easily use this interface to train a new model using the data from an existing model:

model = project.get_models()[0]
model_job_id = project.train(model.blueprint.id,

sample_pct=100)

train_datetime(blueprint_id, featurelist_id=None, training_row_count=None, training_duration=None,
source_project_id=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Create a new model in a datetime partitioned project

598 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

If the project is not datetime partitioned, an error will occur.

All durations should be specified with a duration string such as those returned by the
partitioning_methods.construct_duration_string helper method. Please see datetime
partitioned project documentation for more information on duration strings.

Parameters
blueprint_id [str] the blueprint to use to train the model

featurelist_id [str, optional] the featurelist to use to train the model. If not specified, the
project default will be used.

training_row_count [int, optional] the number of rows of data that should be used to train
the model. If specified, neither training_duration nor use_project_settings may
be specified.

training_duration [str, optional] a duration string specifying what time range the data
used to train the model should span. If specified, neither training_row_count nor
use_project_settings may be specified.

sampling_method [str, optional] (New in version v2.23) defines the way training data is
selected. Can be either random or latest. In combination with training_row_count
defines how rows are selected from backtest (latest by default). When training data is
defined using time range (training_duration or use_project_settings) this setting
changes the way time_window_sample_pct is applied (random by default). Applicable
to OTV projects only.

use_project_settings [bool, optional] (New in version v2.20) defaults to False. If True,
indicates that the custom backtest partitioning settings specified by the user will be used to
train the model and evaluate backtest scores. If specified, neither training_row_count
nor training_duration may be specified.

source_project_id [str, optional] the id of the project this blueprint comes from, if not this
project. If left unspecified, the blueprint must belong to this project.

monotonic_increasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically increasing relation-
ship to the target. Passing None disables increasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

monotonic_decreasing_featurelist_id [str, optional] (New in version v2.18) optional, the id
of the featurelist that defines the set of features with a monotonically decreasing relationship
to the target. Passing None disables decreasing monotonicity constraint. Default (dr.
enums.MONOTONICITY_FEATURELIST_DEFAULT) is the one specified by the blueprint.

n_clusters [int, optional] The number of clusters to use in the specified unsupervised clus-
tering model. ONLY VALID IN UNSUPERVISED CLUSTERING PROJECTS

Returns
job [ModelJob] the created job to build the model

blend(model_ids, blender_method)
Submit a job for creating blender model. Upon success, the new job will be added to the end of the queue.

Parameters
model_ids [list of str] List of model ids that will be used to create blender. These models

should have completed validation stage without errors, and can’t be blenders or DataRobot
Prime

2.3. API Reference 599

DataRobot Python API Documentation, Release 3.2.2

blender_method [str] Chosen blend method, one from datarobot.enums.
BLENDER_METHOD. If this is a time series project, only methods in datarobot.
enums.TS_BLENDER_METHOD are allowed.

Returns
model_job [ModelJob] New ModelJob instance for the blender creation job in queue.

See also:

datarobot.models.Project.check_blendable to confirm if models can be blended

Return type ModelJob

check_blendable(model_ids, blender_method)
Check if the specified models can be successfully blended

Parameters
model_ids [list of str] List of model ids that will be used to create blender. These models

should have completed validation stage without errors, and can’t be blenders or DataRobot
Prime

blender_method [str] Chosen blend method, one from datarobot.enums.
BLENDER_METHOD. If this is a time series project, only methods in datarobot.
enums.TS_BLENDER_METHOD are allowed.

Returns
EligibilityResult

Return type EligibilityResult

start_prepare_model_for_deployment(model_id)
Prepare a specific model for deployment.

The requested model will be trained on the maximum autopilot size then go through the recommendation
stages. For datetime partitioned projects, this includes the feature impact stage, retraining on a reduced
feature list, and retraining the best of the reduced feature list model and the max autopilot original model
on recent data. For non-datetime partitioned projects, this includes the feature impact stage, retraining on
a reduced feature list, retraining the best of the reduced feature list model and the max autopilot original
model up to the holdout size, then retraining the up-to-the holdout model on the full dataset.

Parameters
model_id [str] The model to prepare for deployment.

Return type None

get_all_jobs(status=None)
Get a list of jobs

This will give Jobs representing any type of job, including modeling or predict jobs.

Parameters
status [QUEUE_STATUS enum, optional] If called with

QUEUE_STATUS.INPROGRESS, will return the jobs that are currently running.

If called with QUEUE_STATUS.QUEUE, will return the jobs that are waiting to be run.

If called with QUEUE_STATUS.ERROR, will return the jobs that have errored.

600 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

If no value is provided, will return all jobs currently running or waiting to be run.

Returns
jobs [list] Each is an instance of Job

Return type List[Job]

get_blenders()
Get a list of blender models.

Returns
list of BlenderModel list of all blender models in project.

Return type List[BlenderModel]

get_frozen_models()
Get a list of frozen models

Returns
list of FrozenModel list of all frozen models in project.

Return type List[FrozenModel]

get_combined_models()
Get a list of models in segmented project.

Returns
list of CombinedModel list of all combined models in segmented project.

Return type List[CombinedModel]

get_active_combined_model()
Retrieve currently active combined model in segmented project.

Returns
CombinedModel currently active combined model in segmented project.

Return type CombinedModel

get_segments_models(combined_model_id=None)
Retrieve a list of all models belonging to the segments/child projects of the segmented project.

Parameters
combined_model_id [str, optional] Id of the combined model to get segments for. If there is

only a single combined model it can be retrieved automatically, but this must be specified
when there are > 1 combined models.

Returns
segments_models [list(dict)] A list of dictionaries containing all of the segments/child

projects, each with a list of their models ordered by metric from best to worst.

Return type List[Dict[str, Any]]

2.3. API Reference 601

DataRobot Python API Documentation, Release 3.2.2

get_model_jobs(status=None)
Get a list of modeling jobs

Parameters
status [QUEUE_STATUS enum, optional] If called with

QUEUE_STATUS.INPROGRESS, will return the modeling jobs that are currently
running.

If called with QUEUE_STATUS.QUEUE, will return the modeling jobs that are waiting
to be run.

If called with QUEUE_STATUS.ERROR, will return the modeling jobs that have errored.

If no value is provided, will return all modeling jobs currently running or waiting to be run.

Returns
jobs [list] Each is an instance of ModelJob

Return type List[ModelJob]

get_predict_jobs(status=None)
Get a list of prediction jobs

Parameters
status [QUEUE_STATUS enum, optional] If called with

QUEUE_STATUS.INPROGRESS, will return the prediction jobs that are currently
running.

If called with QUEUE_STATUS.QUEUE, will return the prediction jobs that are waiting
to be run.

If called with QUEUE_STATUS.ERROR, will return the prediction jobs that have errored.

If called without a status, will return all prediction jobs currently running or waiting to be
run.

Returns
jobs [list] Each is an instance of PredictJob

Return type List[PredictJob]

wait_for_autopilot(check_interval=20.0, timeout=86400, verbosity=1)
Blocks until autopilot is finished. This will raise an exception if the autopilot mode is changed from AU-
TOPILOT_MODE.FULL_AUTO.

It makes API calls to sync the project state with the server and to look at which jobs are enqueued.

Parameters
check_interval [float or int] The maximum time (in seconds) to wait between checks for

whether autopilot is finished

timeout [float or int or None] After this long (in seconds), we give up. If None, never timeout.

verbosity: This should be VERBOSITY_LEVEL.SILENT or VER-
BOSITY_LEVEL.VERBOSE. For VERBOSITY_LEVEL.SILENT, nothing will be
displayed about progress. For VERBOSITY_LEVEL.VERBOSE, the number of jobs in
progress or queued is shown. Note that new jobs are added to the queue along the way.

Raises

602 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

AsyncTimeoutError If autopilot does not finished in the amount of time specified

RuntimeError If a condition is detected that indicates that autopilot will not complete on
its own

Return type None

rename(project_name)
Update the name of the project.

Parameters
project_name [str] The new name

Return type None

set_project_description(project_description)
Set or Update the project description.

Parameters
project_description [str] The new description for this project.

Return type None

unlock_holdout()
Unlock the holdout for this project.

This will cause subsequent queries of the models of this project to contain the metric values for the holdout
set, if it exists.

Take care, as this cannot be undone. Remember that best practice is to select a model before analyzing the
model performance on the holdout set

Return type None

set_worker_count(worker_count)
Sets the number of workers allocated to this project.

Note that this value is limited to the number allowed by your account. Lowering the number will not stop
currently running jobs, but will cause the queue to wait for the appropriate number of jobs to finish before
attempting to run more jobs.

Parameters
worker_count [int] The number of concurrent workers to request from the pool of workers.

(New in version v2.14) Setting this to -1 will update the number of workers to the maximum
available to your account.

Return type None

set_advanced_options(advanced_options=None, **kwargs)
Update the advanced options of this project.

Note: project options will not be stored at the database level, so the options set via this method will only
be attached to a project instance for the lifetime of a client session (if you quit your session and reopen a
new one before running autopilot, the advanced options will be lost).

2.3. API Reference 603

DataRobot Python API Documentation, Release 3.2.2

Either accepts an AdvancedOptions object to replace all advanced options or indiviudal keyword arguments.
This is an inplace update, not a new object. The options set will only remain for the life of this project
instance within a given session.

Parameters
advanced_options [AdvancedOptions, optional] AdvancedOptions instance as an alterna-

tive to passing individual parameters.

weights [string, optional] The name of a column indicating the weight of each row

response_cap [float in [0.5, 1), optional] Quantile of the response distribution to use for
response capping.

blueprint_threshold [int, optional] Number of hours models are permitted to run before
being excluded from later autopilot stages Minimum 1

seed [int, optional] a seed to use for randomization

smart_downsampled [bool, optional] whether to use smart downsampling to throw away
excess rows of the majority class. Only applicable to classification and zero-boosted re-
gression projects.

majority_downsampling_rate [float, optional] The percentage between 0 and 100 of the
majority rows that should be kept. Specify only if using smart downsampling. May not
cause the majority class to become smaller than the minority class.

offset [list of str, optional] (New in version v2.6) the list of the names of the columns con-
taining the offset of each row

exposure [string, optional] (New in version v2.6) the name of a column containing the ex-
posure of each row

accuracy_optimized_mb [bool, optional] (New in version v2.6) Include additional, longer-
running models that will be run by the autopilot and available to run manually.

events_count [string, optional] (New in version v2.8) the name of a column specifying events
count.

monotonic_increasing_featurelist_id [string, optional] (new in version 2.11) the id of the
featurelist that defines the set of features with a monotonically increasing relationship to
the target. If None, no such constraints are enforced. When specified, this will set a default
for the project that can be overriden at model submission time if desired.

monotonic_decreasing_featurelist_id [string, optional] (new in version 2.11) the id of the
featurelist that defines the set of features with a monotonically decreasing relationship to
the target. If None, no such constraints are enforced. When specified, this will set a default
for the project that can be overriden at model submission time if desired.

only_include_monotonic_blueprints [bool, optional] (new in version 2.11) when true, only
blueprints that support enforcing monotonic constraints will be available in the project or
selected for the autopilot.

allowed_pairwise_interaction_groups [list of tuple, optional] (New in version v2.19) For
GA2M models - specify groups of columns for which pairwise interactions will be al-
lowed. E.g. if set to [(A, B, C), (C, D)] then GA2M models will allow interactions between
columns AxB, BxC, AxC, CxD. All others (AxD, BxD) will not be considered.

blend_best_models: bool, optional (New in version v2.19) blend best models during Au-
topilot run

scoring_code_only: bool, optional (New in version v2.19) Keep only models that can be
converted to scorable java code during Autopilot run

604 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

shap_only_mode: bool, optional (New in version v2.21) Keep only models that support
SHAP values during Autopilot run. Use SHAP-based insights wherever possible. Defaults
to False.

prepare_model_for_deployment: bool, optional (New in version v2.19) Prepare model for
deployment during Autopilot run. The preparation includes creating reduced feature list
models, retraining best model on higher sample size, computing insights and assigning
“RECOMMENDED FOR DEPLOYMENT” label.

consider_blenders_in_recommendation: bool, optional (New in version 2.22.0) Include
blenders when selecting a model to prepare for deployment in an Autopilot Run. Defaults
to False.

min_secondary_validation_model_count: int, optional (New in version v2.19) Compute
“All backtest” scores (datetime models) or cross validation scores for the specified number
of highest ranking models on the Leaderboard, if over the Autopilot default.

autopilot_data_sampling_method: str, optional (New in version v2.23) one of
datarobot.enums.DATETIME_AUTOPILOT_DATA_SAMPLING_METHOD. Applicable
for OTV projects only, defines if autopilot uses “random” or “latest” sampling when
iteratively building models on various training samples. Defaults to “random” for
duration-based projects and to “latest” for row-based projects.

run_leakage_removed_feature_list: bool, optional (New in version v2.23) Run Autopilot
on Leakage Removed feature list (if exists).

autopilot_with_feature_discovery: bool, optional. (New in version v2.23) If true, autopi-
lot will run on a feature list that includes features found via search for interactions.

feature_discovery_supervised_feature_reduction: bool, optional (New in version v2.23)
Run supervised feature reduction for feature discovery projects.

exponentially_weighted_moving_alpha: float, optional (New in version v2.26) defaults to
None, value between 0 and 1 (inclusive), indicates alpha parameter used in exponentially
weighted moving average within feature derivation window.

external_time_series_baseline_dataset_id: str, optional. (New in version v2.26) If pro-
vided, will generate metrics scaled by external model predictions metric for time series
projects. The external predictions catalog must be validated before autopilot starts, see
Project.validate_external_time_series_baseline and external baseline predic-
tions documentation for further explanation.

use_supervised_feature_reduction: bool, default ``True` optional Time Series only.
When true, during feature generation DataRobot runs a supervised algorithm to retain
only qualifying features. Setting to false can severely impact autopilot duration, especially
for datasets with many features.

primary_location_column: str, optional. The name of primary location column.

protected_features: list of str, optional. (New in version v2.24) A list of project features
to mark as protected for Bias and Fairness testing calculations. Max number of protected
features allowed is 10.

preferable_target_value: str, optional. (New in version v2.24) A target value that should
be treated as a favorable outcome for the prediction. For example, if we want to check
gender discrimination for giving a loan and our target is named is_bad, then the positive
outcome for the prediction would be No, which means that the loan is good and that’s what
we treat as a favorable result for the loaner.

fairness_metrics_set: str, optional. (New in version v2.24) Metric to use for
calculating fairness. Can be one of proportionalParity, equalParity,

2.3. API Reference 605

DataRobot Python API Documentation, Release 3.2.2

predictionBalance, trueFavorableAndUnfavorableRateParity or
favorableAndUnfavorablePredictiveValueParity. Used and required only if
Bias & Fairness in AutoML feature is enabled.

fairness_threshold: str, optional. (New in version v2.24) Threshold value for the fairness
metric. Can be in a range of [0.0, 1.0]. If the relative (i.e. normalized) fairness score
is below the threshold, then the user will see a visual indication on the

bias_mitigation_feature_name [str, optional] The feature from protected features that will
be used in a bias mitigation task to mitigate bias

bias_mitigation_technique [str, optional] One of datarobot.enums.BiasMitigationTechnique
Options: - ‘preprocessingReweighing’ - ‘postProcessingRejectionOptionBasedClassifica-
tion’ The technique by which we’ll mitigate bias, which will inform which bias mitigation
task we insert into blueprints

include_bias_mitigation_feature_as_predictor_variable [bool, optional] Whether we
should also use the mitigation feature as in input to the modeler just like any other cat-
egorical used for training, i.e. do we want the model to “train on” this feature in addition
to using it for bias mitigation

Return type None

list_advanced_options()
View the advanced options that have been set on a project instance. Includes those that haven’t been set
(with value of None).

Returns
dict of advanced options and their values

Return type Dict[str, Any]

set_partitioning_method(cv_method=None, validation_type=None, seed=0, reps=None,
user_partition_col=None, training_level=None, validation_level=None,
holdout_level=None, cv_holdout_level=None, validation_pct=None,
holdout_pct=None, partition_key_cols=None, partitioning_method=None)

Configures the partitioning method for this project.

If this project does not already have a partitioning method set, creates a new configuration based on provided
args.

If the partitioning_method arg is set, that configuration will instead be used.

Note: This is an inplace update, not a new object. The options set will only remain for the life of this project
instance within a given session. You must still call set_target to make this change permanent for the
project. Calling refresh without first calling set_target will invalidate this configuration. Similarly,
calling get to retrieve a second copy of the project will not include this configuration.

New in version v3.0.

Parameters
cv_method: str The partitioning method used. Supported values can be found in
datarobot.enums.CV_METHOD.

validation_type: str May be “CV” (K-fold cross-validation) or “TVH” (Training, valida-
tion, and holdout).

606 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

seed [int] A seed to use for randomization.

reps [int] Number of cross validation folds to use.

user_partition_col [str] The name of the column containing the partition assignments.

training_level [Union[str,int]] The value of the partition column indicating a row is part of
the training set.

validation_level [Union[str,int]] The value of the partition column indicating a row is part
of the validation set.

holdout_level [Union[str,int]] The value of the partition column indicating a row is part of
the holdout set (use None if you want no holdout set).

cv_holdout_level: Union[str,int] The value of the partition column indicating a row is part
of the holdout set.

validation_pct [int] The desired percentage of dataset to assign to validation set.

holdout_pct [int] The desired percentage of dataset to assign to holdout set.

partition_key_cols [list] A list containing a single string, where the string is the name of the
column whose values should remain together in partitioning.

partitioning_method [PartitioningMethod, optional] An instance of datarobot.
helpers.partitioning_methods.PartitioningMethod that will be used instead of
creating a new instance from the other args.

Returns
project [Project] The instance with updated attributes.

Raises
TypeError If cv_method or validation_type are not set and partitioning_method is not set.

InvalidUsageError If invoked after project.set_target or project.start, or if invoked with the
wrong combination of args for a given partitioning method.

Return type Project

get_uri()

Returns
url [str] Permanent static hyperlink to a project leaderboard.

Return type str

get_leaderboard_ui_permalink()

Returns
url [str] Permanent static hyperlink to a project leaderboard.

Return type str

open_leaderboard_browser()
Opens project leaderboard in web browser. Note: If text-mode browsers are used, the calling process will
block until the user exits the browser.

2.3. API Reference 607

DataRobot Python API Documentation, Release 3.2.2

Return type None

get_rating_table_models()
Get a list of models with a rating table

Returns
list of RatingTableModel list of all models with a rating table in project.

Return type List[RatingTableModel]

get_rating_tables()
Get a list of rating tables

Returns
list of RatingTable list of rating tables in project.

Return type List[RatingTable]

get_access_list()
Retrieve users who have access to this project and their access levels

New in version v2.15.

Returns
list of [class:SharingAccess <datarobot.SharingAccess>]

Return type List[SharingAccess]

share(access_list, send_notification=None, include_feature_discovery_entities=None)
Modify the ability of users to access this project

New in version v2.15.

Parameters
access_list [list of SharingAccess] the modifications to make.

send_notification [boolean, default None] (New in version v2.21) optional, whether or not
an email notification should be sent, default to None

include_feature_discovery_entities [boolean, default None] (New in version v2.21) op-
tional (default: None), whether or not to share all the related entities i.e., datasets for a
project with Feature Discovery enabled

Raises
datarobot.ClientError [] if you do not have permission to share this project, if the user

you’re sharing with doesn’t exist, if the same user appears multiple times in the access_list,
or if these changes would leave the project without an owner

608 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Examples

Transfer access to the project from old_user@datarobot.com to new_user@datarobot.com

import datarobot as dr

new_access = dr.SharingAccess(new_user@datarobot.com,
dr.enums.SHARING_ROLE.OWNER, can_share=True)

access_list = [dr.SharingAccess(old_user@datarobot.com, None), new_access]

dr.Project.get('my-project-id').share(access_list)

Return type None

batch_features_type_transform(parent_names, variable_type, prefix=None, suffix=None,
max_wait=600)

Create new features by transforming the type of existing ones.

New in version v2.17.

Note: The following transformations are only supported in batch mode:

1. Text to categorical or numeric

2. Categorical to text or numeric

3. Numeric to categorical

See here for special considerations when casting numeric to categorical. Date to categorical or nu-
meric transformations are not currently supported for batch mode but can be performed individually using
create_type_transform_feature.

Parameters
parent_names [list[str]] The list of variable names to be transformed.

variable_type [str] The type new columns should have. Can be one of ‘categorical’, ‘cate-
goricalInt’, ‘numeric’, and ‘text’ - supported values can be found in datarobot.enums.
VARIABLE_TYPE_TRANSFORM.

prefix [str, optional]

Note: Either prefix, suffix, or both must be provided.

The string that will preface all feature names. At least one of prefix and suffix must be
specified.

suffix [str, optional]

Note: Either prefix, suffix, or both must be provided.

The string that will be appended at the end to all feature names. At least one of prefix
and suffix must be specified.

2.3. API Reference 609

mailto:old_user@datarobot.com
mailto:new_user@datarobot.com

DataRobot Python API Documentation, Release 3.2.2

max_wait [int, optional] The maximum amount of time to wait for DataRobot to finish pro-
cessing the new column. This process can take more time with more data to process. If
this operation times out, an AsyncTimeoutError will occur. DataRobot continues the pro-
cessing and the new column may successfully be constructed.

Returns
list of Features all features for this project after transformation.

Raises
TypeError: If parent_names is not a list.

ValueError If value of variable_type is not from datarobot.enums.
VARIABLE_TYPE_TRANSFORM.

AsyncFailureError` If any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError If the job being waited for has failed or has been can-
celled.

AsyncTimeoutError If the resource did not resolve in time.

Return type List[Feature]

clone_project(new_project_name=None, max_wait=600)
Create a fresh (post-EDA1) copy of this project that is ready for setting targets and modeling options.

Parameters
new_project_name [str, optional] The desired name of the new project. If omitted, the API

will default to ‘Copy of <original project>’

max_wait [int, optional] Time in seconds after which project creation is considered unsuc-
cessful

Returns
datarobot.models.Project

Return type Project

create_interaction_feature(name, features, separator, max_wait=600)
Create a new interaction feature by combining two categorical ones.

New in version v2.21.

Parameters
name [str] The name of final Interaction Feature

features [list(str)] List of two categorical feature names

separator [str] The character used to join the two data values, one of these ` + - / | & . _ , `

max_wait [int, optional] Time in seconds after which project creation is considered unsuc-
cessful.

Returns
datarobot.models.InteractionFeature The data of the new Interaction feature

Raises

610 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

ClientError If requested Interaction feature can not be created. Possible reasons for example
are:

• one of features either does not exist or is of unsupported type

• feature with requested name already exists

• invalid separator character submitted.

AsyncFailureError If any of the responses from the server are unexpected

AsyncProcessUnsuccessfulError If the job being waited for has failed or has been cancelled

AsyncTimeoutError If the resource did not resolve in time

Return type InteractionFeature

get_relationships_configuration()
Get the relationships configuration for a given project

New in version v2.21.

Returns
relationships_configuration: RelationshipsConfiguration relationships configuration ap-

plied to project

Return type RelationshipsConfiguration

download_feature_discovery_dataset(file_name, pred_dataset_id=None)
Download Feature discovery training or prediction dataset

Parameters
file_name [str] File path where dataset will be saved.

pred_dataset_id [str, optional] ID of the prediction dataset

Return type None

download_feature_discovery_recipe_sqls(file_name, model_id=None, max_wait=600)
Export and download Feature discovery recipe SQL statements .. versionadded:: v2.25

Parameters
file_name [str] File path where dataset will be saved.

model_id [str, optional] ID of the model to export SQL for. If specified, QL to generate only
features used by the model will be exported. If not specified, SQL to generate all features
will be exported.

max_wait [int, optional] Time in seconds after which export is considered unsuccessful.

Raises
ClientError If requested SQL cannot be exported. Possible reason is the feature is not avail-

able to user.

AsyncFailureError If any of the responses from the server are unexpected.

AsyncProcessUnsuccessfulError If the job being waited for has failed or has been can-
celled.

AsyncTimeoutError If the resource did not resolve in time.

2.3. API Reference 611

DataRobot Python API Documentation, Release 3.2.2

Return type None

validate_external_time_series_baseline(catalog_version_id, target, datetime_partitioning,
max_wait=600)

Validate external baseline prediction catalog.

The forecast windows settings, validation and holdout duration specified in the datetime specification must
be consistent with project settings as these parameters are used to check whether the specified catalog
version id has been validated or not. See external baseline predictions documentation for example usage.

Parameters
catalog_version_id: str Id of the catalog version for validating external baseline predictions.

target: str The name of the target column.

datetime_partitioning: DatetimePartitioning object Instance of the DatetimePartitioning
defined in datarobot.helpers.partitioning_methods.

Attributes of the object used to check the validation are:

• datetime_partition_column

• forecast_window_start

• forecast_window_end

• holdout_start_date

• holdout_end_date

• backtests

• multiseries_id_columns

If the above attributes are different from the project settings, the catalog version will not
pass the validation check in the autopilot.

max_wait: int, optional The maximum number of seconds to wait for the catalog version
to be validated before raising an error.

Returns
external_baseline_validation_info: ExternalBaselineValidationInfo Validation result of

the specified catalog version.

Raises
AsyncTimeoutError Raised if the catalog version validation took more time than specified

by the max_wait parameter.

Return type ExternalBaselineValidationInfo

download_multicategorical_data_format_errors(file_name)
Download multicategorical data format errors to the CSV file. If any format errors where detected in
potentially multicategorical features the resulting file will contain at max 10 entries. CSV file content
contains feature name, dataset index in which the error was detected, row value and type of error detected.
In case that there were no errors or none of the features where potentially multicategorical the CSV file will
be empty containing only the header.

Parameters
file_name [str] File path where CSV file will be saved.

612 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type None

get_multiseries_names()
For a multiseries timeseries project it returns all distinct entries in the multiseries column. For a non
timeseries project it will just return an empty list.

Returns
multiseries_names: List[str] List of all distinct entries in the multiseries column

Return type List[Optional[str]]

restart_segment(segment)
Restart single segment in a segmented project.

New in version v2.28.

Segment restart is allowed only for segments that haven’t reached modeling phase. Restart will permanently
remove previous project and trigger set up of a new one for particular segment.

Parameters
segment [str] Segment to restart

get_bias_mitigated_models(parent_model_id=None, offset=0, limit=100)
List the child models with bias mitigation applied

New in version v2.29.

Parameters
parent_model_id [str, optional] Filter by parent models

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
models [list of dict]

Return type List[Dict[str, Any]]

apply_bias_mitigation(bias_mitigation_parent_leaderboard_id, bias_mitigation_feature_name,
bias_mitigation_technique,
include_bias_mitigation_feature_as_predictor_variable)

Apply bias mitigation to an existing model by training a version of that model but with bias mitigation ap-
plied. An error will be returned if the model does not support bias mitigation with the technique requested.

New in version v2.29.

Parameters
bias_mitigation_parent_leaderboard_id [str] The leaderboard id of the model to apply bias

mitigation to

bias_mitigation_feature_name [str] The feature name of the protected features that will be
used in a bias mitigation task to attempt to mitigate bias

bias_mitigation_technique [str, optional] One of datarobot.enums.BiasMitigationTechnique
Options: - ‘preprocessingReweighing’ - ‘postProcessingRejectionOptionBasedClassifica-
tion’ The technique by which we’ll mitigate bias, which will inform which bias mitigation
task we insert into blueprints

2.3. API Reference 613

DataRobot Python API Documentation, Release 3.2.2

include_bias_mitigation_feature_as_predictor_variable [bool] Whether we should also
use the mitigation feature as in input to the modeler just like any other categorical used for
training, i.e. do we want the model to “train on” this feature in addition to using it for bias
mitigation

Returns
ModelJob the job of the model with bias mitigation applied that was just submitted for train-

ing

Return type ModelJob

request_bias_mitigation_feature_info(bias_mitigation_feature_name)
Request a compute job for bias mitigation feature info for a given feature, which will include - if there are
any rare classes - if there are any combinations of the target values and the feature values that never occur in
the same row - if the feature has a high number of missing values. Note that this feature check is dependent
on the current target selected for the project.

New in version v2.29.

Parameters
bias_mitigation_feature_name [str] The feature name of the protected features that will be

used in a bias mitigation task to attempt to mitigate bias

Returns
BiasMitigationFeatureInfo Bias mitigation feature info model for the requested feature

Return type BiasMitigationFeatureInfo

get_bias_mitigation_feature_info(bias_mitigation_feature_name)
Get the computed bias mitigation feature info for a given feature, which will include - if there are any rare
classes - if there are any combinations of the target values and the feature values that never occur in the
same row - if the feature has a high number of missing values. Note that this feature check is dependent on
the current target selected for the project. If this info has not already been computed, this will raise a 404
error.

New in version v2.29.

Parameters
bias_mitigation_feature_name [str] The feature name of the protected features that will be

used in a bias mitigation task to attempt to mitigate bias

Returns
BiasMitigationFeatureInfo Bias mitigation feature info model for the requested feature

Return type BiasMitigationFeatureInfo

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type TypeVar(T, bound= APIObject)

614 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod from_server_data(data, keep_attrs=None)
Instantiate an object of this class using the data directly from the server, meaning that the keys may have
the wrong camel casing

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place

keep_attrs [iterable] List, set or tuple of the dotted namespace notations for attributes to
keep within the object structure even if their values are None

Return type TypeVar(T, bound= APIObject)

open_in_browser()
Opens class’ relevant web browser location. If default browser is not available the URL is logged.

Note: If text-mode browsers are used, the calling process will block until the user exits the browser.

Return type None

set_datetime_partitioning(datetime_partition_spec=None, **kwargs)
Set the datetime partitioning method for a time series project by either passing in a DatetimePartition-
ingSpecification instance or any individual attributes of that class. Updates self.partitioning_method
if already set previously (does not replace it).

This is an alternative to passing a specification to Project.analyze_and_model via the
partitioning_method parameter. To see the full partitioning based on the project dataset, use
DatetimePartitioning.generate.

New in version v3.0.

Parameters
datetime_partition_spec DatetimePartitioningSpecification, optional The cus-

tomizeable aspects of datetime partitioning for a time series project. An alternative to
passing individual settings (attributes of the DatetimePartitioningSpecification class).

Returns
DatetimePartitioning Full partitioning inluding user-specified attributes as well as those

determined by DR based on the dataset.

Return type DatetimePartitioning

list_datetime_partition_spec()
List datetime partitioning settings.

This method makes an API call to retrieve settings from the DB if project is in the modeling stage, i.e. if
analyze_and_model (autopilot) has already been called.

If analyze_and_model has not yet been called, this method will instead simply print settings from
project.partitioning_method.

New in version v3.0.

Returns
DatetimePartitioningSpecification or None

Return type Optional[DatetimePartitioningSpecification]

2.3. API Reference 615

DataRobot Python API Documentation, Release 3.2.2

class datarobot.helpers.eligibility_result.EligibilityResult(supported, reason='', context='')
Represents whether a particular operation is supported

For instance, a function to check whether a set of models can be blended can return an EligibilityResult specifying
whether or not blending is supported and why it may not be supported.

Attributes
supported [bool] whether the operation this result represents is supported

reason [str] why the operation is or is not supported

context [str] what operation isn’t supported

2.3.50 Rating Table

class datarobot.models.RatingTable(id, rating_table_name, original_filename, project_id, parent_model_id,
model_id=None, model_job_id=None, validation_job_id=None,
validation_error=None)

Interface to modify and download rating tables.

Attributes
id [str] The id of the rating table.

project_id [str] The id of the project this rating table belongs to.

rating_table_name [str] The name of the rating table.

original_filename [str] The name of the file used to create the rating table.

parent_model_id [str] The model id of the model the rating table was validated against.

model_id [str] The model id of the model that was created from the rating table. Can be None
if a model has not been created from the rating table.

model_job_id [str] The id of the job to create a model from this rating table. Can be None if a
model has not been created from the rating table.

validation_job_id [str] The id of the created job to validate the rating table. Can be None if the
rating table has not been validated.

validation_error [str] Contains a description of any errors caused during validation.

classmethod get(project_id, rating_table_id)
Retrieve a single rating table

Parameters
project_id [str] The ID of the project the rating table is associated with.

rating_table_id [str] The ID of the rating table

Returns
rating_table [RatingTable] The queried instance

Return type RatingTable

classmethod create(project_id, parent_model_id, filename, rating_table_name='Uploaded Rating Table')
Uploads and validates a new rating table CSV

Parameters
project_id [str] id of the project the rating table belongs to

616 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

parent_model_id [str] id of the model for which this rating table should be validated against

filename [str] The path of the CSV file containing the modified rating table.

rating_table_name [str, optional] A human friendly name for the new rating table. The
string may be truncated and a suffix may be added to maintain unique names of all rating
tables.

Returns
job: Job an instance of created async job

Raises
InputNotUnderstoodError Raised if filename isn’t one of supported types.

ClientError (400) Raised if parent_model_id is invalid.

Return type Job

download(filepath)
Download a csv file containing the contents of this rating table

Parameters
filepath [str] The path at which to save the rating table file.

Return type None

rename(rating_table_name)
Renames a rating table to a different name.

Parameters
rating_table_name [str] The new name to rename the rating table to.

Return type None

create_model()
Creates a new model from this rating table record. This rating table must not already be associated with a
model and must be valid.

Returns
job: Job an instance of created async job

Raises
ClientError (422) Raised if creating model from a RatingTable that failed validation

JobAlreadyRequested Raised if creating model from a RatingTable that is already associ-
ated with a RatingTableModel

Return type Job

2.3. API Reference 617

DataRobot Python API Documentation, Release 3.2.2

2.3.51 Recommended Models

class datarobot.models.ModelRecommendation(project_id, model_id, recommendation_type)
A collection of information about a recommended model for a project.

Attributes
project_id [str] the id of the project the model belongs to

model_id [str] the id of the recommended model

recommendation_type [str] the type of model recommendation

classmethod get(project_id, recommendation_type=None)
Retrieves the default or specified by recommendation_type recommendation.

Parameters
project_id [str] The project’s id.

recommendation_type [enums.RECOMMENDED_MODEL_TYPE] The type of recom-
mendation to get. If None, returns the default recommendation.

Returns
recommended_model [ModelRecommendation]

Return type Optional[ModelRecommendation]

classmethod get_all(project_id)
Retrieves all of the current recommended models for the project.

Parameters
project_id [str] The project’s id.

Returns
recommended_models [list of ModelRecommendation]

Return type List[ModelRecommendation]

classmethod get_recommendation(recommended_models, recommendation_type)
Returns the model in the given list with the requested type.

Parameters
recommended_models [list of ModelRecommendation]

recommendation_type [enums.RECOMMENDED_MODEL_TYPE] the type of model to
extract from the recommended_models list

Returns
recommended_model [ModelRecommendation or None if no model with the requested type

exists]

Return type Optional[ModelRecommendation]

get_model()
Returns the Model associated with this ModelRecommendation.

Returns

618 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

recommended_model [Model or DatetimeModel if the project is datetime-partitioned]

Return type Union[DatetimeModel, Model]

2.3.52 ROC Curve

class datarobot.models.roc_curve.RocCurve(source, roc_points, negative_class_predictions,
positive_class_predictions, source_model_id)

ROC curve data for model.

Attributes
source [str] ROC curve data source. Can be ‘validation’, ‘crossValidation’ or ‘holdout’.

roc_points [list of dict] List of precalculated metrics associated with thresholds for ROC curve.

negative_class_predictions [list of float] List of predictions from example for negative class

positive_class_predictions [list of float] List of predictions from example for positive class

source_model_id [str] ID of the model this ROC curve represents; in some cases, insights from
the parent of a frozen model may be used

classmethod from_server_data(data, keep_attrs=None, use_insights_format=False, **kwargs)
Overwrite APIObject.from_server_data to handle roc curve data retrieved from either legacy URL or /in-
sights/ new URL.

Parameters
data [dict] The directly translated dict of JSON from the server. No casing fixes have taken

place.

use_insights_format [bool, optional] Whether to repack the data from the format used in
the GET /insights/RocCur/ URL to the format used in the legacy URL.

Return type RocCurve

class datarobot.models.roc_curve.LabelwiseRocCurve(source, roc_points, negative_class_predictions,
positive_class_predictions, source_model_id,
label, kolmogorov_smirnov_metric, auc)

Labelwise ROC curve data for one label and one source.

Attributes
source [str] ROC curve data source. Can be ‘validation’, ‘crossValidation’ or ‘holdout’.

roc_points [list of dict] List of precalculated metrics associated with thresholds for ROC curve.

negative_class_predictions [list of float] List of predictions from example for negative class

positive_class_predictions [list of float] List of predictions from example for positive class

source_model_id [str] ID of the model this ROC curve represents; in some cases, insights from
the parent of a frozen model may be used

label [str] Label name for

kolmogorov_smirnov_metric [float] Kolmogorov-Smirnov metric value for label

auc [float] AUC metric value for label

2.3. API Reference 619

DataRobot Python API Documentation, Release 3.2.2

2.3.53 Ruleset

class datarobot.models.Ruleset(project_id, parent_model_id, ruleset_id, rule_count, score,
model_id=None)

Represents an approximation of a model with DataRobot Prime

Attributes
id [str] the id of the ruleset

rule_count [int] the number of rules used to approximate the model

score [float] the validation score of the approximation

project_id [str] the project the approximation belongs to

parent_model_id [str] the model being approximated

model_id [str or None] the model using this ruleset (if it exists). Will be None if no such model
has been trained.

request_model()
Request training for a model using this ruleset

Training a model using a ruleset is a necessary prerequisite for being able to download the code for a ruleset.

Returns
job: Job the job fitting the new Prime model

Return type Job

2.3.54 Segmented Modeling

API Reference for entities used in Segmented Modeling. See dedicated User Guide for examples.

class datarobot.CombinedModel(id=None, project_id=None, segmentation_task_id=None,
is_active_combined_model=False)

A model from a segmented project. Combination of ordinary models in child segments projects.

Attributes
id [str] the id of the model

project_id [str] the id of the project the model belongs to

segmentation_task_id [str] the id of a segmentation task used in this model

is_active_combined_model [bool] flag indicating if this is the active combined model in seg-
mented project

classmethod get(project_id, combined_model_id)
Retrieve combined model

Parameters
project_id [str] The project’s id.

combined_model_id [str] Id of the combined model.

Returns
CombinedModel The queried combined model.

620 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type CombinedModel

classmethod set_segment_champion(project_id, model_id, clone=False)
Update a segment champion in a combined model by setting the model_id that belongs to the child
project_id as the champion.

Parameters
project_id [str] The project id for the child model that contains the model id.

model_id [str] Id of the model to mark as the champion

clone [bool] (New in version v2.29) optional, defaults to False. Defines if combined model
has to be cloned prior to setting champion (champion will be set for new combined model
if yes).

Returns
combined_model_id [str] Id of the combined model that was updated

Return type str

get_segments_info()
Retrieve Combined Model segments info

Returns
list[SegmentInfo] List of segments

Return type List[SegmentInfo]

get_segments_as_dataframe(encoding='utf-8')
Retrieve Combine Models segments as a DataFrame.

Parameters
encoding [str, optional] A string representing the encoding to use in the output csv file. De-

faults to ‘utf-8’.

Returns
DataFrame Combined model segments

Return type DataFrame

get_segments_as_csv(filename, encoding='utf-8')
Save the Combine Models segments to a csv.

Parameters
filename [str or file object] The path or file object to save the data to.

encoding [str, optional] A string representing the encoding to use in the output csv file. De-
faults to ‘utf-8’.

Return type None

train(sample_pct=None, featurelist_id=None, scoring_type=None, training_row_count=None,
monotonic_increasing_featurelist_id=<object object>, monotonic_decreasing_featurelist_id=<object
object>)

Inherited from Model - CombinedModels cannot be retrained directly

2.3. API Reference 621

DataRobot Python API Documentation, Release 3.2.2

Return type NoReturn

train_datetime(featurelist_id=None, training_row_count=None, training_duration=None,
time_window_sample_pct=None, monotonic_increasing_featurelist_id=<object object>,
monotonic_decreasing_featurelist_id=<object object>, use_project_settings=False,
sampling_method=None, n_clusters=None)

Inherited from Model - CombinedModels cannot be retrained directly

Return type NoReturn

retrain(sample_pct=None, featurelist_id=None, training_row_count=None, n_clusters=None)
Inherited from Model - CombinedModels cannot be retrained directly

Return type NoReturn

request_frozen_model(sample_pct=None, training_row_count=None)
Inherited from Model - CombinedModels cannot be retrained as frozen

Return type NoReturn

request_frozen_datetime_model(training_row_count=None, training_duration=None,
training_start_date=None, training_end_date=None,
time_window_sample_pct=None, sampling_method=None)

Inherited from Model - CombinedModels cannot be retrained as frozen

Return type NoReturn

cross_validate()
Inherited from Model - CombinedModels cannot request cross validation

Return type NoReturn

class datarobot.SegmentationTask(id, project_id, name, type, created, segments_count, segments, metadata,
data)

A Segmentation Task is used for segmenting an existing project into multiple child projects. Each child project
(or segment) will be a separate autopilot run. Currently only user defined segmentation is supported.

Example for creating a new SegmentationTask for Time Series segmentation with a user defined id column:

from datarobot import SegmentationTask

Create the SegmentationTask
segmentation_task_results = SegmentationTask.create(

project_id=project.id,
target=target,
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],
user_defined_segment_id_columns=[user_defined_segment_id_column]

)

Retrieve the completed SegmentationTask object from the job results
segmentation_task = segmentation_task_results['completedJobs'][0]

Attributes
id [ObjectId] The id of the segmentation task.

project_id [ObjectId] The associated id of the parent project.

type [str] What type of job the segmentation task is associated with, e.g. auto_ml or auto_ts.

622 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

created [datetime] The date this segmentation task was created.

segments_count [int] The number of segments the segmentation task generated.

segments [list of strings] The segment names that the segmentation task generated.

metadata [dict] List of features that help to identify the parameters used by the segmentation
task.

data [dict] Optional parameters that are associated with enabled metadata for the segmentation
task.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type SegmentationTask

collect_payload()
Convert the record to a dictionary

Return type Dict[str, str]

classmethod create(project_id, target, use_time_series=False, datetime_partition_column=None,
multiseries_id_columns=None, user_defined_segment_id_columns=None,
max_wait=600, model_package_id=None)

Creates segmentation tasks for the project based on the defined parameters.

Parameters
project_id [str] The associated id of the parent project.

target [str] The column that represents the target in the dataset.

use_time_series [bool] Whether AutoTS or AutoML segmentations should be generated.

datetime_partition_column [str or null] Required for Time Series. The name of the column
whose values as dates are used to assign a row to a particular partition.

multiseries_id_columns [list of str or null] Required for Time Series. A list of the names
of multiseries id columns to define series within the training data. Currently only one
multiseries id column is supported.

user_defined_segment_id_columns [list of str or null] Required when using a column for
segmentation. A list of the segment id columns to use to define what columns are used to
manually segment data. Currently only one user defined segment id column is supported.

model_package_id [str] Required when using automated segmentation. The associated id
of the model in the DataRobot Model Registry that will be used to perform automated
segmentation on a dataset.

max_wait [integer] The number of seconds to wait

Returns
segmentation_tasks [dict] Dictionary containing the numberOfJobs, completedJobs, and

failedJobs. completedJobs is a list of SegmentationTask objects, while failed jobs is a list
of dictionaries indicating problems with submitted tasks.

Return type SegmentationTaskCreatedResponse

2.3. API Reference 623

DataRobot Python API Documentation, Release 3.2.2

classmethod list(project_id)
List all of the segmentation tasks that have been created for a specific project_id.

Parameters
project_id [str] The id of the parent project

Returns
segmentation_tasks [list of SegmentationTask] List of instances with initialized data.

Return type List[SegmentationTask]

classmethod get(project_id, segmentation_task_id)
Retrieve information for a single segmentation task associated with a project_id.

Parameters
project_id [str] The id of the parent project

segmentation_task_id [str] The id of the segmentation task

Returns
segmentation_task [SegmentationTask] Instance with initialized data.

Return type SegmentationTask

class datarobot.SegmentInfo(project_id, segment, project_stage, project_status_error, autopilot_done,
model_count=None, model_id=None)

A SegmentInfo is an object containing information about the combined model segments

Attributes
project_id [str] The associated id of the child project.

segment [str] the name of the segment

project_stage [str] A description of the current stage of the project

project_status_error [str] Project status error message.

autopilot_done [bool] Is autopilot done for the project.

model_count [int] Count of trained models in project.

model_id [str] ID of segment champion model.

classmethod list(project_id, model_id)
List all of the segments that have been created for a specific project_id.

Parameters
project_id [str] The id of the parent project

Returns
segments [list of datarobot.models.segmentation.SegmentInfo] List of instances with initial-

ized data.

Return type List[SegmentInfo]

624 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.segmentation.SegmentationTask(id, project_id, name, type, created,
segments_count, segments, metadata, data)

A Segmentation Task is used for segmenting an existing project into multiple child projects. Each child project
(or segment) will be a separate autopilot run. Currently only user defined segmentation is supported.

Example for creating a new SegmentationTask for Time Series segmentation with a user defined id column:

from datarobot import SegmentationTask

Create the SegmentationTask
segmentation_task_results = SegmentationTask.create(

project_id=project.id,
target=target,
use_time_series=True,
datetime_partition_column=datetime_partition_column,
multiseries_id_columns=[multiseries_id_column],
user_defined_segment_id_columns=[user_defined_segment_id_column]

)

Retrieve the completed SegmentationTask object from the job results
segmentation_task = segmentation_task_results['completedJobs'][0]

Attributes
id [ObjectId] The id of the segmentation task.

project_id [ObjectId] The associated id of the parent project.

type [str] What type of job the segmentation task is associated with, e.g. auto_ml or auto_ts.

created [datetime] The date this segmentation task was created.

segments_count [int] The number of segments the segmentation task generated.

segments [list of strings] The segment names that the segmentation task generated.

metadata [dict] List of features that help to identify the parameters used by the segmentation
task.

data [dict] Optional parameters that are associated with enabled metadata for the segmentation
task.

classmethod from_data(data)
Instantiate an object of this class using a dict.

Parameters
data [dict] Correctly snake_cased keys and their values.

Return type SegmentationTask

collect_payload()
Convert the record to a dictionary

Return type Dict[str, str]

classmethod create(project_id, target, use_time_series=False, datetime_partition_column=None,
multiseries_id_columns=None, user_defined_segment_id_columns=None,
max_wait=600, model_package_id=None)

Creates segmentation tasks for the project based on the defined parameters.

2.3. API Reference 625

DataRobot Python API Documentation, Release 3.2.2

Parameters
project_id [str] The associated id of the parent project.

target [str] The column that represents the target in the dataset.

use_time_series [bool] Whether AutoTS or AutoML segmentations should be generated.

datetime_partition_column [str or null] Required for Time Series. The name of the column
whose values as dates are used to assign a row to a particular partition.

multiseries_id_columns [list of str or null] Required for Time Series. A list of the names
of multiseries id columns to define series within the training data. Currently only one
multiseries id column is supported.

user_defined_segment_id_columns [list of str or null] Required when using a column for
segmentation. A list of the segment id columns to use to define what columns are used to
manually segment data. Currently only one user defined segment id column is supported.

model_package_id [str] Required when using automated segmentation. The associated id
of the model in the DataRobot Model Registry that will be used to perform automated
segmentation on a dataset.

max_wait [integer] The number of seconds to wait

Returns
segmentation_tasks [dict] Dictionary containing the numberOfJobs, completedJobs, and

failedJobs. completedJobs is a list of SegmentationTask objects, while failed jobs is a list
of dictionaries indicating problems with submitted tasks.

Return type SegmentationTaskCreatedResponse

classmethod list(project_id)
List all of the segmentation tasks that have been created for a specific project_id.

Parameters
project_id [str] The id of the parent project

Returns
segmentation_tasks [list of SegmentationTask] List of instances with initialized data.

Return type List[SegmentationTask]

classmethod get(project_id, segmentation_task_id)
Retrieve information for a single segmentation task associated with a project_id.

Parameters
project_id [str] The id of the parent project

segmentation_task_id [str] The id of the segmentation task

Returns
segmentation_task [SegmentationTask] Instance with initialized data.

Return type SegmentationTask

626 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

class datarobot.models.segmentation.SegmentationTaskCreatedResponse() -> new empty dictionary
dict(mapping) -> new
dictionary initialized from a
mapping object's (key,
value) pairs dict(iterable)
-> new dictionary
initialized as if via: d = {}
for k, v in iterable: d[k] = v
dict(**kwargs) -> new
dictionary initialized with
the name=value pairs in the
keyword argument list. For
example: dict(one=1,
two=2)

2.3.55 SHAP

class datarobot.models.ShapImpact(count, shap_impacts, row_count=None)
Represents SHAP impact score for a feature in a model.

New in version v2.21.

Notes

SHAP impact score for a feature has the following structure:

• feature_name : (str) the feature name in dataset

• impact_normalized : (float) normalized impact score value (largest value is 1)

• impact_unnormalized : (float) raw impact score value

Attributes
count [int] the number of SHAP Impact object returned

row_count: int or None the sample size (specified in rows) to use for Shap Impact computation

shap_impacts [list] a list which contains SHAP impact scores for top 1000 features used by a
model

classmethod create(project_id, model_id, row_count=None)
Create SHAP impact for the specified model.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model to calculate shap impact for

row_count [int] the sample size (specified in rows) to use for Feature Impact computation

Returns
job [Job] an instance of created async job

Return type Job

2.3. API Reference 627

DataRobot Python API Documentation, Release 3.2.2

classmethod get(project_id, model_id)
Retrieve SHAP impact scores for features in a model.

Parameters
project_id [str] id of the project the model belongs to

model_id [str] id of the model the SHAP impact is for

Returns
shap_impact [ShapImpact] The queried instance.

Raises
ClientError (404) If the project or model does not exist or the SHAP impact has not been

computed.

Return type ShapImpact

2.3.56 SharingAccess

class datarobot.SharingAccess(username, role, can_share=None, can_use_data=None, user_id=None)
Represents metadata about whom a entity (e.g. a data store) has been shared with

New in version v2.14.

Currently DataStores, DataSources, Datasets, Projects (new in version v2.15) and CalendarFiles
(new in version 2.15) can be shared.

This class can represent either access that has already been granted, or be used to grant access to additional users.

Attributes
username [str] a particular user

role [str or None] if a string, represents a particular level of access and should be one of
datarobot.enums.SHARING_ROLE. For more information on the specific access levels, see
the sharing documentation. If None, can be passed to a share function to revoke access for
a specific user.

can_share [bool or None] if a bool, indicates whether this user is permitted to further share.
When False, the user has access to the entity, but can only revoke their own access but not
modify any user’s access role. When True, the user can share with any other user at a access
role up to their own. May be None if the SharingAccess was not retrieved from the DataRobot
server but intended to be passed into a share function; this will be equivalent to passing True.

can_use_data [bool or None] if a bool, indicates whether this user should be able to view, down-
load and process data (use to create projects, predictions, etc). For OWNER can_use_data
is always True. If role is empty canUseData is ignored.

user_id [str or None] the id of the user

628 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.57 SharingRole

class datarobot.models.sharing.SharingRole(role, share_recipient_type, can_share, id=None,
user_full_name=None, username=None)

Represents metadata about a user who has been granted access to an entity. At least one of id or username must
be set.

Attributes
id [str or None] The ID of the user.

role [str] Represents a particular level of access. Should be one of datarobot.enums.
SHARING_ROLE.

can_share [bool] Indicates whether this user is permitted to share with other users. When False,
the user has access to the entity, but can only revoke their own access. They cannot not modify
any user’s access role. When True, the user can share with any other user at an access role
up to their own.

share_recipient_type [SHARING_RECIPIENT_TYPE] The type of user for the object of the
method. Can be user or organization.

user_full_name [str or None] The full name of the user.

username [str or None] The username (usually the email) of the user.

2.3.58 Training Predictions

class datarobot.models.training_predictions.TrainingPredictionsIterator(client, path,
limit=None)

Lazily fetches training predictions from DataRobot API in chunks of specified size and then iterates rows from
responses as named tuples. Each row represents a training prediction computed for a dataset’s row. Each named
tuple has the following structure:

Notes

Each PredictionValue dict contains these keys:

label describes what this model output corresponds to. For regression projects, it is the name of the
target feature. For classification and multiclass projects, it is a label from the target feature.

value the output of the prediction. For regression projects, it is the predicted value of the target. For
classification and multiclass projects, it is the predicted probability that the row belongs to the
class identified by the label.

Each PredictionExplanations dictionary contains these keys:

label [string] describes what output was driven by this prediction explanation. For regression
projects, it is the name of the target feature. For classification projects, it is the class whose
probability increasing would correspond to a positive strength of this prediction explanation.

feature [string] the name of the feature contributing to the prediction

feature_value [object] the value the feature took on for this row. The type corresponds to the feature
(boolean, integer, number, string)

strength [float] algorithm-specific explanation value attributed to feature in this row

ShapMetadata dictionary contains these keys:

2.3. API Reference 629

DataRobot Python API Documentation, Release 3.2.2

shap_remaining_total [float] The total of SHAP values for features beyond the
max_explanations. This can be identically 0 in all rows, if max_explanations is greater
than the number of features and thus all features are returned.

shap_base_value [float] the model’s average prediction over the training data. SHAP values are
deviations from the base value.

warnings [dict or None] SHAP values calculation warnings (e.g. additivity check failures in XG-
Boost models). Schema described as ShapWarnings.

ShapWarnings dictionary contains these keys:

mismatch_row_count [int] the count of rows for which additivity check failed

max_normalized_mismatch [float] the maximal relative normalized mismatch value

Examples

import datarobot as dr

Fetch existing training predictions by their id
training_predictions = dr.TrainingPredictions.get(project_id, prediction_id)

Iterate over predictions
for row in training_predictions.iterate_rows()

print(row.row_id, row.prediction)

Attributes
row_id [int] id of the record in original dataset for which training prediction is calculated

partition_id [str or float] id of the data partition that the row belongs to. “0.0” corresponds to
the validation partition or backtest 1.

prediction [float] the model’s prediction for this data row

prediction_values [list of dictionaries] an array of dictionaries with a schema described as
PredictionValue

timestamp [str or None] (New in version v2.11) an ISO string representing the time of the pre-
diction in time series project; may be None for non-time series projects

forecast_point [str or None] (New in version v2.11) an ISO string representing the point in time
used as a basis to generate the predictions in time series project; may be None for non-time
series projects

forecast_distance [str or None] (New in version v2.11) how many time steps are between the
forecast point and the timestamp in time series project; None for non-time series projects

series_id [str or None] (New in version v2.11) the id of the series in a multiseries project; may
be NaN for single series projects; None for non-time series projects

prediction_explanations [list of dict or None] (New in version v2.21) The prediction explana-
tions for each feature. The total elements in the array are bounded by max_explanations
and feature count. Only present if prediction explanations were requested. Schema described
as PredictionExplanations.

shap_metadata [dict or None] (New in version v2.21) The additional information necessary
to understand SHAP based prediction explanations. Only present if explanation_algorithm

630 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

equals datarobot.enums.EXPLANATIONS_ALGORITHM.SHAP was added in compute re-
quest. Schema described as ShapMetadata.

class datarobot.models.training_predictions.TrainingPredictions(project_id, prediction_id,
model_id=None,
data_subset=None,
explanation_algorithm=None,
max_explanations=None,
shap_warnings=None)

Represents training predictions metadata and provides access to prediction results.

Notes

Each element in shap_warnings has the following schema:

partition_name [str] the partition used for the prediction record.

value [object] the warnings related to this partition.

The objects in value are:

mismatch_row_count [int] the count of rows for which additivity check failed.

max_normalized_mismatch [float] the maximal relative normalized mismatch value.

Examples

Compute training predictions for a model on the whole dataset

import datarobot as dr

Request calculation of training predictions
training_predictions_job = model.request_training_predictions(dr.enums.DATA_SUBSET.
→˓ALL)
training_predictions = training_predictions_job.get_result_when_complete()
print('Training predictions {} are ready'.format(training_predictions.prediction_
→˓id))

Iterate over actual predictions
for row in training_predictions.iterate_rows():

print(row.row_id, row.partition_id, row.prediction)

List all training predictions for a project

import datarobot as dr

Fetch all training predictions for a project
all_training_predictions = dr.TrainingPredictions.list(project_id)

Inspect all calculated training predictions
for training_predictions in all_training_predictions:

print(
'Prediction {} is made for data subset "{}"'.format(

training_predictions.prediction_id,
training_predictions.data_subset,

(continues on next page)

2.3. API Reference 631

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

)
)

Retrieve training predictions by id

import datarobot as dr

Getting training predictions by id
training_predictions = dr.TrainingPredictions.get(project_id, prediction_id)

Iterate over actual predictions
for row in training_predictions.iterate_rows():

print(row.row_id, row.partition_id, row.prediction)

Attributes
project_id [str] id of the project the model belongs to

model_id [str] id of the model

prediction_id [str] id of generated predictions

data_subset [datarobot.enums.DATA_SUBSET] data set definition used to build predictions.
Choices are:

• datarobot.enums.DATA_SUBSET.ALL for all data available. Not valid for models in
datetime partitioned projects.

• datarobot.enums.DATA_SUBSET.VALIDATION_AND_HOLDOUT for all data ex-
cept training set. Not valid for models in datetime partitioned projects.

• datarobot.enums.DATA_SUBSET.HOLDOUT for holdout data set only.

• datarobot.enums.DATA_SUBSET.ALL_BACKTESTS for downloading the predictions
for all backtest validation folds. Requires the model to have successfully scored all
backtests. Datetime partitioned projects only.

explanation_algorithm [datarobot.enums.EXPLANATIONS_ALGORITHM] (New in version
v2.21) Optional. If set to shap, the response will include prediction explanations based on
the SHAP explainer (SHapley Additive exPlanations). Defaults to null (no prediction expla-
nations).

max_explanations [int] (New in version v2.21) The number of top contributors that are in-
cluded in prediction explanations. Max 100. Defaults to null for datasets narrower than 100
columns, defaults to 100 for datasets wider than 100 columns.

shap_warnings [list] (New in version v2.21) Will be present if explanation_algorithm
was set to datarobot.enums.EXPLANATIONS_ALGORITHM.SHAP and there were additiv-
ity failures during SHAP values calculation.

classmethod list(project_id)
Fetch all the computed training predictions for a project.

Parameters
project_id [str] id of the project

Returns
A list of [py:class:TrainingPredictions objects]

632 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod get(project_id, prediction_id)
Retrieve training predictions on a specified data set.

Parameters
project_id [str] id of the project the model belongs to

prediction_id [str] id of the prediction set

Returns
TrainingPredictions object which is ready to operate with specified predictions

iterate_rows(batch_size=None)
Retrieve training prediction rows as an iterator.

Parameters
batch_size [int, optional] maximum number of training prediction rows to fetch per request

Returns
iterator [TrainingPredictionsIterator] an iterator which yields named tuples repre-

senting training prediction rows

get_all_as_dataframe(class_prefix='class_', serializer='json')
Retrieve all training prediction rows and return them as a pandas.DataFrame.

Returned dataframe has the following structure:
• row_id : row id from the original dataset

• prediction : the model’s prediction for this row

• class_<label> : the probability that the target is this class (only appears for classification and
multiclass projects)

• timestamp : the time of the prediction (only appears for out of time validation or time series
projects)

• forecast_point : the point in time used as a basis to generate the predictions (only appears for time
series projects)

• forecast_distance : how many time steps are between timestamp and forecast_point (only appears
for time series projects)

• series_id : he id of the series in a multiseries project or None for a single series project (only
appears for time series projects)

Parameters
class_prefix [str, optional] The prefix to append to labels in the final dataframe. Default is
class_ (e.g., apple -> class_apple)

serializer [str, optional] Serializer to use for the download. Options: json (default) or csv.

Returns
dataframe: pandas.DataFrame

download_to_csv(filename, encoding='utf-8', serializer='json')
Save training prediction rows into CSV file.

Parameters
filename [str or file object] path or file object to save training prediction rows

2.3. API Reference 633

DataRobot Python API Documentation, Release 3.2.2

encoding [string, optional] A string representing the encoding to use in the output file, de-
faults to ‘utf-8’

serializer [str, optional] Serializer to use for the download. Options: json (default) or csv.

2.3.59 Types

class datarobot.models.RocCurveEstimatedMetric
Typed dict for estimated metric

class datarobot.models.AnomalyAssessmentRecordMetadata
Typed dict for record metadata

class datarobot.models.AnomalyAssessmentPreviewBin
Typed dict for preview bin

class datarobot.models.ShapleyFeatureContribution
Typed dict for shapley feature contribution

class datarobot.models.AnomalyAssessmentDataPoint
Typed dict for data points

class datarobot.models.RegionExplanationsData
Typed dict for region explanations

2.3.60 Use Cases

class datarobot.UseCase(id, name, created_at, created, updated_at, updated, models_count, projects_count,
datasets_count, notebooks_count, applications_count, members, description=None,
owners=None)

Representation of a Use Case.

Examples

import datarobot
with UseCase.get("2348ac"):

print(f"The current use case is {dr.Context.use_case}")

Attributes
id [str] The ID of the Use Case.

name [str] The name of the Use Case.

description [str] The description of the Use Case. Nullable.

created_at [str] The timestamp generated at record creation.

created [UseCaseUser] The user who created the Use Case.

updated_at [str] The timestamp generated when the record was last updated.

updated [UseCaseUser] The most recent user to update the Use Case.

models_count [int] The number of models in a Use Case.

projects_count [int] The number of projects in a Use Case.

datasets_count: int The number of datasets in a Use Case.

634 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

notebooks_count: int The number of notebooks in a Use Case.

applications_count: int The number of applications in a Use Case.

owners [List[UseCaseUser]] The most recent user to update the Use Case.

members [List[UseCaseUser]] The most recent user to update the Use Case.

classmethod get(use_case_id)
Gets information about a Use Case.

Parameters
use_case_id [str] The identifier of the Use Case you want to load.

Returns
use_case [UseCase] The queried Use Case.

Return type UseCase

classmethod list(search_params=None)
Returns the Use Cases associated with this account.

Parameters
search_params [dict, optional.] If not None, the returned projects are filtered by lookup.

Currently, you can query use cases by:

• offset - The number of records to skip over. Default 0.

• limit - The number of records to return in the range from 1 to 100. Default 100.

• search - Only return Use Cases with names that match the given string.

• project_id - Only return Use Cases associated with the given project ID.

• application_id - Only return Use Cases associated with the given app.

• sort - The order to sort the Use Cases.

sort queries can use the following options:

• id or -id

• name or -name

• description or -description

• projects_count or -projects_count

• datasets_count or -datasets_count

• notebooks_count or -notebooks_count

• applications_count or -applications_count

• created_at or -created_at

• created_by or -created_by

• updated_at or -updated_at

• updated_by or -updated_by

Returns

2.3. API Reference 635

DataRobot Python API Documentation, Release 3.2.2

use_cases [list of UseCase instances] Contains a list of Use Cases associated with this user
account.

Raises
TypeError Raised if search_params parameter is provided, but is not of supported type.

Return type List[UseCase]

classmethod create(name=None, description=None)
Create a new Use Case.

Parameters
name [str] Optional. The name of the new Use Case.

description: str The description of the new Use Case. Optional.

Returns
use_case [UseCase] The created Use Case.

Return type UseCase

classmethod delete(use_case_id)
Delete a Use Case.

Parameters
use_case_id [str] The ID of the Use Case to be deleted.

Return type None

update(name=None, description=None)
Update a Use Case’s name or description.

Parameters
name [str] The updated name of the Use Case.

description [str] The updated description of the Use Case.

Returns
use_case [UseCase] The updated Use Case.

Return type UseCase

add(entity=None, entity_type=None, entity_id=None)
Add an entity (project, dataset, etc.) to a Use Case. Can only accept either an entity or an entity type and
entity ID, but not both.

Projects and Applications can only be linked to a single Use Case. Datasets can be linked to multiple Use
Cases.

There are some prerequisites for linking Projects to a Use Case which are explained in the user guide.

Parameters
entity [Union[UseCaseReferenceEntity, Project, Dataset, Application]] An existing entity to

be linked to this Use Case. Cannot be used if entity_type and entity_id are passed.

636 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

entity_type [UseCaseEntityType] The entity type of the entity to link to this Use Case. Can-
not be used if entity is passed.

entity_id [str] The ID of the entity to link to this Use Case. Cannot be used if entity is passed.

Returns
use_case_reference_entity [UseCaseReferenceEntity] The newly created reference link be-

tween this Use Case and the entity.

Return type UseCaseReferenceEntity

remove(entity=None, entity_type=None, entity_id=None)
Remove an entity from a Use Case. Can only accept either an entity or an entity type and entity ID, but not
both.

Parameters
entity [Union[UseCaseReferenceEntity, Project, Dataset, Application]] An existing entity

instance to be removed from a Use Case. Cannot be used if entity_type and entity_id are
passed.

entity_type [UseCaseEntityType] The entity type of the entity to link to this Use Case. Can-
not be used if entity is passed.

entity_id [str] The ID of the entity to link to this Use Case. Cannot be used if entity is passed.

Return type None

share(roles)
Share this Use Case with or remove access from one or more user(s).

Parameters
roles [List[SharingRole]] A list of SharingRole instances, each of which references a user

and a role to be assigned.

Currently, the only supported roles for Use Cases are OWNER, EDITOR, and CON-
SUMER, and the only supported SHARING_RECIPIENT_TYPE is USER.

To remove access, set a user’s role to datarobot.enums.SHARING_ROLE.NO_ROLE.

Examples

The SharingRole class is needed in order to share a Use Case with one or more users.

For example, suppose you had a list of user IDs you wanted to share this Use Case with. You could use a
loop to generate a list of SharingRole objects for them, and bulk share this Use Case.

>>> from datarobot.models.use_cases.use_case import UseCase
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_ids = ["60912e09fd1f04e832a575c1", "639ce542862e9b1b1bfa8f1b",
→˓"63e185e7cd3a5f8e190c6393"]
>>> sharing_roles = []
>>> for user_id in user_ids:
... new_sharing_role = SharingRole(
... role=SHARING_ROLE.CONSUMER,

(continues on next page)

2.3. API Reference 637

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,

... id=user_id,

... can_share=True,

...)

... sharing_roles.append(new_sharing_role)
>>> use_case = UseCase.get(use_case_id="5f33f1fd9071ae13568237b2")
>>> use_case.share(roles=sharing_roles)

Similarly, a SharingRole instance can be used to remove a user’s access if the role is set to
SHARING_ROLE.NO_ROLE, like in this example:

>>> from datarobot.models.use_cases.use_case import UseCase
>>> from datarobot.models.sharing import SharingRole
>>> from datarobot.enums import SHARING_ROLE, SHARING_RECIPIENT_TYPE
>>>
>>> user_to_remove = "foo.bar@datarobot.com"
... remove_sharing_role = SharingRole(
... role=SHARING_ROLE.NO_ROLE,
... share_recipient_type=SHARING_RECIPIENT_TYPE.USER,
... username=user_to_remove,
... can_share=False,
...)
>>> use_case = UseCase.get(use_case_id="5f33f1fd9071ae13568237b2")
>>> use_case.share(roles=[remove_sharing_role])

Return type None

get_shared_roles(offset=None, limit=None, id=None)
Retrieve access control information for this Use Case.

Parameters
offset [Optional[int]] The number of records to skip over. Optional. Default is 0.

limit: Optional[int] The number of records to return. Optional. Default is 100.

id: Optional[str] Return the access control information for a user with this user ID. Optional.

Return type List[SharingRole]

list_projects()
List all projects associated with this Use Case.

Returns
projects [List[Project]] All projects associated with this Use Case.

Return type List[TypeVar(T)]

list_datasets()
List all datasets associated with this Use Case.

Returns
datasets [List[Dataset]] All datasets associated with this Use Case.

638 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Return type List[TypeVar(T)]

list_applications()
List all applications associated with this Use Case.

Returns
applications [List[Application]] All applications associated with this Use Case.

Return type List[TypeVar(T)]

class datarobot.models.use_cases.use_case.UseCaseUser(id, full_name=None, email=None,
userhash=None, username=None)

Representation of a Use Case user.

Attributes
id [str] The id of the user.

full_name [str] The full name of the user. Optional.

email [str] The email address of the user. Optional.

userhash [str] User’s gravatar hash. Optional.

username [str] The username of the user. Optional.

class datarobot.models.use_cases.use_case.UseCaseReferenceEntity(id, entity_type, entity_id,
use_case_id, created_at,
created, is_deleted)

An entity associated with a Use Case.

Attributes
entity_type [UseCaseEntityType] The type of the entity.

use_case_id [str] The Use Case this entity is associated with.

id [str] The ID of the entity.

created_at [str] The date and time this entity was linked with the Use Case.

is_deleted [bool] Whether or not the linked entity has been deleted.

created [UseCaseUser] The user who created the link between this entity and the Use Case.

2.3.61 User Blueprints

class datarobot.UserBlueprint(blender, blueprint_id, diagram, features, features_text, icons, insights,
model_type, supported_target_types, user_blueprint_id, user_id,
is_time_series=False, reference_model=False, shap_support=False,
supports_gpu=False, blueprint=None, custom_task_version_metadata=None,
hex_column_name_lookup=None, project_id=None, vertex_context=None,
blueprint_context=None, **kwargs)

A representation of a blueprint which may be modified by the user, saved to a user’s AI Catalog, trained on
projects, and shared with others.

It is recommended to install the python library called datarobot_bp_workshop, available via pip, for the best
experience when building blueprints.

Please refer to http://blueprint-workshop.datarobot.com for tutorials, examples, and other documen-
tation.

2.3. API Reference 639

DataRobot Python API Documentation, Release 3.2.2

Parameters
blender: bool Whether the blueprint is a blender.

blueprint_id: string The deterministic id of the blueprint, based on its content.

custom_task_version_metadata: list(list(string)), Optional An association of custom entity
ids and task ids.

diagram: string The diagram used by the UI to display the blueprint.

features: list(string) A list of the names of tasks used in the blueprint.

features_text: string A description of the blueprint via the names of tasks used.

hex_column_name_lookup: list(UserBlueprintsHexColumnNameLookupEntry), Optional
A lookup between hex values and data column names used in the blueprint.

icons: list(int) The icon(s) associated with the blueprint.

insights: string An indication of the insights generated by the blueprint.

is_time_series: bool (Default=False) Whether the blueprint contains time-series tasks.

model_type: string The generated or provided title of the blueprint.

project_id: string, Optional The id of the project the blueprint was originally created with, if
applicable.

reference_model: bool (Default=False) Whether the blueprint is a reference model.

shap_support: bool (Default=False) Whether the blueprint supports shapley additive explana-
tions.

supported_target_types: list(enum(‘binary’, ‘multiclass’, ‘multilabel’, ‘nonnegative’,
‘regression’, ‘unsupervised’, ‘unsupervisedclustering’)) The list of supported targets of the

current blueprint.

supports_gpu: bool (Default=False) Whether the blueprint supports execution on the GPU.

user_blueprint_id: string The unique id associated with the user blueprint.

user_id: string The id of the user who owns the blueprint.

blueprint: list(dict) or list(UserBlueprintTask), Optional The representation of a directed
acyclic graph defining a pipeline of data through tasks and a final estimator.

vertex_context: list(VertexContextItem), Optional Info about, warnings about, and errors
with a specific vertex in the blueprint.

blueprint_context: VertexContextItemMessages Warnings and errors which may describe or
summarize warnings or errors in the blueprint’s vertices

classmethod list(limit=100, offset=0, project_id=None)
Fetch a list of the user blueprints the current user created

Parameters
limit: int (Default=100) The max number of results to return.

offset: int (Default=0) The number of results to skip (for pagination).

project_id: string, Optional The id of the project, used to filter for original project_id.

Returns
list(UserBlueprint)

640 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[UserBlueprint]

classmethod get(user_blueprint_id, project_id=None)
Retrieve a user blueprint

Parameters
user_blueprint_id: string Used to identify a specific user-owned blueprint.

project_id: string (optional, default is None) String representation of ObjectId for a given
project. Used to validate selected columns in the user blueprint.

Returns
UserBlueprint

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod create(blueprint, model_type=None, project_id=None, save_to_catalog=True)
Create a user blueprint

Parameters
blueprint: list(dict) or list(UserBlueprintTask) A list of tasks in the form of dictionaries

which define a blueprint.

model_type: string, Optional The title to give to the blueprint.

project_id: string, Optional The project associated with the blueprint. Necessary in the
event of project specific tasks, such as column selection tasks.

save_to_catalog: bool, (Default=True) Whether the blueprint being created should be
saved to the catalog.

Returns
UserBlueprint

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod create_from_custom_task_version_id(custom_task_version_id, save_to_catalog=True,
description=None)

Create a user blueprint with a single custom task version

Parameters

2.3. API Reference 641

DataRobot Python API Documentation, Release 3.2.2

custom_task_version_id: string Id of custom task version from which the user blueprint is
created

save_to_catalog: bool, (Default=True) Whether the blueprint being created should be
saved to the catalog

description: string (Default=None) The description for the user blueprint that will be cre-
ated from the custom task version.

Returns
UserBlueprint

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod clone_project_blueprint(blueprint_id, project_id, model_type=None,
save_to_catalog=True)

Clone a blueprint from a project.

Parameters
blueprint_id: string The id associated with the blueprint to create the user blueprint from.

model_type: string, Optional The title to give to the blueprint.

project_id: string The id of the project which the blueprint to copy comes from.

save_to_catalog: bool, (Default=True) Whether the blueprint being created should be
saved to the catalog.

Returns
UserBlueprint

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod clone_user_blueprint(user_blueprint_id, model_type=None, project_id=None,
save_to_catalog=True)

Clone a user blueprint.

Parameters
model_type: string, Optional The title to give to the blueprint.

project_id: string, Optional String representation of ObjectId for a given project. Used to
validate selected columns in the user blueprint.

user_blueprint_id: string The id of the existing user blueprint to copy.

save_to_catalog: bool, (Default=True) Whether the blueprint being created should be
saved to the catalog.

Returns

642 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

UserBlueprint
Raises

datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod update(blueprint, user_blueprint_id, model_type=None, project_id=None,
include_project_id_if_none=False)

Update a user blueprint

Parameters
blueprint: list(dict) or list(UserBlueprintTask) A list of tasks in the form of dictionaries

which define a blueprint. If None, will not be passed.

model_type: string, Optional The title to give to the blueprint. If None, will not be passed.

project_id: string, Optional The project associated with the blueprint. Necessary in the
event of project specific tasks, such as column selection tasks. If None, will not be passed.
To explicitly pass None, pass True to include_project_id_if_none (useful if unlinking a
blueprint from a project)

user_blueprint_id: string Used to identify a specific user-owned blueprint.

include_project_id_if_none: bool (Default=False) Allows project_id to be passed as
None, instead of ignored. If set to False, will not pass project_id in the API request if
it is set to None. If True, the project id will be passed even if it is set to None.

Returns
UserBlueprint

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprint

classmethod delete(user_blueprint_id)
Delete a user blueprint, specified by the userBlueprintId.

Parameters
user_blueprint_id: string Used to identify a specific user-owned blueprint.

Returns
requests.models.Response

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type Response

2.3. API Reference 643

DataRobot Python API Documentation, Release 3.2.2

classmethod get_input_types()
Retrieve the input types which can be used with User Blueprints.

Returns
UserBlueprintAvailableInput

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAvailableInput

classmethod add_to_project(project_id, user_blueprint_ids)
Add a list of user blueprints, by id, to a specified (by id) project’s repository.

Parameters
project_id: string The projectId of the project for the repository to add the specified user

blueprints to.

user_blueprint_ids: list(string) or string The ids of the user blueprints to add to the spec-
ified project’s repository.

Returns
UserBlueprintAddToProjectMenu

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAddToProjectMenu

classmethod get_available_tasks(project_id=None, user_blueprint_id=None)
Retrieve the available tasks, organized into categories, which can be used to create or modify User
Blueprints.

Parameters
project_id: string, Optional
user_blueprint_id: string, Optional

Returns
UserBlueprintAvailableTasks

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAvailableTasks

classmethod validate_task_parameters(output_method, task_code, task_parameters,
project_id=None)

Validate that each value assigned to specified task parameters are valid.

Parameters

644 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

output_method: enum(‘P’, ‘Pm’, ‘S’, ‘Sm’, ‘T’, ‘TS’) The method representing how the
task will output data.

task_code: string The task code representing the task to validate parameter values.

task_parameters: list(UserBlueprintTaskParameterValidationRequestParamItem) A
list of task parameters and proposed values to be validated.

project_id: string (optional, default is None) The projectId representing the project where
this user blueprint is edited.

Returns
UserBlueprintValidateTaskParameters

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintValidateTaskParameters

classmethod list_shared_roles(user_blueprint_id, limit=100, offset=0, id=None, name=None,
share_recipient_type=None)

Get a list of users, groups and organizations that have an access to this user blueprint

Parameters
id: str, Optional Only return the access control information for a organization, group or user

with this ID.

limit: int (Default=100) At most this many results are returned.

name: string, Optional Only return the access control information for a organization, group
or user with this name.

offset: int (Default=0) This many results will be skipped.

share_recipient_type: enum(‘user’, ‘group’, ‘organization’), Optional Describes the re-
cipient type, either user, group, or organization.

user_blueprint_id: str Used to identify a specific user-owned blueprint.

Returns
list(UserBlueprintSharedRolesResponseValidator)

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[UserBlueprintSharedRolesResponseValidator]

classmethod validate_blueprint(blueprint, project_id=None)
Validate a user blueprint and return information about the inputs expected and outputs provided by each
task.

Parameters
blueprint: list(dict) or list(UserBlueprintTask) The representation of a directed acyclic

graph defining a pipeline of data through tasks and a final estimator.

2.3. API Reference 645

DataRobot Python API Documentation, Release 3.2.2

project_id: string (optional, default is None) The projectId representing the project where
this user blueprint is edited.

Returns
list(VertexContextItem)

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type List[VertexContextItem]

classmethod update_shared_roles(user_blueprint_id, roles)
Share a user blueprint with a user, group, or organization

Parameters
user_blueprint_id: str Used to identify a specific user-owned blueprint.

roles: list(or(GrantAccessControlWithUsernameValidator, GrantAccessControlWithIdValidator))
Array of GrantAccessControl objects., up to maximum 100 objects.

Returns
requests.models.Response

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type Response

classmethod search_catalog(search=None, tag=None, limit=100, offset=0, owner_user_id=None,
owner_username=None, order_by='-created')

Fetch a list of the user blueprint catalog entries the current user has access to based on an optional search
term, tags, owner user info, or sort order.

Parameters
search: string, Optional. A value to search for in the dataset’s name, description, tags, col-

umn names, categories, and latest error. The search is case insensitive. If no value is
provided for this parameter, or if the empty string is used, or if the string contains only
whitespace, no filtering will be done. Partial matching is performed on dataset name and
description fields while all other fields will only match if the search matches the whole
value exactly.

tag: string, Optional. If provided, the results will be filtered to include only items with the
specified tag.

limit: int, Optional. (default: 0), at most this many results are returned. To specify no
limit, use 0. The default may change and a maximum limit may be imposed without
notice.

offset: int, Optional. (default: 0), this many results will be skipped.
owner_user_id: string, Optional. Filter results to those owned by one or more owner iden-

tified by UID.

646 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

owner_username: string, Optional. Filter results to those owned by one or more owner
identified by username.

order_by: string, Optional. Defaults to ‘-created’. Sort order which will be applied to cat-
alog list, valid options are “catalogName”, “originalName”, “description”, “created”, and
“relevance”. For all options other than relevance, you may prefix the attribute name with a
dash to sort in descending order. e.g. orderBy=’-catalogName’.

Return type UserBlueprintCatalogSearch

class datarobot.models.user_blueprints.models.UserBlueprintAvailableInput(input_types,
**kwargs)

Retrieve the input types which can be used with User Blueprints.

Parameters
input_types: list(UserBlueprintsInputType) A list of associated pairs of an input types and

their human-readable names.

classmethod get_input_types()
Retrieve the input types which can be used with User Blueprints.

Returns
UserBlueprintAvailableInput

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAvailableInput

class datarobot.models.user_blueprints.models.UserBlueprintAddToProjectMenu(added_to_menu,
not_added_to_menu=None,
message=None,
**kwargs)

Add a list of user blueprints, by id, to a specified (by id) project’s repository.

Parameters
added_to_menu: list(UserBlueprintAddedToMenuItem) The list of userBlueprintId and

blueprintId pairs representing blueprints successfully added to the project repository.

not_added_to_menu: list(UserBlueprintNotAddedToMenuItem) The list of
userBlueprintId and error message representing blueprints which failed to be added
to the project repository.

message: string A success message or a list of reasons why the list of blueprints could not be
added to the project repository.

classmethod add_to_project(project_id, user_blueprint_ids)
Add a list of user blueprints, by id, to a specified (by id) project’s repository.

Parameters
project_id: string The projectId of the project for the repository to add the specified user

blueprints to.

user_blueprint_ids: list(string) The ids of the user blueprints to add to the specified
project’s repository.

2.3. API Reference 647

DataRobot Python API Documentation, Release 3.2.2

Returns
UserBlueprintAddToProjectMenu

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAddToProjectMenu

class datarobot.models.user_blueprints.models.UserBlueprintAvailableTasks(categories, tasks,
**kwargs)

Retrieve the available tasks, organized into categories, which can be used to create or modify User Blueprints.

Parameters
categories: list(UserBlueprintTaskCategoryItem) A list of the available task categories, sub-

categories, and tasks.

tasks: list(UserBlueprintTaskLookupEntry) A list of task codes and their task definitions.

classmethod get_available_tasks(project_id=None, user_blueprint_id=None)
Retrieve the available tasks, organized into categories, which can be used to create or modify User
Blueprints.

Parameters
project_id: string, Optional
user_blueprint_id: string, Optional

Returns
UserBlueprintAvailableTasks

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintAvailableTasks

class datarobot.models.user_blueprints.models.UserBlueprintValidateTaskParameters(errors,
**kwargs)

Validate that each value assigned to specified task parameters are valid.

Parameters
errors: list(UserBlueprintsValidateTaskParameter) A list of the task parameters, their pro-

posed values, and messages describing why each is not valid.

classmethod validate_task_parameters(output_method, task_code, task_parameters,
project_id=None)

Validate that each value assigned to specified task parameters are valid.

Parameters
output_method: enum(‘P’, ‘Pm’, ‘S’, ‘Sm’, ‘T’, ‘TS’) The method representing how the

task will output data.

task_code: string The task code representing the task to validate parameter values.

648 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

task_parameters: list(UserBlueprintTaskParameterValidationRequestParamItem) A
list of task parameters and proposed values to be validated.

project_id: string (optional, default is None) The projectId representing the project where
this user blueprint is edited.

Returns
UserBlueprintValidateTaskParameters

Raises
datarobot.errors.ClientError if the server responded with 4xx status

datarobot.errors.ServerError if the server responded with 5xx status

Return type UserBlueprintValidateTaskParameters

class datarobot.models.user_blueprints.models.UserBlueprintSharedRolesResponseValidator(id,
name,
role,
share_recipient_type,
**kwargs)

A list of SharedRoles objects.

Parameters
share_recipient_type: enum(‘user’, ‘group’, ‘organization’) Describes the recipient type, ei-

ther user, group, or organization.

role: str, one of enum(‘CONSUMER’, ‘EDITOR’, ‘OWNER’) The role of the
org/group/user on this dataset or “NO_ROLE” for removing access when used with
route to modify access.

id: str The ID of the recipient organization, group or user.

name: string The name of the recipient organization, group or user.

class datarobot.models.user_blueprints.models.VertexContextItem(information, messages, task_id,
**kwargs)

Info about, warnings about, and errors with a specific vertex in the blueprint.

Parameters
task_id: string The id associated with a specific vertex in the blueprint.

information: VertexContextItemInfo
messages: VertexContextItemMessages

class datarobot.models.user_blueprints.models.UserBlueprintCatalogSearch(id, catalog_name,
info_creator_full_name,
user_blueprint_id,
description=None,
last_modifier_full_name=None,
**kwargs)

An APIObject representing a user blueprint catalog entry the current user has access to based on an optional
search term and/or tags.

Parameters
id: str The ID of the catalog entry linked to the user blueprint.

catalog_name: str The name of the user blueprint.

2.3. API Reference 649

DataRobot Python API Documentation, Release 3.2.2

creator: str The name of the user that created the user blueprint.

user_blueprint_id: str The ID of the user blueprint.

description: str, Optional (Default=None) The description of the user blueprint.

last_modifier_name: str, Optional (Default=None) The name of the user that last modified
the user blueprint.

classmethod search_catalog(search=None, tag=None, limit=100, offset=0, owner_user_id=None,
owner_username=None, order_by='-created')

Fetch a list of the user blueprint catalog entries the current user has access to based on an optional search
term, tags, owner user info, or sort order.

Parameters
search: string, Optional. A value to search for in the dataset’s name, description, tags, col-

umn names, categories, and latest error. The search is case insensitive. If no value is
provided for this parameter, or if the empty string is used, or if the string contains only
whitespace, no filtering will be done. Partial matching is performed on dataset name and
description fields while all other fields will only match if the search matches the whole
value exactly.

tag: string, Optional. If provided, the results will be filtered to include only items with the
specified tag.

limit: int, Optional. (default: 0), at most this many results are returned. To specify no
limit, use 0. The default may change and a maximum limit may be imposed without
notice.

offset: int, Optional. (default: 0), this many results will be skipped.
owner_user_id: string, Optional. Filter results to those owned by one or more owner iden-

tified by UID.

owner_username: string, Optional. Filter results to those owned by one or more owner
identified by username.

order_by: string, Optional. Defaults to ‘-created’. Sort order which will be applied to cat-
alog list, valid options are “catalogName”, “originalName”, “description”, “created”, and
“relevance”. For all options other than relevance, you may prefix the attribute name with a
dash to sort in descending order. e.g. orderBy=’-catalogName’.

Return type List[UserBlueprintCatalogSearch]

2.3.62 VisualAI

class datarobot.models.visualai.Image(image_id, project_id, height=0, width=0)
An image stored in a project’s dataset.

Attributes
id [str] Image ID for this image.

image_type [str] Image media type. Accessing this may require a server request and an associ-
ated delay in returning.

image_bytes [bytes] Raw bytes of this image. Accessing this may require a server request and
an associated delay in returning.

height [int] Height of the image in pixels.

650 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

width [int] Width of the image in pixels.

classmethod get(project_id, image_id)
Get a single image object from project.

Parameters
project_id [str] Id of the project that contains the images.

image_id [str] ID of image to load from the project.

Return type Image

class datarobot.models.visualai.SampleImage(project_id, image_id, height, width, target_value=None)
A sample image in a project’s dataset.

If Project.stage is datarobot.enums.PROJECT_STAGE.EDA2 then the target_* attributes of this class
will have values, otherwise the values will all be None.

Attributes
image [Image] Image object.

target_value [TargetValue] Value associated with the feature_name.

project_id [str] Id of the project that contains the images.

classmethod list(project_id, feature_name, target_value=None, target_bin_start=None,
target_bin_end=None, offset=None, limit=None)

Get sample images from a project.

Parameters
project_id [str] Project that contains the images.

feature_name [str] Name of feature column that contains images.

target_value [TargetValue] For classification projects - target value to filter images. Please
note that you can only use this parameter when the project has finished the EDA2 stage.

target_bin_start [Optional[Union[int, float]]] For regression projects - only images corre-
sponding to the target values above (inclusive) this value will be returned. Must be specified
together with target_bin_end. Please note that you can only use this parameter when the
project has finished the EDA2 stage.

target_bin_end [Optional[Union[int, float]]] For regression projects - only images corre-
sponding to the target values below (exclusive) this value will be returned. Must be speci-
fied together with target_bin_start. Please note that you can only use this parameter when
the project has finished the EDA2 stage.

offset [Optional[int]] Number of images to be skipped.

limit [Optional[int]] Number of images to be returned.

Return type List[SampleImage]

class datarobot.models.visualai.DuplicateImage(image_id, row_count, project_id)
An image that was duplicated in the project dataset.

Attributes
image [Image] Image object.

count [int] Number of times the image was duplicated.

2.3. API Reference 651

DataRobot Python API Documentation, Release 3.2.2

classmethod list(project_id, feature_name, offset=None, limit=None)
Get all duplicate images in a project.

Parameters
project_id [str] Project that contains the images.

feature_name [str] Name of feature column that contains images.

offset [Optional[int]] Number of images to be skipped.

limit [Optional[int]] Number of images to be returned.

Return type List[DuplicateImage]

class datarobot.models.visualai.ImageEmbedding(feature_name, position_x, position_y, image_id,
project_id, model_id, actual_target_value=None,
target_values=None, target_bins=None)

Vector representation of an image in an embedding space.

A vector in an embedding space will allow linear computations to be carried out between images: for example
computing the Euclidean distance of the images.

Attributes
image [Image] Image object used to create this map.

feature_name [str] Name of the feature column this embedding is associated with.

position_x [int] X coordinate of the image in the embedding space.

position_y [int] Y coordinate of the image in the embedding space.

actual_target_value [object] Actual target value of the dataset row.

target_values [Optional[List[str]]] For classification projects, a list of target values of this
project.

target_bins [Optional[List[Dict[str, float]]]] For regression projects, a list of target bins of this
project.

project_id [str] Id of the project this Image Embedding belongs to.

model_id [str] Id of the model this Image Embedding belongs to.

classmethod compute(project_id, model_id)
Start the computation of image embeddings for the model.

Parameters
project_id [str] Project to start creation in.

model_id [str] Project’s model to start creation in.

Returns
str URL to check for image embeddings progress.

Raises
datarobot.errors.ClientError Server rejected creation due to client error. Most likely cause

is bad project_id or model_id.

Return type str

652 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

classmethod models(project_id)
For a given project_id, list all model_id - feature_name pairs with available Image Embeddings.

Parameters
project_id [str] Id of the project to list model_id - feature_name pairs with available Image

Embeddings for.

Returns
list(tuple(model_id, feature_name)) List of model and feature name pairs.

Return type List[Tuple[str, str]]

classmethod list(project_id, model_id, feature_name)
Return a list of ImageEmbedding objects.

Parameters
project_id: str Id of the project the model belongs to.

model_id: str Id of the model to list Image Embeddings for.

feature_name: str Name of feature column to list Image Embeddings for.

Return type List[ImageEmbedding]

class datarobot.models.visualai.ImageActivationMap(feature_name, activation_values, image_width,
image_height, image_id, overlay_image_id,
project_id, model_id, actual_target_value=None,
predicted_target_value=None,
target_values=None, target_bins=None)

Mark areas of image with weight of impact on training.

This is a technique to display how various areas of the region were used in training, and their effect on predictions.
Larger values in activation_values indicates a larger impact.

Attributes
image [Image] Image object used to create this map.

overlay_image [Image] Image object containing the original image overlaid by the activation
heatmap.

feature_name [str] Name of the feature column that contains the value this map is based on.

activation_values [List[List[int]]] A row-column matrix that contains the activation strengths
for image regions. Values are integers in the range [0, 255].

actual_target_value [TargetValue] Actual target value of the dataset row.

predicted_target_value [TargetValue] Predicted target value of the dataset row that contains
this image.

target_values [Optional[List[str]]] For classification projects a list of target values of this
project.

target_bins [Optional[List[Dict[str, float]]]] For regression projects a list of target bins.

project_id [str] Id of the project this Activation Map belongs to.

model_id [str] Id of the model this Activation Map belongs to.

2.3. API Reference 653

DataRobot Python API Documentation, Release 3.2.2

classmethod compute(project_id, model_id)
Start the computation of activation maps for the given model.

Parameters
project_id [str] Project to start creation in.

model_id [str] Project’s model to start creation in.

Returns
str URL to check for image embeddings progress.

Raises
datarobot.errors.ClientError Server rejected creation due to client error. Most likely cause

is bad project_id or model_id.

Return type str

classmethod models(project_id)
For a given project_id, list all model_id - feature_name pairs with available Image Activation Maps.

Parameters
project_id [str] Id of the project to list model_id - feature_name pairs with available Image

Activation Maps for.

Returns
list(tuple(model_id, feature_name)) List of model and feature name pairs.

Return type List[Tuple[str, str]]

classmethod list(project_id, model_id, feature_name, offset=None, limit=None)
Return a list of ImageActivationMap objects.

Parameters
project_id [str] Project that contains the images.

model_id [str] Model that contains the images.

feature_name [str] Name of feature column that contains images.

offset [Optional[int]] Number of images to be skipped.

limit [Optional[int]] Number of images to be returned.

Return type List[ImageActivationMap]

class datarobot.models.visualai.ImageAugmentationOptions(id, name, project_id,
min_transformation_probability,
current_transformation_probability,
max_transformation_probability,
min_number_of_new_images,
current_number_of_new_images,
max_number_of_new_images,
transformations=None)

A List of all supported Image Augmentation Transformations for a project. Includes additional information about
minimum, maximum, and default values for a transformation.

Attributes

654 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

name: string The name of the augmentation list

project_id: string The project containing the image data to be augmented

min_transformation_probability: float The minimum allowed value for transformation prob-
ability.

current_transformation_probability: float Default setting for probability that each transfor-
mation will be applied to an image.

max_transformation_probability: float The maximum allowed value for transformation prob-
ability.

min_number_of_new_images: int The minimum allowed number of new rows to add for each
existing row

current_number_of_new_images: int The default number of new rows to add for each existing
row

max_number_of_new_images: int The maximum allowed number of new rows to add for each
existing row

transformations: list[dict] List of transformations to possibly apply to each image

classmethod get(project_id)
Returns a list of all supported transformations for the given project

Parameters project_id (str) – sting The id of the project for which to return the list of sup-
ported transformations.

Return type ImageAugmentationOptions
Returns

ImageAugmentationOptions A list containing all the supported transformations for the
project.

class datarobot.models.visualai.ImageAugmentationList(id, name, project_id, feature_name=None,
in_use=False, initial_list=False,
transformation_probability=0.0,
number_of_new_images=1,
transformations=None, samples_id=None)

A List of Image Augmentation Transformations

Attributes
name: string The name of the augmentation list

project_id: string The project containing the image data to be augmented

feature_name: string (optional) name of the feature that the augmentation list is associated
with

in_use: boolean Whether this is the list that will passed in to every blueprint during blueprint
generation before autopilot

initial_list: boolean True if this is the list to be used during training to produce augmentations

transformation_probability: float Probability that each transformation will be applied to an
image. Value should be between 0.01 - 1.0.

number_of_new_images: int Number of new rows to add for each existing row

transformations: array List of transformations to possibly apply to each image

samples_id: str Id of last image augmentation sample generated for image augmentation list.

2.3. API Reference 655

DataRobot Python API Documentation, Release 3.2.2

classmethod create(name, project_id, feature_name=None, in_use=None, initial_list=False,
transformation_probability=0.0, number_of_new_images=1, transformations=None,
samples_id=None)

create a new image augmentation list

Return type ImageAugmentationList
classmethod list(project_id, feature_name=None)

List Image Augmentation Lists present in a project.

Parameters
project_id [str] Project Id to retrieve augmentation lists for.

feature_name [Optional[str]] If passed, the response will only include Image Augmentation
Lists active for the provided feature name.

Returns
list[ImageAugmentationList]

Return type List[ImageAugmentationList]

update(name=None, feature_name=None, initial_list=None, transformation_probability=None,
number_of_new_images=None, transformations=None)

Update one or multiple attributes of the Image Augmentation List in the DataRobot backend as well on this
object.

Parameters
name [Optional[str]] New name of the feature list.

feature_name [Optional[str]] The new feature name for which the Image Augmentation List
is effective.

initial_list [Optional[bool]] New flag that indicates whether this list will be used during Au-
topilot to perform image augmentation.

transformation_probability [Optional[float]] New probability that each enabled transfor-
mation will be applied to an image. This does not apply to Horizontal or Vertical Flip,
which are always set to 50%.

number_of_new_images [Optional[int]] New number of new rows to add for each existing
row, updating the existing augmentation list.

transformations [Optional[list]] New list of Transformations to possibly apply to each im-
age.

Returns
ImageAugmentationList Reference to self. The passed values will be updated in place.

Return type ImageAugmentationList

retrieve_samples()
Lists already computed image augmentation sample for image augmentation list. Returns samples only if
they have been already computed. It does not initialize computation.

Returns
List of class ImageAugmentationSample

Return type List[ImageAugmentationSample]

656 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

compute_samples(max_wait=600)
Initializes computation and retrieves list of image augmentation samples for image augmentation list. If
samples exited prior to this call method, this will compute fresh samples and return latest version of samples.

Returns
List of class ImageAugmentationSample

Return type List[ImageAugmentationSample]

class datarobot.models.visualai.ImageAugmentationSample(image_id, project_id, height, width,
original_image_id=None,
sample_id=None)

A preview of the type of images that augmentations will create during training.

Attributes
sample_id [ObjectId] The id of the augmentation sample, used to group related images together

image_id [ObjectId] A reference to the Image which can be used to retrieve the image binary

project_id [ObjectId] A reference to the project containing the image

original_image_id [ObjectId] A reference to the original image that generated this image in the
case of an augmented image. If this is None it signifies this is an original image

height [int] Image height in pixels

width [int] Image width in pixels

classmethod list(auglist_id=None)
Return a list of ImageAugmentationSample objects.

Parameters
auglist_id: str ID for augmentation list to retrieve samples for

Returns
List of class ImageAugmentationSample

Return type List[ImageAugmentationSample]

2.3.63 Word Cloud

class datarobot.models.word_cloud.WordCloud(ngrams)
Word cloud data for the model.

Notes

WordCloudNgram is a dict containing the following:

• ngram (str) Word or ngram value.

• coefficient (float) Value from [-1.0, 1.0] range, describes effect of this ngram on the target. Large neg-
ative value means strong effect toward negative class in classification and smaller target value in regression
models. Large positive - toward positive class and bigger value respectively.

• count (int) Number of rows in the training sample where this ngram appears.

• frequency (float) Value from (0.0, 1.0] range, relative frequency of given ngram to most frequent ngram.

2.3. API Reference 657

DataRobot Python API Documentation, Release 3.2.2

• is_stopword (bool) True for ngrams that DataRobot evaluates as stopwords.

• class (str or None) For classification - values of the target class for corresponding word or ngram. For
regression - None.

Attributes
ngrams [list of dicts] List of dicts with schema described as WordCloudNgram above.

most_frequent(top_n=5)
Return most frequent ngrams in the word cloud.

Parameters
top_n [int] Number of ngrams to return

Returns
list of dict Up to top_n top most frequent ngrams in the word cloud. If top_n bigger then

total number of ngrams in word cloud - return all sorted by frequency in descending order.

Return type List[WordCloudNgram]

most_important(top_n=5)
Return most important ngrams in the word cloud.

Parameters
top_n [int] Number of ngrams to return

Returns
list of dict Up to top_n top most important ngrams in the word cloud. If top_n bigger then

total number of ngrams in word cloud - return all sorted by absolute coefficient value in
descending order.

Return type List[WordCloudNgram]

ngrams_per_class()
Split ngrams per target class values. Useful for multiclass models.

Returns
dict Dictionary in the format of (class label) -> (list of ngrams for that class)

Return type Dict[Optional[str], List[WordCloudNgram]]

class datarobot.models.word_cloud.WordCloudNgram() -> new empty dictionary dict(mapping) -> new
dictionary initialized from a mapping object's (key,
value) pairs dict(iterable) -> new dictionary
initialized as if via: d = {} for k, v in iterable: d[k] =
v dict(**kwargs) -> new dictionary initialized with
the name=value pairs in the keyword argument list.
For example: dict(one=1, two=2)

658 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.3.64 Data Slices

class datarobot.models.data_slice.DataSlice(id=None, name=None, filters=None, project_id=None)
Definition of a data slice

Attributes
id [str] ID of the data slice.

name [str] Name of the data slice definition.

filters [list[DataSliceFiltersType]]

List of filters (dict) with params:
• operand [str] Name of the feature to use in the filter.

• operator [str] Operator to use in the filter: ‘eq’, ‘in’, ‘<’, or ‘>’.

• values [Union[str, int, float]] Values to use from the feature.

project_id [str] ID of the project that the model is part of.

classmethod list(project, offset=0, limit=100)
List the data slices in the same project

Parameters
project [Union[str, Project]] ID of the project or Project object from which to list data slices.

offset [int, optional] Number of items to skip.

limit [int, optional] Number of items to return.

Returns
data_slices [list[DataSlice]]

Examples

>>> import datarobot as dr
>>> ... # set up your Client
>>> data_slices = dr.DataSlice.list("646d0ea0cd8eb2355a68b0e5")
>>> data_slices
[DataSlice(...), DataSlice(...), ...]

Return type List[DataSlice]

classmethod create(name, filters, project)
Creates a data slice in the project with the given name and filters

Parameters
name [str] Name of the data slice definition.

filters [list[DataSliceFiltersType]]

List of filters (dict) with params:
• operand [str] Name of the feature to use in filter.

• operator [str] Operator to use: ‘eq’, ‘in’, ‘<’, or ‘>’.

• values [Union[str, int, float]] Values to use from the feature.

2.3. API Reference 659

DataRobot Python API Documentation, Release 3.2.2

project [Union[str, Project]] Project ID or Project object from which to list data slices.

Returns
data_slice [DataSlice] The data slice object created

Examples

>>> import datarobot as dr
>>> ... # set up your Client and retrieve a project
>>> data_slice = dr.DataSlice.create(
>>> ... name='yes',
>>> ... filters=[{'operand': 'binary_target', 'operator': 'eq', 'values': [
→˓'Yes']}],
>>> ... project=project,
>>> ...)
>>> data_slice
DataSlice(

filters=[{'operand': 'binary_target', 'operator': 'eq', 'values': ['Yes']}],
id=646d1296bd0c543d88923c9d,
name=yes,
project_id=646d0ea0cd8eb2355a68b0e5

)

Return type DataSlice

delete()
Deletes the data slice from storage

Examples

>>> import datarobot as dr
>>> data_slice = dr.DataSlice.get('5a8ac9ab07a57a0001be501f')
>>> data_slice.delete()

>>> import datarobot as dr
>>> ... # get project or project_id
>>> data_slices = dr.DataSlice.list(project) # project object or project_id
>>> data_slice = data_slices[0] # choose a data slice from the list
>>> data_slice.delete()

Return type None

request_size(source, model=None)
Submits a request to validate the data slice’s filters and calculate the data slice’s number of rows on a given
source

Parameters
source [INSIGHTS_SOURCES] Subset of data (partition or “source”) on which to apply the

data slice for estimating available rows.

660 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

model [Optional[Union[str, Model]]] Model object or ID of the model. It is only required
when source is “training”.

Returns
status_check_job [StatusCheckJob] Object contains all needed logic for a periodical status

check of an async job.

Examples

>>> import datarobot as dr
>>> ... # get project or project_id
>>> data_slices = dr.DataSlice.list(project) # project object or project_id
>>> data_slice = data_slices[0] # choose a data slice from the list
>>> status_check_job = data_slice.request_size("validation")

Model is required when source is ‘training’

>>> import datarobot as dr
>>> ... # get project or project_id
>>> data_slices = dr.DataSlice.list(project) # project object or project_id
>>> data_slice = data_slices[0] # choose a data slice from the list
>>> status_check_job = data_slice.request_size("training", model)

Return type StatusCheckJob

get_size_info(source, model=None)
Get information about the data slice applied to a source

Parameters
source [INSIGHTS_SOURCES] Source (partition or subset) to which the data slice was

applied

model [Optional[Union[str, Model]]] ID for the model whose training data was sliced with
this data slice. Required when the source is “training”, and not used for other sources.

Returns
slice_size_info [DataSliceSizeInfo] Information of the data slice applied to a source

Examples

>>> import datarobot as dr
>>> ... # set up your Client
>>> data_slices = dr.DataSlice.list("646d0ea0cd8eb2355a68b0e5")
>>> data_slice = slices[0] # can be any slice in the list
>>> data_slice_size_info = data_slice.get_size_info("validation")
>>> data_slice_size_info
DataSliceSizeInfo(

data_slice_id=6493a1776ea78e6644382535,
messages=[

{
'level': 'WARNING',

(continues on next page)

2.3. API Reference 661

DataRobot Python API Documentation, Release 3.2.2

(continued from previous page)

'description': 'Low Observation Count',
'additional_info': 'Insufficient number of observations to compute␣

→˓some insights.'
}

],
model_id=None,
project_id=646d0ea0cd8eb2355a68b0e5,
slice_size=1,
source=validation,

)
>>> data_slice_size_info.to_dict()
{

'data_slice_id': '6493a1776ea78e6644382535',
'messages': [

{
'level': 'WARNING',
'description': 'Low Observation Count',
'additional_info': 'Insufficient number of observations to compute␣

→˓some insights.'
}

],
'model_id': None,
'project_id': '646d0ea0cd8eb2355a68b0e5',
'slice_size': 1,
'source': 'validation',

}

>>> import datarobot as dr
>>> ... # set up your Client
>>> data_slice = dr.DataSlice.get("6493a1776ea78e6644382535")
>>> data_slice_size_info = data_slice.get_size_info("validation")

When using source=’training’, the model param is required.

>>> import datarobot as dr
>>> ... # set up your Client
>>> model = dr.Model.get(project_id, model_id)
>>> data_slice = dr.DataSlice.get("6493a1776ea78e6644382535")
>>> data_slice_size_info = data_slice.get_size_info("training", model)

>>> import datarobot as dr
>>> ... # set up your Client
>>> data_slice = dr.DataSlice.get("6493a1776ea78e6644382535")
>>> data_slice_size_info = data_slice.get_size_info("training", model_id)

Return type DataSliceSizeInfo

classmethod get(data_slice_id)
Retrieve a specific data slice.

Parameters
data_slice_id [str] The identifier of the data slice to retrieve.

662 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Returns
data_slice: DataSlice The required data slice.

Examples

>>> import datarobot as dr
>>> dr.DataSlice.get('648b232b9da812a6aaa0b7a9')
DataSlice(filters=[{'operand': 'binary_target', 'operator': 'eq', 'values': [
→˓'Yes']}],

id=648b232b9da812a6aaa0b7a9,
name=test,
project_id=644bc575572480b565ca42cd
)

Return type DataSlice

class datarobot.models.data_slice.DataSliceSizeInfo(data_slice_id=None, project_id=None,
source=None, slice_size=None,
messages=None, model_id=None)

Definition of a data slice applied to a source

Attributes
data_slice_id [str] ID of the data slice

project_id [str] ID of the project

source [str] Data source used to calculate the number of rows (slice size) after applying the data
slice’s filters

model_id [str, optional] ID of the model, required when source (subset) is ‘training’

slice_size [int] Number of rows in the data slice for a given source

messages [list[DataSliceSizeMessageType]] List of user-relevant messages related to a data slice

2.4 Examples

DataRobot provides an API user guide that includes overviews, Jupyter notebooks, and task-based tutorials that help
you find complete examples of common data science and machine learning workflows using the Python client.

Jupyter notebooks found in the API user guide are downloadable and include sample datasets.

In addition to the examples listed above, DataRobot hosts community-driven notebooks accessible from the following
locations:

Resource Description
Examples for data scientists Github reposi-
tory

Referential Jupyter notebooks that outline common DataRobot func-
tions.

Tutorials for data scientists Github reposi-
tory

Jupyter notebooks that detail applicable use cases for DataRobot.

2.4. Examples 663

https://docs.datarobot.com/en/docs/api/guide/index.html
https://github.com/datarobot-community/examples-for-data-scientists/
https://github.com/datarobot-community/examples-for-data-scientists/
https://github.com/datarobot-community/tutorials-for-data-scientists/
https://github.com/datarobot-community/tutorials-for-data-scientists/

DataRobot Python API Documentation, Release 3.2.2

2.5 Changelog

2.5.1 3.2.2

Bugfixes

• Fixed setting ssl_verify by env variables in :meth: config_from_env <datarobot.client._config_from_env>.

2.5.2 3.2.1

New Features

• Added support for Python 3.11.

• Added new library “strenum” to add StrEnum support while maintaining backwards compatibility with Python
3.7-3.10. DataRobot does not use the native StrEnum class in Python 3.11.

Bugfixes

• The payload property subset has been renamed to source in Model.request_feature_effect.

• Fixed an issue where Context.trace_context was not being set from environment variables or DR config files.

• Fixed an issue with enums in f-strings resulting in the enum class and property being printed instead of the enum
property’s value in Python 3.11 environments.

2.5.3 3.2.0

New Features

• Added new methods to trigger batch monitoring jobs without providing a job definition. BatchMonitoringJob.
run BatchMonitoringJob.get_status BatchMonitoringJob.cancel BatchMonitoringJob.
download

• Added Deployment.submit_actuals_from_catalog_async to submit actuals from the AI Catalog.

• Added a new class StatusCheckJob which represents a job for a status check of submitted async jobs.

• Added a new class JobStatusResult represents the result for a status check job of a submitted async task.

• Added DatetimePartitioning.datetime_partitioning_log_retrieve to download the datetime parti-
tioning log.

• Added method DatetimePartitioning.datetime_partitioning_log_list to list the datetime partition-
ing log.

• Added DatetimePartitioning.get_input_data to retrieve the input data used to create an optimized date-
time partitioning.

• Added DatetimePartitioningId , which can be passed as a partitioning_method to Project.
analyze_and_model.

• Added the ability to share deployments. See deployment sharing for more information on sharing deployments.

664 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Added new methods get_bias_and_fairness_settings and update_bias_and_fairness_settings to retrieve or
update bias and fairness settings. Deployment.get_bias_and_fairness_settings Deployment.
update_bias_and_fairness_settings

• Added a new class UseCase for interacting with the DataRobot Use Cases API.

• Added a new class Application for retrieving DataRobot Applications available to the user.

• Added a new class SharingRole to hold user or organization access rights.

• Added a new class BatchMonitoringJob for interacting with batch monitoring jobs.

• Added a new class BatchMonitoringJobDefinition for interacting with batch monitoring jobs definitions.

• Added a new methods for handling monitoring job definitions: list, get, create, update, delete, run_on_schedule
and run_once BatchMonitoringJobDefinition.list BatchMonitoringJobDefinition.
get BatchMonitoringJobDefinition.create BatchMonitoringJobDefinition.update
BatchMonitoringJobDefinition.delete BatchMonitoringJobDefinition.run_on_schedule
BatchMonitoringJobDefinition.run_once

• Added a new method to retrieve a monitoring job BatchMonitoringJob.get

• Added the ability to filter return objects by a Use Case ID passed to the following methods: Dataset.list
Project.list

• Added the ability to automatically add a newly created dataset or project to a Use Case by passing a UseCase,
list of UseCase objects, UseCase ID or list of UseCase IDs using the keyword argument use_cases to the
following methods: Dataset.create_from_file Dataset.create_from_in_memory_data Dataset.
create_from_url Dataset.create_from_data_source Dataset.create_from_query_generator
Dataset.create_project Project.create Project.create_from_data_source Project.
create_from_dataset Project.create_segmented_project_from_clustering_model Project.
start

• Added the ability to set a default UseCase for requests. It can be set in several ways.

– If the user configures the client via Client(. . .), then invoke Client(. . . , default_use_case = <id>).

– If the user configures the client via dr.config.yaml, then add the property default_use_case: <id>.

– If the user configures the client via env vars, then set the env var DATAROBOT_DEFAULT_USE_CASE.

– The default use case can also be set programmatically as a context manager via with UseCase.get(<id>):.

• Added the ability to configure the collection of client usage metrics to send to DataRobot. Note that this feature
only tracks which DataRobot package methods are called and does not collect any user data. You can configure
collection with the following settings:

– If the user configures the client via Client(. . .), then invoke Client(. . . , enable_api_consumer_tracking =
<True/False>).

– If the user configures the client via dr.config.yaml, then add the property enable_api_consumer_tracking:
<True/False>.

– If the user configures the client via env vars, then set the env var
DATAROBOT_API_CONSUMER_TRACKING_ENABLED.

Currently the default value for enable_api_consumer_tracking is True.

• Added method meth:Deployment.get_predictions_over_time <datarobot.models.Deployment.get_predictions_over_time>
to retrieve deployment predictions over time data.

• Added a new class FairnessScoresOverTime to retrieve fairness over time information.

• Added a new method Deployment.get_fairness_scores_over_time to retrieve fairness scores over time
of a deployment.

2.5. Changelog 665

DataRobot Python API Documentation, Release 3.2.2

• Added a new use_gpu parameter to the method Project.analyze_and_model to set whether the project should
allow usage of GPU

• Added a new use_gpu parameter to the class Project with information whether project allows usage of GPU

• Added a new class TrainingData for retrieving TrainingData assigned to CustomModelVersion.

• Added a new class HoldoutData for retrieving HoldoutData assigned to CustomModelVersion.

• Added the ability to retrieve the model and blueprint json using the following methods: Model.
get_model_blueprint_json Blueprint.get_json

• Added Credential.update which allows you to update existing credential resources.

• Added a new optional parameter trace_context to datarobot.Client to provide additional information on the
DataRobot code being run. This parameter defaults to None.

• Updated methods in Model to support use of Sliced Insights: Model.get_feature_effect Model.
request_feature_effect Model.get_or_request_feature_effect Model.get_lift_chart
Model.get_all_lift_charts Model.get_residuals_chart Model.get_all_residuals_charts
Model.request_lift_chart Model.request_residuals_chart Model.get_roc_curve Model.
get_feature_impact Model.request_feature_impact Model.get_or_request_feature_impact

• Added support for SharingRole to the following methods: - DataStore.share

• Added new methods for retrieving SharingRole information for the following classes: - DataStore.
get_shared_roles

• Added new method for calculating sliced roc curve Model.request_roc_curve

• Added new DataSlice to support the following slices methods: DataSlice.list to retrieve all data slices in a
project. DataSlice.create to create a new data slice. DataSlice.delete to delete the data slice calling this
method. DataSlice.request_size to submit a request to calculate a data slice size on a source. DataSlice.
get_size_info to get the data slice’s info when applied to a source. DataSlice.get to retrieve a specific data
slice.

• Added new DataSliceSizeInfo to define the result of a data slice applied to a source.

• Added new method for retrieving all available feature impacts for the model :meth:
Model.get_all_feature_impacts <datarobot.models.Model.get_all_feature_impacts>

• Added new method for StatusCheckJob to wait and return the completed object once it is generated datarobot.
models.StatusCheckJob.get_result_when_complete()

Enhancements

• Improve error message of SampleImage.list to clarify that a selected parameter cannot be used when a project
has not proceeded to the correct stage prior to calling this method.

• Extended SampleImage.list by two parameters to filter for a target value range in regression projects.

• Added text explanations data to PredictionExplanations and made sure it is returned in both datarobot.
PredictionExplanations.get_all_as_dataframe() and datarobot.PredictionExplanations.
get_rows() method.

• Added two new parameters to Project.upload_dataset_from_catalog:
– credential_id

– credential_data

• Implemented training and holdout data assignment for Custom Model Version creation APIs:
– CustomModelVersion.create_clean

666 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

– CustomModelVersion.create_from_previous
The parameters added to both APIs are:

– training_dataset_id

– partition_column

– holdout_dataset_id

– keep_training_holdout_data

– max_wait

• Extended CustomInferenceModel.create and CustomInferenceModel.update with the parameter
is_training_data_for_versions_permanently_enabled.

• Added value DR_API_ACCESS to the NETWORK_EGRESS_POLICY enum.

• Added new parameter low_memory to Dataset.get_as_dataframe to allow a low memory mode for larger
datasets

• Added two new parameters to Project.list for paginating long project lists:
– offset

– limit

Bugfixes

• Fixed incompatibilities with Pandas 2.0 in DatetimePartitioning.to_dataframe.

• Fixed a crash when using non-“latin-1” characters in Panda’s DataFrame used as prediction data in
BatchPredictionJob.score.

• Fixed an issue where failed authentication when invoking datarobot.client.Client() raises a misleading error about
client-server compatibility.

• Fixed incompatibilities with Pandas 2.0 in AccuracyOverTime.get_as_dataframe. The method will now
throw a ValueError if an empty list is passed to the parameter metrics.

API Changes

• Added parameter unsupervised_type to the class DatetimePartitioning.

• The sliced insight API endpoint GET: api/v2/insights/<insight_name>/ returns a paginated re-
sponse. This means that it returns an empty response if no insights data is found, unlike GET:
api/v2/projects/<pid>/models/<lid>/<insight_name>/, which returns 404 NOT FOUND in this case. To
maintain backwards-compatibility, all methods that retrieve insights data raise 404 NOT FOUND if the insights
API returns an empty response.

2.5. Changelog 667

DataRobot Python API Documentation, Release 3.2.2

Deprecation Summary

• Model.get_feature_fit_metadata has been removed. Use Model.get_feature_effect_metadata in-
stead.

• DatetimeModel.get_feature_fit_metadata has been removed. Use DatetimeModel.
get_feature_effect_metadata instead.

• Model.request_feature_fit has been removed. Use Model.request_feature_effect instead.

• DatetimeModel.request_feature_fit has been removed. Use DatetimeModel.
request_feature_effect instead.

• Model.get_feature_fit has been removed. Use Model.get_feature_effect instead.

• DatetimeModel.get_feature_fit has been removed. Use DatetimeModel.get_feature_effect in-
stead.

• Model.get_or_request_feature_fit has been removed. Use Model.
get_or_request_feature_effect instead.

• DatetimeModel.get_or_request_feature_fit has been removed. Use DatetimeModel.
get_or_request_feature_effect instead.

• Deprecated the use of SharingAccess in favor of SharingRole for sharing in the following classes: -
DataStore.share

• Deprecated the following methods for retrieving SharingAccess information. - DataStore.
get_access_list. Please use DataStore.get_shared_roles instead.

• CustomInferenceModel.assign_training_data was marked as deprecated and will be removed in v3.4.
Use CustomModelVersion.create_clean and CustomModelVersion.create_from_previous instead.

Configuration Changes

• Pins dependency on package urllib3 to be less than version 2.0.0.

Deprecation Summary

• Deprecated parameter user_agent_suffix in datarobot.Client. user_agent_suffix will be removed in v3.4. Please
use trace_context instead.

Documentation Changes

• Fixed in-line documentation of DataRobotClientConfig.

• Fixed documentation around client configuration from environment variables or config file.

668 Chapter 2. Table of contents

https://pypi.org/project/urllib3/

DataRobot Python API Documentation, Release 3.2.2

Experimental changes

• Added experimental support for data matching:

– DataMatching
– DataMatchingQuery

• Added new method DataMatchingQuery.get_result for returning data matching query results as pandas
dataframes to DataMatchingQuery .

• Changed behavior for returning results in the DataMatching. Instead of saving the results as a file, a pandas dataframe will be returned in the following methods:

– DataMatching.get_closest_data
– DataMatching.get_closest_data_for_model
– DataMatching.get_closest_data_for_featurelist

• Added experimental support for model lineage: ModelLineage

• Changed behavior for methods that search for the closest data points in DataMatching. If the index is missing, instead of throwing the error, methods try to create the index and then query it. This is enabled by default, but if this is not the intended behavior it can be changed by passing False to the new build_index parameter added to the methods:

– DataMatching.get_closest_data
– DataMatching.get_closest_data_for_model
– DataMatching.get_closest_data_for_featurelist

• Added a new class Notebook for retrieving DataRobot Notebooks available to the user.

• Added experimental support for data wrangling:

– Recipe

2.5.4 3.1.1

Configuration Changes

• Removes dependency on package contextlib2 since the package is Python 3.7+.

• Update typing-extensions to be inclusive of versions from 4.3.0 to < 5.0.0.

2.5.5 3.1.0

New Features

Enhancements

• Added new methods BatchPredictionJob.apply_time_series_data_prep_and_score and
BatchPredictionJob.apply_time_series_data_prep_and_score_to_file that apply time series
data prep to a file or dataset and make batch predictions with a deployment.

• Added new methods DataEngineQueryGenerator.prepare_prediction_dataset and
DataEngineQueryGenerator.prepare_prediction_dataset_from_catalog that apply time series
data prep to a file or catalog dataset and upload the prediction dataset to a project.

• Added new max_wait parameter to method Project.create_from_dataset. Values larger than the default
can be specified to avoid timeouts when creating a project from Dataset.

2.5. Changelog 669

https://pypi.org/project/contextlib2/
https://pypi.org/project/typing-extensions/

DataRobot Python API Documentation, Release 3.2.2

• Added new method for creating a segmented modeling project from an existing clustering project and model
Project.create_segmented_project_from_clustering_model. Please switch to this function if you are
previously using ModelPackage for segmented modeling purposes.

• Added new method is_unsupervised_clustering_or_multiclass for checking whether the clustering or mul-
ticlass parameters are used, quick and efficient without extra API calls. PredictionExplanations.
is_unsupervised_clustering_or_multiclass

• Retry idempotent requests which result in HTTP 502 and HTTP 504 (in addition to the previous HTTP 413,
HTTP 429 and HTTP 503)

• Added value PREPARED_FOR_DEPLOYMENT to the RECOMMENDED_MODEL_TYPE enum

• Added two new methods to the ImageAugmentationList class: ImageAugmentationList.list,
ImageAugmentationList.update

Bugfixes

• Added format key to Batch Prediction intake and output settings for S3, GCP and Azure

API Changes

• The method PredictionExplanations.is_multiclass now adds an additional API call to check for multi-
class target validity, which adds a small delay.

• AdvancedOptions parameter blend_best_models defaults to false

• AdvancedOptions parameter consider_blenders_in_recommendation defaults to false

• DatetimePartitioning has parameter unsupervised_mode

Deprecation Summary

• Deprecated method Project.create_from_hdfs.

• Deprecated method DatetimePartitioning.generate.

• Deprecated parameter in_use from ImageAugmentationList.create as DataRobot will take care of it au-
tomatically.

• Deprecated property Deployment.capabilities from Deployment.

• ImageAugmentationSample.compute was removed in v3.1. You can get the same information with the
method ImageAugmentationList.compute_samples.

• sample_id parameter removed from ImageAugmentationSample.list. Please use auglist_id instead.

Configuration Changes

Experimental changes

Documentation Changes

• Update the documentation to suggest that setting use_backtest_start_end_format of DatetimePartitioning.
to_specification to True will mirror the same behavior as the Web UI.

• Update the documentation to suggest setting use_start_end_format of Backtest.to_specification to True
will mirror the same behavior as the Web UI.

670 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.6 3.0.3

Bugfixes

• Fixed an issue affecting backwards compatibility in datarobot.models.DatetimeModel, where an unex-
pected keyword from the DataRobot API would break class deserialization.

2.5.7 3.0.2

Bugfixes

• Restored Model.get_leaderboard_ui_permalink , Model.open_model_browser, Project.
get_leaderboard_ui_permalink , and Project.open_leaderboard_browser. These methods were
accidentally removed instead of deprecated.

• Fix for ipykernel < 6.0.0 which does not persist contextvars across cells

Deprecation Summary

• Deprecated method Model.get_leaderboard_ui_permalink . Please use Model.get_uri instead.

• Deprecated method Model.open_model_browser. Please use Model.open_in_browser instead.

• Deprecated method Project.get_leaderboard_ui_permalink . Please use Project.get_uri instead.

• Deprecated method Project.open_leaderboard_browser. Please use Project.open_in_browser in-
stead.

2.5.8 3.0.1

Bugfixes

• Added typing-extensions as a required dependency for the DataRobot Python SDK.

2.5.9 3.0.0

New Features

• Version 3.0 of the Python client does not support Python 3.6 and earlier versions. Version 3.0 currently supports
Python 3.7+.

• The default Autopilot mode for project.start_autopilot has changed to Quick mode.

• For datetime-aware models, you can now calculate and retrieve feature impact for backtests other than zero and
holdout:

– DatetimeModel.get_feature_impact
– DatetimeModel.request_feature_impact
– DatetimeModel.get_or_request_feature_impact

• Added a backtest field to feature impact metadata: Model.get_or_request_feature_impact. This field
is null for non-datetime-aware models and greater than or equal to zero for holdout in datetime-aware models.

2.5. Changelog 671

DataRobot Python API Documentation, Release 3.2.2

• You can use a new method to retrieve the canonical URI for a project, model, deployment, or dataset:

– Project.get_uri
– Model.get_uri
– Deployment.get_uri
– Dataset.get_uri

• You can use a new method to open a class in a browser based on their URI (project, model, deployment, or
dataset):

– Project.open_in_browser
– Model.open_in_browser
– Deployment.open_in_browser
– Dataset.open_in_browser

• Added a new method for opening DataRobot in a browser: datarobot.rest.RESTClientObject.
open_in_browser(). Invoke the method via dr.Client().open_in_browser().

• Altered method Project.create_featurelist to accept five new parameters (please see documentation for
information about usage):

– starting_featurelist

– starting_featurelist_id

– starting_featurelist_name

– features_to_include

– features_to_exclude

• Added a new method to retrieve a feature list by name: Project.get_featurelist_by_name.

• Added a new convenience method to create datasets: Dataset.upload .

• Altered the method Model.request_predictions to accept four new parameters:

– dataset

– file

– file_path

– dataframe

– Note that the method already supports the parameter dataset_id and all data source parameters are mu-
tually exclusive.

• Added a new method to datarobot.models.Dataset, Dataset.get_as_dataframe, which retrieves all the
originally uploaded data in a pandas DataFrame.

• Added a new method to datarobot.models.Dataset, Dataset.share, which allows the sharing of a dataset
with another user.

• Added new convenience methods to datarobot.models.Project for dealing with partition classes. Both
methods should be called before Project.analyze_and_model. - Project.set_partitioning_method
intelligently creates the correct partition class for a regular project, based on input arguments. - Project.
set_datetime_partitioning creates the correct partition class for a time series project.

• Added a new method to datarobot.models.Project Project.get_top_model which returns the highest
scoring model for a metric of your choice.

672 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Use the new method Deployment.predict_batch to pass a file, file path, or DataFrame to datarobot.
models.Deployment to easily make batch predictions and return the results as a DataFrame.

• Added support for passing in a credentials ID or credentials data to Project.create_from_data_source as
an alternative to providing a username and password.

• You can now pass in a max_wait value to AutomatedDocument.generate.

• Added a new method to datarobot.models.Project Project.get_dataset which retrieves the dataset
used during creation of a project.

• Added two new properties to datarobot.models.Project: - catalog_id - catalog_version_id

• Added a new Autopilot method to datarobot.models.Project Project.analyze_and_model which al-
lows you to initiate Autopilot or data analysis against data uploaded to DataRobot.

• Added a new convenience method to datarobot.models.Project Project.set_options which allows you
to save AdvancedOptions values for use in modeling.

• Added a new convenience method to datarobot.models.Project Project.get_options which allows you
to retrieve saved modeling options.

Enhancements

• Refactored the global singleton client connection (datarobot.client.Client()) to use ContextVar instead
of a global variable for better concurrency support.

• Added support for creating monotonic feature lists for time series projects. Set
skip_datetime_partition_column to True to create monotonic feature list. For more information
see datarobot.models.Project.create_modeling_featurelist().

• Added information about vertex to advanced tuning parameters datarobot.models.Model.
get_advanced_tuning_parameters().

• Added the ability to automatically use saved AdvancedOptions set using Project.set_options in Project.
analyze_and_model.

Bugfixes

• Dataset.list no longer throws errors when listing datasets with no owner.

• Fixed an issue with the creation of BatchPredictionJobDefinitions containing a schedule.

• Fixed error handling in datarobot.helpers.partitioning_methods.get_class.

• Fixed issue with portions of the payload not using camelCasing in Project.upload_dataset_from_catalog.

API Changes

• The Python client now outputs a DataRobotProjectDeprecationWarning when you attempt to access certain
resources (projects, models, deployments, etc.) that are deprecated or disabled as a result of the DataRobot
platform’s migration to Python 3.

• The Python client now raises a TypeError when you try to retrieve a labelwise ROC on a binary model or a binary
ROC on a multilabel model.

• The method Dataset.create_from_data_source now raises InvalidUsageError if username and
password are not passed as a pair together.

2.5. Changelog 673

DataRobot Python API Documentation, Release 3.2.2

Deprecation Summary

• Model.get_leaderboard_ui_permalink has been removed. Use Model.get_uri instead.

• Model.open_model_browser has been removed. Use Model.open_in_browser instead.

• Project.get_leaderboard_ui_permalink has been removed. Use Project.get_uri instead.

• Project.open_leaderboard_browser has been removed. Use Project.open_in_browser instead.

• Enum VARIABLE_TYPE_TRANSFORM.CATEGORICAL has been removed

• Instantiation of Blueprint using a dict has been removed. Use Blueprint.from_data instead.

• Specifying an environment to use for testing with CustomModelTest has been removed.

• CustomModelVersion’s required_metadata parameter has been removed. Use
required_metadata_values instead.

• CustomTaskVersion’s required_metadata parameter has been removed. Use
required_metadata_values instead.

• Instantiation of Feature using a dict has been removed. Use Feature.from_data instead.

• Instantiation of Featurelist using a dict has been removed. Use Featurelist.from_data instead.

• Instantiation of Model using a dict, tuple, or the data parameter has been removed. Use Model.from_data
instead.

• Instantiation of Project using a dict has been removed. Use Project.from_data instead.

• Project’s quickrun parameter has been removed. Pass AUTOPILOT_MODE.QUICK as the mode instead.

• Project’s scaleout_max_train_pct and scaleout_max_train_rows parameters have been removed.

• ComplianceDocumentation has been removed. Use AutomatedDocument instead.

• The Deployment method create_from_custom_model_image was removed. Use Deployment.
create_from_custom_model_version instead.

• PredictJob.create has been removed. Use Model.request_predictions instead.

• Model.fetch_resource_data has been removed. Use Model.get instead.

• The class CustomInferenceImage was removed. Use CustomModelVersion with base_environment_id
instead.

• Project.set_target has been deprecated. Use Project.analyze_and_model instead.

Configuration Changes

• Added a context manager client_configuration that can be used to change the connection configuration
temporarily, for use in asynchronous or multithreaded code.

• Upgraded the Pillow library to version 9.2.0. Users installing DataRobot with the “images” extra (pip install
datarobot[images]) should note that this is a required library.

674 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Experimental changes

• Added experimental support for retrieving document thumbnails:

– DocumentThumbnail
– DocumentPageFile

• Added experimental support to retrieve document text extraction samples us-
ing: - DocumentTextExtractionSample - DocumentTextExtractionSamplePage -
DocumentTextExtractionSampleDocument

• Added experimental deployment improvements: - RetrainingPolicy can be used to manage retraining policies
associated with a deployment.

• Added an experimental deployment improvement: - Use RetrainingPolicyRun to manage retraining policies
run for a retraining policy associated with a deployment.

• Added new methods to RetrainingPolicy: - Use RetrainingPolicy.get to get a retraining policy asso-
ciated with a deployment. - Use RetrainingPolicy.delete to delete a retraining policy associated with a
deployment.

2.5.10 2.29.0b0

New Features

• Added support to pass max_ngram_explanations parameter in batch predictions that will trigger the compute of
text prediction explanations.

– BatchPredictionJob.score
• Added support to pass calculation mode to prediction explanations (mode parameter in
PredictionExplanations.create) as well as batch scoring (explanations_mode in BatchPredictionJob.
score) for multiclass models. Supported modes:

– TopPredictionsMode
– ClassListMode

• Added method datarobot.CalendarFile.create_calendar_from_dataset() to the calendar file that al-
lows us to create a calendar from a dataset.

• Added experimental support for n_clusters parameter in Model.train_datetime and DatetimeModel.
retrain that allows to specify number of clusters when creating models in Time Series Clustering project.

• Added new parameter clone to datarobot.CombinedModel.set_segment_champion() that allows to set a
new champion model in a cloned model instead of the original one, leaving latter unmodified.

• Added new property is_active_combined_model to datarobot.CombinedModel that indicates if the selected
combined model is currently the active one in the segmented project.

• Added new datarobot.models.Project.get_active_combined_model() that allows users to get the cur-
rently active combined model in the segmented project.

• Added new parameters read_timeout to method ShapMatrix.get_as_dataframe. Values larger than the default
can be specified to avoid timeouts when requesting large files. ShapMatrix.get_as_dataframe

• Added support for bias mitigation with the following methods - Project.get_bias_mitigated_models
- Project.apply_bias_mitigation - Project.request_bias_mitigation_feature_info

2.5. Changelog 675

DataRobot Python API Documentation, Release 3.2.2

- Project.get_bias_mitigation_feature_info and by adding new bias mit-
igation params - bias_mitigation_feature_name - bias_mitigation_technique - in-
clude_bias_mitigation_feature_as_predictor_variable to the existing method - Project.start and
by adding this enum to supply params to some of the above functionality datarobot.enums.
BiasMitigationTechnique

• Added new property status to datarobot.models.Deployment that represents model deployment status.

• Added new Deployment.activate and Deployment.deactivate that allows deployment activation and de-
activation

• Added new Deployment.delete_monitoring_data to delete deployment monitoring data.

Enhancements

• Added support for specifying custom endpoint URLs for S3 access in batch predictions:

– BatchPredictionJob.score
– BatchPredictionJob.score

See: endpoint_url parameter.

• Added guide on working with binary data

• Added multithreading support to binary data helper functions.

• Binary data helpers image defaults aligned with application’s image preprocessing.

• Added the following accuracy metrics to be retrieved for a deployment - TPR, PPV, F1 and MCC Deployment
monitoring

Bugfixes

• Don’t include holdout start date, end date, or duration in datetime partitioning payload when holdout is disabled.

• Moved ICE Plot capabilities of Feature Effects into experimental support. Removed ICE Plot capabilities from
Feature Fit.

• Handle undefined calendar_name in CalendarFile.create_calendar_from_dataset

• Raise ValueError for submitted calendar names that are not strings

API Changes

• version field is removed from ImportedModel object

Deprecation Summary

• Reason Codes objects deprecated in 2.13 version were removed. Please use Prediction Explanations instead.

676 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Configuration Changes

• The upper version constraint on pandas has been removed.

Documentation Changes

• Fixed a minor typo in the example for Dataset.create_from_data_source.

• Update the documentation to suggest that feature_derivation_window_end of datarobot.
DatetimePartitioningSpecification class should be a negative or zero.

2.5.11 2.28.0

New Features

• Added new parameter upload_read_timeout to BatchPredictionJob.score and BatchPredictionJob.
score_to_file to indicate how many seconds to wait until intake dataset uploads to server. Default value
600s.

• Added the ability to turn off supervised feature reduction for Time Series projects. Option
use_supervised_feature_reduction can be set in AdvancedOptions.

• Allow maximum_memory to be input for custom tasks versions. This will be used for setting the limit to which
a custom task prediction container memory can grow.

• Added method datarobot.models.Project.get_multiseries_names() to the project service which will
return all the distinct entries in the multiseries column

• Added new segmentation_task_id attribute to datarobot.models.Project.set_target() that allows to
start project as Segmented Modeling project.

• Added new property is_segmented to datarobot.models.Project that indicates if project is a regular one or
Segmented Modeling project.

• Added method datarobot.models.Project.restart_segment() to the project service that allows to restart
single segment that hasn’t reached modeling phase.

• Added the ability to interact with Combined Models in Segmented Modeling projects. Available with new class:
datarobot.CombinedModel.

Functionality:
– datarobot.CombinedModel.get()
– datarobot.CombinedModel.get_segments_info()
– datarobot.CombinedModel.get_segments_as_dataframe()
– datarobot.CombinedModel.get_segments_as_csv()
– datarobot.CombinedModel.set_segment_champion()

• Added the ability to create and retrieve segmentation tasks used in Segmented Modeling projects. Available with
new class: datarobot.SegmentationTask .

Functionality:
– datarobot.SegmentationTask.create()
– datarobot.SegmentationTask.list()
– datarobot.SegmentationTask.get()

2.5. Changelog 677

DataRobot Python API Documentation, Release 3.2.2

• Added new class: datarobot.SegmentInfo that allows to get information on all segments of Segmented mod-
eling projects, i.e. segment project ID, model counts, autopilot status.

Functionality:
– datarobot.SegmentInfo.list()

• Added new methods to base APIObject to assist with dictionary and json serialization of child objects.

Functionality:
– APIObject.to_dict

– APIObject.to_json

• Added new methods to ImageAugmentationList for interacting with image augmentation samples.

Functionality:
– ImageAugmentationList.compute_samples

– ImageAugmentationList.retrieve_samples

• Added the ability to set a prediction threshold when creating a deployment from a learning model.

• Added support for governance, owners, predictionEnvironment, and fairnessHealth fields when querying for a
Deployment object.

• Added helper methods for working with files, images and documents. Methods support conversion of file contents
into base64 string representations. Methods for images provide also image resize and transformation support.

Functionality:
– datarobot.helpers.binary_data_utils.get_encoded_file_contents_from_urls.

– datarobot.helpers.binary_data_utils.get_encoded_file_contents_from_paths

– datarobot.helpers.binary_data_utils.get_encoded_image_contents_from_paths

– datarobot.helpers.binary_data_utils.get_encoded_image_contents_from_urls

Enhancements

• Requesting metadata instead of actual data of datarobot.PredictionExplanations to reduce the amount of
data transfer

Bugfixes

• Fix a bug in Job.get_result_when_complete for Prediction Explanations job type to populate all attribute
of of datarobot.PredictionExplanations instead of just one

• Fix a bug in datarobot.models.ShapImpact where row_count was not optional

• Allow blank value for schema and catalog in RelationshipsConfiguration response data

• Fix a bug where credentials were incorrectly formatted in Project.upload_dataset_from_catalog and
Project.upload_dataset_from_data_source

• Rejecting downloads of Batch Prediction data that was not written to the localfile output adapter

• Fix a bug in datarobot.models.BatchPredictionJobDefinition.create() where schedule was not op-
tional for all cases

678 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

API Changes

• User can include ICE plots data in the response when requesting Feature Effects/Feature Fit. Extended methods are

– Model.get_feature_effect,
– Model.get_feature_fit <datarobot.models.Model.get_feature_fit>,

– DatetimeModel.get_feature_effect and

– DatetimeModel.get_feature_fit <datarobot.models.DatetimeModel.
get_feature_fit>.

Deprecation Summary

• attrs library is removed from library dependencies

• ImageAugmentationSample.compute was marked as deprecated and will be removed in v2.30. You can get
the same information with newly introduced method ImageAugmentationList.compute_samples

• ImageAugmentationSample.list using sample_id

• Deprecating scaleout parameters for projects / models. Includes scaleout_modeling_mode,
scaleout_max_train_pct, and scaleout_max_train_rows

Configuration Changes

• pandas upper version constraint is updated to include version 1.3.5.

Documentation Changes

• Fixed “from datarobot.enums” import in Unsupervised Clustering example provided in docs.

2.5.12 2.27.0

New Features

• datarobot.UserBlueprint is now mature with full support of functionality. Users are encouraged to use the
Blueprint Workshop instead of this class directly.

• Added the arguments attribute in datarobot.CustomTaskVersion.

• Added the ability to retrieve detected errors in the potentially multicategorical feature types that prevented the
feature to be identified as multicategorical. Project.download_multicategorical_data_format_errors

• Added the support of listing/updating user roles on one custom task.
– datarobot.CustomTask.get_access_list()
– datarobot.CustomTask.share()

• Added a method datarobot.models.Dataset.create_from_query_generator(). This creates a dataset
in the AI catalog from a datarobot.DataEngineQueryGenerator.

• Added the new functionality of creating a user blueprint with a custom task version id. datarobot.
UserBlueprint.create_from_custom_task_version_id().

2.5. Changelog 679

blueprint-workshop.datarobot.com

DataRobot Python API Documentation, Release 3.2.2

• The DataRobot Python Client is no longer published under the Apache-2.0 software license, but rather under the
terms of the DataRobot Tool and Utility Agreement.

• Added a new class: datarobot.DataEngineQueryGenerator. This class generates a Spark SQL query to
apply time series data prep to a dataset in the AI catalog.

Functionality:
– datarobot.DataEngineQueryGenerator.create()
– datarobot.DataEngineQueryGenerator.get()
– datarobot.DataEngineQueryGenerator.create_dataset()

See the time series data prep documentation for more information.

• Added the ability to upload a prediction dataset into a project from the AI catalog Project.
upload_dataset_from_catalog.

• Added the ability to specify the number of training rows to use in SHAP based Feature Impact computation.
Extended method:

– ShapImpact.create
• Added the ability to retrieve and restore features that have been reduced using the time series feature

generation and reduction functionality. The functionality comes with a new class: datarobot.models.
restore_discarded_features.DiscardedFeaturesInfo.

Functionality:
– datarobot.models.restore_discarded_features.DiscardedFeaturesInfo.retrieve()
– datarobot.models.restore_discarded_features.DiscardedFeaturesInfo.restore()

• Added the ability to control class mapping aggregation in multiclass projects via
ClassMappingAggregationSettings passed as a parameter to Project.set_target

• Added support for unsupervised clustering projects

• Added the ability to compute and retrieve Feature Effects for a Multiclass model us-
ing datarobot.models.Model.request_feature_effects_multiclass(), datarobot.
models.Model.get_feature_effects_multiclass() or datarobot.models.Model.
get_or_request_feature_effects_multiclass() methods. For datetime models use follow-
ing methods datarobot.models.DatetimeModel.request_feature_effects_multiclass(),
datarobot.models.DatetimeModel.get_feature_effects_multiclass() or datarobot.models.
DatetimeModel.get_or_request_feature_effects_multiclass() with backtest_index specified

• Added the ability to get and update challenger model settings for deployment class: datarobot.models.
Deployment

Functionality:
– datarobot.models.Deployment.get_challenger_models_settings()
– datarobot.models.Deployment.update_challenger_models_settings()

• Added the ability to get and update segment analysis settings for deployment class: datarobot.models.
Deployment

Functionality:
– datarobot.models.Deployment.get_segment_analysis_settings()
– datarobot.models.Deployment.update_segment_analysis_settings()

680 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Added the ability to get and update predictions by forecast date settings for deployment class: datarobot.
models.Deployment

Functionality:
– datarobot.models.Deployment.get_predictions_by_forecast_date_settings()
– datarobot.models.Deployment.update_predictions_by_forecast_date_settings()

• Added the ability to specify multiple feature derivation windows when creating a Relationships Configuration
using RelationshipsConfiguration.create

• Added the ability to manipulate a legacy conversion for a custom inference model, using the class:
CustomModelVersionConversion

Functionality:
– CustomModelVersionConversion.run_conversion
– CustomModelVersionConversion.stop_conversion
– CustomModelVersionConversion.get
– CustomModelVersionConversion.get_latest
– CustomModelVersionConversion.list

Enhancements

• Project.get returns the query_generator_id used for time series data prep when applicable.

• Feature Fit & Feature Effects can return datetime instead of numeric for feature_type field for numeric features
that are derived from dates.

• These methods now provide additional field rowCount in SHAP based Feature Impact results.

– ShapImpact.create
– ShapImpact.get

• Improved performance when downloading prediction dataframes for Multilabel projects using:
– Predictions.get_all_as_dataframe
– PredictJob.get_predictions
– Job.get_result

Bugfixes

• fix datarobot.CustomTaskVersion and datarobot.CustomModelVersion to correctly format
required_metadata_values before sending them via API

• Fixed response validation that could cause DataError when using datarobot.models.Dataset for a dataset
with a description that is an empty string.

2.5. Changelog 681

DataRobot Python API Documentation, Release 3.2.2

API Changes

• RelationshipsConfiguration.create will include a new key data_source_id in data_source field when
applicable

Deprecation Summary

• Model.get_all_labelwise_roc_curves has been removed. You can get the same information with multiple
calls of Model.get_labelwise_roc_curves, one per data source.

• Model.get_all_multilabel_lift_charts has been removed. You can get the same information with mul-
tiple calls of Model.get_multilabel_lift_charts, one per data source.

Configuration Changes

Documentation Changes

• This release introduces a new documentation organization. The organization has been modified to better re-
flect the end-to-end modeling workflow. The new “Tutorials” section has 5 major topics that outline the major
components of modeling: Data, Modeling, Predictions, MLOps, and Administration.

• The Getting Started workflow is now hosted at DataRobot’s API Documentation Home.

• Added an example of how to set up optimized datetime partitioning for time series projects.

2.5.13 2.26.0

New Features

• Added the ability to use external baseline predictions for time series project. External dataset can be validated
using datarobot.models.Project.validate_external_time_series_baseline(). Option can be set
in AdvancedOptions to scale datarobot models’ accuracy performance using external dataset’s accuracy per-
formance. See the external baseline predictions documentation for more information.

• Added the ability to generate exponentially weighted moving average features for time series project. Option can
be set in AdvancedOptions and controls the alpha parameter used in exponentially weighted moving average
operation.

• Added the ability to request a specific model be prepared for deployment using Project.
start_prepare_model_for_deployment.

• Added a new class: datarobot.CustomTask . This class is a custom task that you can use as part (or all) of
your blue print for training models. It needs datarobot.CustomTaskVersion before it can properly be used.

Functionality:
– Create, copy, update or delete:

∗ datarobot.CustomTask.create()

∗ datarobot.CustomTask.copy()

∗ datarobot.CustomTask.update()

∗ datarobot.CustomTask.delete()

– list, get and refresh current tasks:

682 Chapter 2. Table of contents

https://docs.datarobot.com/en/docs/api/index.html

DataRobot Python API Documentation, Release 3.2.2

∗ datarobot.CustomTask.get()

∗ datarobot.CustomTask.list()

∗ datarobot.CustomTask.refresh()

– Download the latest datarobot.CustomTaskVersion of the datarobot.CustomTask
∗ datarobot.CustomTask.download_latest_version()

• Added a new class: datarobot.CustomTaskVersion. This class is for management of specific versions of a
custom task.

Functionality:
– Create new custom task versions:

∗ datarobot.CustomTaskVersion.create_clean()

∗ datarobot.CustomTaskVersion.create_from_previous()

– list, get and refresh current available versions:
∗ datarobot.CustomTaskVersion.list()

∗ datarobot.CustomTaskVersion.get()

∗ datarobot.CustomTaskVersion.refresh()

– datarobot.CustomTaskVersion.download() will download a tarball of the files used to create
the custom task

– datarobot.CustomTaskVersion.update() updates the metadata for a custom task.

• Added the ability compute batch predictions for an in-memory DataFrame using BatchPredictionJob.score

• Added the ability to specify feature discovery settings when creating a Relationships Configuration using
RelationshipsConfiguration.create

Enhancements

• Improved performance when downloading prediction dataframes using:
– Predictions.get_all_as_dataframe
– PredictJob.get_predictions
– Job.get_result

• Added new max_wait parameter to methods:
– Dataset.create_from_url
– Dataset.create_from_in_memory_data
– Dataset.create_from_data_source
– Dataset.create_version_from_in_memory_data
– Dataset.create_version_from_url
– Dataset.create_version_from_data_source

2.5. Changelog 683

DataRobot Python API Documentation, Release 3.2.2

Bugfixes

• Model.get will return a DatetimeModel instead of Model whenever the project is datetime partitioned. This
enables the ModelRecommendation.get_model to return a DatetimeModel instead of Model whenever the
project is datetime partitioned.

• Try to read Feature Impact result if existing jobId is None in Model.get_or_request_feature_impact.

• Set upper version constraints for pandas.

• RelationshipsConfiguration.create will return a catalog in data_source field

• Argument required_metadata_keys was not properly being sent in the update and create requests for
datarobot.ExecutionEnvironment.

• Fix issue with datarobot.ExecutionEnvironment create method failing when used against older versions of
the application

• datarobot.CustomTaskVersion was not properly handling required_metadata_values from the API re-
sponse

API Changes

• Updated Project.start to use AUTOPILOT_MODE.QUICK when the autopilot_on param is set to True. This
brings it in line with Project.set_target.

• Updated project.start_autopilot to accept the following new GA parameters that are already in the public
API: consider_blenders_in_recommendation, run_leakage_removed_feature_list

Deprecation Summary

• The required_metadata property of datarobot.CustomModelVersion has been deprecated.
required_metadata_values should be used instead.

• The required_metadata property of datarobot.CustomTaskVersion has been deprecated.
required_metadata_values should be used instead.

Configuration Changes

• Now requires dependency on package scikit-learn rather than sklearn. Note: This dependency is only used in
example code. See this scikit-learn issue for more information.

• Now permits dependency on package attrs to be less than version 21. This fixes compatibility with apache-airflow.

• Allow to setup Authorization: <type> <token> type header for OAuth2 Bearer tokens.

Documentation Changes

• Update the documentation with respect to the permission that controls AI Catalog dataset snapshot behavior.

684 Chapter 2. Table of contents

https://pypi.org/project/scikit-learn/
https://pypi.org/project/scikit-learn/
https://github.com/scikit-learn/scikit-learn/issues/8215
https://pypi.org/project/attrs/

DataRobot Python API Documentation, Release 3.2.2

2.5.14 2.25.0

New Features

• There is a new AnomalyAssessmentRecord object that implements public API routes to work with anomaly
assessment insight. This also adds explanations and predictions preview classes. The insight is available for
anomaly detection models in time series unsupervised projects which also support calculation of Shapley values.

– AnomalyAssessmentPredictionsPreview
– AnomalyAssessmentExplanations

Functionality:

– Initialize an anomaly assessment insight for the specified subset.

∗ DatetimeModel.initialize_anomaly_assessment

– Get anomaly assessment records, shap explanations, predictions preview:

∗ DatetimeModel.get_anomaly_assessment_records list available records

∗ AnomalyAssessmentRecord.get_predictions_preview get predictions preview for the record

∗ AnomalyAssessmentRecord.get_latest_explanations get latest predictions along with shap
explanations for the most anomalous records.

∗ AnomalyAssessmentRecord.get_explanations get predictions along with shap explanations for
the most anomalous records for the specified range.

– Delete anomaly assessment record:

∗ AnomalyAssessmentRecord.delete delete record

• Added an ability to calculate and retrieve Datetime trend plots for DatetimeModel. This includes Accuracy
over Time, Forecast vs Actual, and Anomaly over Time.

Plots can be calculated using a common method:

– DatetimeModel.compute_datetime_trend_plots
Metadata for plots can be retrieved using the following methods:

– DatetimeModel.get_accuracy_over_time_plots_metadata
– DatetimeModel.get_forecast_vs_actual_plots_metadata
– DatetimeModel.get_anomaly_over_time_plots_metadata

Plots can be retrieved using the following methods:

– DatetimeModel.get_accuracy_over_time_plot
– DatetimeModel.get_forecast_vs_actual_plot
– DatetimeModel.get_anomaly_over_time_plot

Preview plots can be retrieved using the following methods:

– DatetimeModel.get_accuracy_over_time_plot_preview
– DatetimeModel.get_forecast_vs_actual_plot_preview
– DatetimeModel.get_anomaly_over_time_plot_preview

• Support for Batch Prediction Job Definitions has now been added through the following class:
BatchPredictionJobDefinition. You can create, update, list and delete definitions using the following
methods:

2.5. Changelog 685

DataRobot Python API Documentation, Release 3.2.2

– BatchPredictionJobDefinition.list
– BatchPredictionJobDefinition.create
– BatchPredictionJobDefinition.update
– BatchPredictionJobDefinition.delete

Enhancements

• Added a new helper function to create Dataset Definition, Relationship and Secondary Dataset used by Feature
Discovery Project. They are accessible via DatasetDefinition Relationship SecondaryDataset

• Added new helper function to projects to retrieve the recommended model. Project.recommended_model

• Added method to download feature discovery recipe SQLs (limited beta feature). Project.
download_feature_discovery_recipe_sqls.

• Added docker_context_size and docker_image_size to datarobot.ExecutionEnvironmentVersion

Bugfixes

• Remove the deprecation warnings when using with latest versions of urllib3.

• FeatureAssociationMatrix.get is now using correct query param name when featurelist_id is specified.

• Handle scalar values in shapBaseValue while converting a predictions response to a data frame.

• Ensure that if a configured endpoint ends in a trailing slash, the resulting full URL does not end up with double
slashes in the path.

• Model.request_frozen_datetime_model is now implementing correct validation of input parameter
training_start_date.

API Changes

• Arguments secondary_datasets now accept SecondaryDataset to create secondary dataset configurations
- SecondaryDatasetConfigurations.create

• Arguments dataset_definitions and relationships now accept DatasetDefinition Relationship
to create and replace relationships configuration - RelationshipsConfiguration.create creates a new re-
lationships configuration between datasets - RelationshipsConfiguration.retrieve retrieve the requested
relationships configuration

• Argument required_metadata_keys has been added to datarobot.ExecutionEnvironment. This
should be used to define a list of RequiredMetadataKey. datarobot.CustomModelVersion that use
a base environment with required_metadata_keys must define values for these fields in their respective
required_metadata

• Argument required_metadata has been added to datarobot.CustomModelVersion. This should be set
with relevant values defined by the base environment’s required_metadata_keys

686 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.15 2.24.0

New Features

• Partial history predictions can be made with time series time series multiseries models us-
ing the allow_partial_history_time_series_predictions attribute of the datarobot.
DatetimePartitioningSpecification. See the Time Series documentation for more info.

• Multicategorical Histograms are now retrievable. They are accessible via MulticategoricalHistogram or
Feature.get_multicategorical_histogram .

• Add methods to retrieve per-class lift chart data for multilabel models: Model.get_multilabel_lift_charts
and Model.get_all_multilabel_lift_charts.

• Add methods to retrieve labelwise ROC curves for multilabel models: Model.get_labelwise_roc_curves
and Model.get_all_labelwise_roc_curves.

• Multicategorical Pairwise Statistics are now retrievable. They are accessible via PairwiseCorrelations,
PairwiseJointProbabilities and PairwiseConditionalProbabilities or Feature.
get_pairwise_correlations, Feature.get_pairwise_joint_probabilities and Feature.
get_pairwise_conditional_probabilities.

• Add methods to retrieve prediction results of a deployment:
– Deployment.get_prediction_results
– Deployment.download_prediction_results

• Add method to download scoring code of a deployment using Deployment.download_scoring_code.

• Added Automated Documentation: now you can automatically generate documentation about various entities
within the platform, such as specific models or projects. Check out the Automated Documentation overview and
also refer to the API Reference for more details.

• Create a new Dataset version for a given dataset by uploading from a file, URL or in-memory datasource.

– Dataset.create_version_from_file
– Dataset.create_version_from_in_memory_data
– Dataset.create_version_from_url
– Dataset.create_version_from_data_source

Enhancements

• Added a new status called FAILED to from BatchPredictionJob as this is a new status coming to Batch
Predictions in an upcoming version of DataRobot.

• Added base_environment_version_id to datarobot.CustomModelVersion.

• Support for downloading feature discovery training or prediction dataset using Project.
download_feature_discovery_dataset.

• Added datarobot.models.FeatureAssociationMatrix, datarobot.models.
FeatureAssociationMatrixDetails and datarobot.models.FeatureAssociationFeaturelists
that can be used to retrieve feature associations data as an alternative to Project.get_associations,
Project.get_association_matrix_details and Project.get_association_featurelists meth-
ods.

2.5. Changelog 687

DataRobot Python API Documentation, Release 3.2.2

Bugfixes

• Fixed response validation that could cause DataError when using TrainingPredictions.list and
TrainingPredictions.get_all_as_dataframe methods if there are training predictions computed with
explanation_algorithm.

API Changes

• Remove desired_memory param from the following classes: datarobot.CustomInferenceModel,
datarobot.CustomModelVersion, datarobot.CustomModelTest

• Remove desired_memory param from the following methods: CustomInferenceModel.
create, CustomModelVersion.create_clean, CustomModelVersion.create_from_previous,
CustomModelTest.create and CustomModelTest.create

Deprecation Summary

• class ComplianceDocumentation will be deprecated in v2.24 and will be removed entirely in v2.27. Use
AutomatedDocument instead. To start off, see the Automated Documentation overview for details.

Configuration Changes

Documentation Changes

• Remove reference to S3 for Project.upload_dataset since it is not supported by the server

2.5.16 2.23.0

New Features

• Calendars for time series projects can now be automatically generated by providing a country code to the method
CalendarFile.create_calendar_from_country_code. A list of allowed country codes can be retrieved
using CalendarFile.get_allowed_country_codes For more information, see the calendar documentation.

• Added calculate_all_series` param to DatetimeModel.compute_series_accuracy. This option allows
users to compute series accuracy for all available series at once, while by default it is computed for first 1000
series only.

• Added ability to specify sampling method when setting target of OTV project. Option can be set in
AdvancedOptions and changes a way training data is defined in autopilot steps.

• Add support for custom inference model k8s resources management. This new feature enables users to
control k8s resources allocation for their executed model in the k8s cluster. It involves in adding the fol-
lowing new parameters: network_egress_policy, desired_memory, maximum_memory, replicas to the
following classes: datarobot.CustomInferenceModel, datarobot.CustomModelVersion, datarobot.
CustomModelTest

• Add support for multiclass custom inference and training models. This enables users to create classification
custom models with more than two class labels. The datarobot.CustomInferenceModel class can now use
datarobot.TARGET_TYPE.MULTICLASS for their target_type parameter. Class labels for inference models
can be set/updated using either a file or as a list of labels.

• Support for Listing all the secondary dataset configuration for a given project:

688 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

– SecondaryDatasetConfigurations.list
• Add support for unstructured custom inference models. The datarobot.CustomInferenceModel class can

now use datarobot.TARGET_TYPE.UNSTRUCTURED for its target_type parameter. target_name parameter
is optional for UNSTRUCTURED target type.

• All per-class lift chart data is now available for multiclass models using Model.get_multiclass_lift_chart.

• AUTOPILOT_MODE.COMPREHENSIVE, a new mode, has been added to Project.set_target.

• Add support for anomaly detection custom inference models. The datarobot.CustomInferenceModel class
can now use datarobot.TARGET_TYPE.ANOMALY for its target_type parameter. target_name parameter is
optional for ANOMALY target type.

• Support for Updating and retrieving the secondary dataset configuration for a Feature discovery deployment:

– Deployment.update_secondary_dataset_config
– Deployment.get_secondary_dataset_config

• Add support for starting and retrieving Feature Impact information for datarobot.CustomModelVersion

• Search for interaction features and Supervised Feature reduction for feature discovery project can now be specified
in AdvancedOptions.

• Feature discovery projects can now be created using the Project.start method by providing
relationships_configuration_id.

• Actions applied to input data during automated feature discovery can now be retrieved using FeatureLineage.
get Corresponding feature lineage id is available as a new datarobot.models.Feature field fea-
ture_lineage_id.

• Lift charts and ROC curves are now calculated for backtests 2+ in time series and OTV models. The data can be
retrieved for individual backtests using Model.get_lift_chart and Model.get_roc_curve.

• The following methods now accept a new argument called credential_data, the credentials to authenticate with the database, to use instead of user/password or credential ID:

– Dataset.create_from_data_source
– Dataset.create_project
– Project.create_from_dataset

• Add support for DataRobot Connectors, datarobot.Connector provides a simple implementation to interface
with connectors.

Enhancements

• Running Autopilot on Leakage Removed feature list can now be specified in AdvancedOptions. By default,
Autopilot will always run on Informative Features - Leakage Removed feature list if it exists. If the parameter
run_leakage_removed_feature_list is set to False, then Autopilot will run on Informative Features or available
custom feature list.

• Method Project.upload_dataset and Project.upload_dataset_from_data_source support new op-
tional parameter secondary_datasets_config_id for Feature discovery project.

2.5. Changelog 689

DataRobot Python API Documentation, Release 3.2.2

Bugfixes

• added disable_holdout param in datarobot.DatetimePartitioning

• Using Credential.create_gcp produced an incompatible credential

• SampleImage.list now supports Regression & Multilabel projects

• Using BatchPredictionJob.score could in some circumstances result in a crash from trying to abort the job
if it fails to start

• Using BatchPredictionJob.score or BatchPredictionJob.score would produce incomplete results in
case a job was aborted while downloading. This will now raise an exception.

API Changes

• New sampling_method param in Model.train_datetime, Project.train_datetime, Model.
train_datetime and Model.train_datetime.

• New target_type param in datarobot.CustomInferenceModel

• New arguments secondary_datasets, name, creator_full_name, creator_user_id, created,
featurelist_id, credentials_ids, project_version and is_default in datarobot.models.
SecondaryDatasetConfigurations

• New arguments secondary_datasets, name, featurelist_id to SecondaryDatasetConfigurations.
create

• Class FeatureEngineeringGraph has been removed. Use datarobot.models.
RelationshipsConfiguration instead.

• Param feature_engineering_graphs removed from Project.set_target.

• Param config removed from SecondaryDatasetConfigurations.create.

Deprecation Summary

• supports_binary_classification and supports_regression are deprecated for datarobot.
CustomInferenceModel and will be removed in v2.24

• Argument config and supports_regression are deprecated for datarobot.models.
SecondaryDatasetConfigurations and will be removed in v2.24

• CustomInferenceImage has been deprecated and will be removed in v2.24. datarobot.
CustomModelVersion with base_environment_id should be used in their place.

• environment_id and environment_version_id are deprecated for CustomModelTest.create

Documentation Changes

• feature_lineage_id is added as a new parameter in the response for retrieval of a datarobot.models.Feature
created by automated feature discovery or time series feature derivation. This id is required to retrieve a
datarobot.models.FeatureLineage instance.

690 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.17 2.22.1

New Features

• Batch Prediction jobs now support dataset as intake settings for BatchPredictionJob.score.

• Create a Dataset from DataSource:

– Dataset.create_from_data_source
– DataSource.create_dataset

• Added support for Custom Model Dependency Management. Please see custom model documentation. New
features added:

– Added new argument base_environment_id to methods CustomModelVersion.create_clean and
CustomModelVersion.create_from_previous

– New fields base_environment_id and dependencies to class datarobot.CustomModelVersion

– New class datarobot.CustomModelVersionDependencyBuild to prepare custom model versions with
dependencies.

– Made argument environment_id of CustomModelTest.create optional to enable using custom model
versions with dependencies

– New field image_type added to class datarobot.CustomModelTest

– Deployment.create_from_custom_model_version can be used to create a deployment from a custom
model version.

• Added new parameters for starting and re-running Autopilot with customizable settings within Project.
start_autopilot.

• Added a new method to trigger Feature Impact calculation for a Custom Inference Image:
CustomInferenceImage.calculate_feature_impact

• Added new method to retrieve number of iterations trained for early stopping models. Currently supports only
tree-based models. Model.get_num_iterations_trained .

Enhancements

• A description can now be added or updated for a project. Project.set_project_description.

• Added new parameters read_timeout and max_wait to method Dataset.create_from_file. Values larger
than the default can be specified for both to avoid timeouts when uploading large files.

• Added new parameter metric to datarobot.models.deployment.TargetDrift, datarobot.models.
deployment.FeatureDrift, Deployment.get_target_drift and Deployment.get_feature_drift.

• Added new parameter timeout to BatchPredictionJob.download to indicate how many seconds to wait for
the download to start (in case the job doesn’t start processing immediately). Set to -1 to disable. This parameter
can also be sent as download_timeout to BatchPredictionJob.score and BatchPredictionJob.score. If
the timeout occurs, the pending job will be aborted.

• Added new parameter read_timeout to BatchPredictionJob.download to indicate how many seconds
to wait between each downloaded chunk. This parameter can also be sent as download_read_timeout to
BatchPredictionJob.score and BatchPredictionJob.score.

• Added parameter catalog to BatchPredictionJob to both intake and output adapters for type jdbc.

2.5. Changelog 691

DataRobot Python API Documentation, Release 3.2.2

• Consider blenders in recommendation can now be specified in AdvancedOptions. Blenders will be included
when autopilot chooses a model to prepare and recommend for deployment.

• Added optional parameter max_wait to Deployment.replace_model to indicate the maximum time to wait
for model replacement job to complete before erroring.

Bugfixes

• Handle null values in predictionExplanationMetadata["shapRemainingTotal"] while converting a
predictions response to a data frame.

• Handle null values in customModel["latestVersion"]

• Removed an extra column status from BatchPredictionJob as it caused issues with never version of Trafaret
validation.

• Make predicted_vs_actual optional in Feature Effects data because a feature may have insufficient qualified
samples.

• Make jdbc_url optional in Data Store data because some data stores will not have it.

• The method Project.get_datetime_models now correctly returns all DatetimeModel objects for the
project, instead of just the first 100.

• Fixed a documentation error related to snake_case vs camelCase in the JDBC settings payload.

• Make trafaret validator for datasets use a syntax that works properly with a wider range of trafaret versions.

• Handle extra keys in CustomModelTests and CustomModelVersions

• ImageEmbedding and ImageActivationMap now supports regression projects.

API Changes

• The default value for the mode param in Project.set_target has been changed from AUTOPILOT_MODE.
FULL_AUTO to AUTOPILOT_MODE.QUICK

Deprecation Summary

Configuration Changes

Documentation Changes

• Added links to classes with duration parameters such as validation_duration and holdout_duration to provide
duration string examples to users.

• The models documentation has been revised to include section on how to train a new model and how to run
cross-validation or backtesting for a model.

692 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.18 2.21.0

New Features

• Added new arguments explanation_algorithm and max_explanations to method Model.
request_training_predictions. New fields explanation_algorithm, max_explanations and
shap_warnings have been added to class TrainingPredictions. New fields prediction_explanations
and shap_metadata have been added to class TrainingPredictionsIterator that is returned by method
TrainingPredictions.iterate_rows.

• Added new arguments explanation_algorithm and max_explanations to method Model.
request_predictions. New fields explanation_algorithm, max_explanations and shap_warnings
have been added to class Predictions. Method Predictions.get_all_as_dataframe has new argument
serializer that specifies the retrieval and results validation method (json or csv) for the predictions.

• Added possibility to compute ShapImpact.create and request ShapImpact.get SHAP impact scores for
features in a model.

• Added support for accessing Visual AI images and insights. See the DataRobot Python Package documentation,
Visual AI Projects, section for details.

• User can specify custom row count when requesting Feature Effects. Extended methods are Model.
request_feature_effect and Model.get_or_request_feature_effect.

• Users can request SHAP based predictions explanations for a models that support SHAP scores using
ShapMatrix.create.

• Added two new methods to Dataset to lazily retrieve paginated responses.

– Dataset.iterate returns an iterator of the datasets that a user can view.

– Dataset.iterate_all_features returns an iterator of the features of a dataset.

• It’s possible to create an Interaction feature by combining two categorical features together using Project.
create_interaction_feature. Operation result represented by models.InteractionFeature.. Specific
information about an interaction feature may be retrieved by its name using models.InteractionFeature.
get

• Added the DatasetFeaturelist class to support featurelists on datasets in the AI Catalog. DatasetFeaturelists
can be updated or deleted. Two new methods were also added to Dataset to interact with DatasetFeaturelists.
These are Dataset.get_featurelists and Dataset.create_featurelist which list existing featurelists
and create new featurelists on a dataset, respectively.

• Added model_splits to DatetimePartitioningSpecification and to DatetimePartitioning. This
will allow users to control the jobs per model used when building models. A higher number of model_splits
will result in less downsampling, allowing the use of more post-processed data.

• Added support for unsupervised projects.

• Added support for external test set. Please see testset documentation

• A new workflow is available for assessing models on external test sets in time series unsupervised projects. More
information can be found in the documentation.

– Project.upload_dataset and Model.request_predictions now accept actual_value_column -
name of the actual value column, can be passed only with date range.

– PredictionDataset objects now contain the following new fields:

∗ actual_value_column: Actual value column which was selected for this dataset.

∗ detected_actual_value_column: A list of detected actual value column info.

2.5. Changelog 693

DataRobot Python API Documentation, Release 3.2.2

– New warning is added to data_quality_warnings of datarobot.models.PredictionDataset:
single_class_actual_value_column.

– Scores and insights on external test sets can be retrieved using ExternalScores, ExternalLiftChart,
ExternalRocCurve.

• Users can create payoff matrices for generating profit curves for binary classification projects using
PayoffMatrix.create.

• Deployment Improvements:

– datarobot.models.deployment.TargetDrift can be used to retrieve target drift information.

– datarobot.models.deployment.FeatureDrift can be used to retrieve feature drift information.

– Deployment.submit_actuals will submit actuals in batches if the total number of actuals exceeds the
limit of one single request.

– Deployment.create_from_custom_model_image can be used to create a deployment from a custom
model image.

– Deployments now support predictions data collection that enables prediction requests and results to be
saved in Predictions Data Storage. See Deployment.get_predictions_data_collection_settings
and Deployment.update_predictions_data_collection_settings for usage.

• New arguments send_notification and include_feature_discovery_entities are added to Project.
share.

• Now it is possible to specify the number of training rows to use in feature impact computation on supported
project types (that is everything except unsupervised, multi-class, time-series). This does not affect SHAP based
feature impact. Extended methods:

– Model.request_feature_impact
– Model.get_or_request_feature_impact

• A new class FeatureImpactJob is added to retrieve Feature Impact records with metadata. The regular Job
still works as before.

• Added support for custom models. Please see custom model documentation. Classes added:

– datarobot.ExecutionEnvironment and datarobot.ExecutionEnvironmentVersion to create and
manage custom model executions environments

– datarobot.CustomInferenceModel and datarobot.CustomModelVersion to create and manage
custom inference models

– datarobot.CustomModelTest to perform testing of custom models

• Batch Prediction jobs now support forecast and historical Time Series predictions using the new argument
timeseries_settings for BatchPredictionJob.score.

• Batch Prediction jobs now support scoring to Azure and Google Cloud Storage with methods
BatchPredictionJob.score_azure and BatchPredictionJob.score_gcp.

• Now it’s possible to create Relationships Configurations to introduce secondary datasets to projects. A configuration specifies additional datasets to be included to a project and how these datasets are related to each other, and the primary dataset. When a relationships configuration is specified for a project, Feature Discovery will create features automatically from these datasets.

– RelationshipsConfiguration.create creates a new relationships configuration between datasets

– RelationshipsConfiguration.retrieve retrieve the requested relationships configuration

– RelationshipsConfiguration.replace replace the relationships configuration details with new
one

– RelationshipsConfiguration.delete delete the relationships configuration

694 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Enhancements

• Made creating projects from a dataset easier through the new Dataset.create_project.

• These methods now provide additional metadata fields in Feature Impact results if called with
with_metadata=True. Fields added: rowCount, shapBased, ranRedundancyDetection, count.

– Model.get_feature_impact
– Model.request_feature_impact
– Model.get_or_request_feature_impact

• Secondary dataset configuration retrieve and deletion is easier now though new
SecondaryDatasetConfigurations.delete soft deletes a Secondary dataset configuration.
SecondaryDatasetConfigurations.get retrieve a Secondary dataset configuration.

• Retrieve relationships configuration which is applied on the given feature discovery project using Project.
get_relationships_configuration.

Bugfixes

• An issue with input validation of the Batch Prediction module

• parent_model_id was not visible for all frozen models

• Batch Prediction jobs that used other output types than local_file failed when using .wait_for_completion()

• A race condition in the Batch Prediction file scoring logic

API Changes

• Three new fields were added to the Dataset object. This reflects the updated fields in the public API routes at
api/v2/datasets/. The added fields are:

– processing_state: Current ingestion process state of the dataset

– row_count: The number of rows in the dataset.

– size: The size of the dataset as a CSV in bytes.

Deprecation Summary

• datarobot.enums.VARIABLE_TYPE_TRANSFORM.CATEGORICAL for is deprecated for the following and will be removed in v2.22.

– meth:Project.batch_features_type_transform

– meth:Project.create_type_transform_feature

2.5. Changelog 695

DataRobot Python API Documentation, Release 3.2.2

2.5.19 2.20.0

New Features

• There is a new Dataset object that implements some of the public API routes at api/v2/datasets/. This also adds
two new feature classes and a details class.

– DatasetFeature
– DatasetFeatureHistogram
– DatasetDetails

Functionality:

– Create a Dataset by uploading from a file, URL or in-memory datasource.

∗ Dataset.create_from_file

∗ Dataset.create_from_in_memory_data

∗ Dataset.create_from_url

– Get Datasets or elements of Dataset with:

∗ Dataset.list lists available Datasets

∗ Dataset.get gets a specified Dataset

∗ Dataset.update updates the Dataset with the latest server information.

∗ Dataset.get_details gets the DatasetDetails of the Dataset.

∗ Dataset.get_all_features gets a list of the Dataset’s Features.

∗ Dataset.get_file downloads the Dataset as a csv file.

∗ Dataset.get_projects gets a list of Projects that use the Dataset.

– Modify, delete or un-delete a Dataset:

∗ Dataset.modify Changes the name and categories of the Dataset

∗ Dataset.delete soft deletes a Dataset.

∗ Dataset.un_delete un-deletes the Dataset. You cannot retrieve the IDs of deleted Datasets, so if
you want to un-delete a Dataset, you need to store its ID before deletion.

– You can also create a Project using a Dataset with:

∗ Project.create_from_dataset

• It is possible to create an alternative configuration for the secondary dataset which can be used during the pre-
diction

– SecondaryDatasetConfigurations.create allow to create secondary dataset configuration

• You can now filter the deployments returned by the Deployment.list command. You can do this by passing
an instance of the DeploymentListFilters class to the filters keyword argument. The currently supported
filters are:

– role

– service_health

– model_health

– accuracy_health

696 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

– execution_environment_type

– materiality

• A new workflow is available for making predictions in time series projects. To that end, PredictionDataset
objects now contain the following new fields:

– forecast_point_range: The start and end date of the range of dates available for use as the forecast
point, detected based on the uploaded prediction dataset

– data_start_date: A datestring representing the minimum primary date of the prediction dataset

– data_end_date: A datestring representing the maximum primary date of the prediction dataset

– max_forecast_date: A datestring representing the maximum forecast date of this prediction dataset

Additionally, users no longer need to specify a forecast_point or predictions_start_date and
predictions_end_date when uploading datasets for predictions in time series projects. More information
can be found in the time series predictions documentation.

• Per-class lift chart data is now available for multiclass models using Model.get_multiclass_lift_chart.

• Unsupervised projects can now be created using the Project.start and Project.set_target methods by
providing unsupervised_mode=True, provided that the user has access to unsupervised machine learning func-
tionality. Contact support for more information.

• A new boolean attribute unsupervised_mode was added to datarobot.
DatetimePartitioningSpecification. When it is set to True, datetime partitioning for unsupervised time
series projects will be constructed for nowcasting: forecast_window_start=forecast_window_end=0.

• Users can now configure the start and end of the training partition as well as the end of the validation partition for
backtests in a datetime-partitioned project. More information and example usage can be found in the backtesting
documentation.

Enhancements

• Updated the user agent header to show which python version.

• Model.get_frozen_child_models can be used to retrieve models that are frozen from a given model

• Added datarobot.enums.TS_BLENDER_METHOD to make it clearer which blender methods are allowed for use
in time series projects.

Bugfixes

• An issue where uploaded CSV’s would loose quotes during serialization causing issues when columns containing
line terminators where loaded in a dataframe, has been fixed

• Project.get_association_featurelists is now using the correct endpoint name, but the old one will
continue to work

• Python API PredictionServer supports now on-premise format of API response.

2.5. Changelog 697

DataRobot Python API Documentation, Release 3.2.2

API Changes

Deprecation Summary

Configuration Changes

Documentation Changes

2.5.20 2.19.0

New Features

• Projects can be cloned using Project.clone_project

• Calendars used in time series projects now support having series-specific events, for instance if a holiday only
affects some stores. This can be controlled by using new argument of the CalendarFile.create method. If
multiseries id columns are not provided, calendar is considered to be single series and all events are applied to
all series.

• We have expanded prediction intervals availability to the following use-cases:

– Time series model deployments now support prediction intervals. See
Deployment.get_prediction_intervals_settings and Deployment.
update_prediction_intervals_settings for usage.

– Prediction intervals are now supported for model exports for time series. To that end, a new optional
parameter prediction_intervals_size has been added to Model.request_transferable_export.

More details on prediction intervals can be found in the prediction intervals documentation.

• Allowed pairwise interaction groups can now be specified in AdvancedOptions. They will be used in GAM
models during training.

• New deployments features:

– Update the label and description of a deployment using Deployment.update.

– Association ID setting can be retrieved and updated.

– Regression deployments now support prediction warnings.

• For multiclass models now it’s possible to get feature impact for each individual target class using Model.
get_multiclass_feature_impact

• Added support for new Batch Prediction API .

• It is now possible to create and retrieve basic, oauth and s3 credentials with Credential.

• It’s now possible to get feature association statuses for featurelists using Project.
get_association_featurelists

• You can also pass a specific featurelist_id into Project.get_associations

698 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Enhancements

• Added documentation to Project.get_metrics to detail the new ascending field that indicates how a metric
should be sorted.

• Retraining of a model is processed asynchronously and returns a ModelJob immediately.

• Blender models can be retrained on a different set of data or a different feature list.

• Word cloud ngrams now has variable field representing the source of the ngram.

• Method WordCloud.ngrams_per_class can be used to split ngrams for better usability in multiclass projects.

• Method Project.set_target support new optional parameters featureEngineeringGraphs and
credentials.

• Method Project.upload_dataset and Project.upload_dataset_from_data_source support new op-
tional parameter credentials.

• Series accuracy retrieval methods (DatetimeModel.get_series_accuracy_as_dataframe and
DatetimeModel.download_series_accuracy_as_csv) for multiseries time series projects now sup-
port additional parameters for specifying what data to retrieve, including:

– metric: Which metric to retrieve scores for

– multiseries_value: Only returns series with a matching multiseries ID

– order_by: An attribute by which to sort the results

Bugfixes

• An issue when using Feature.get and ModelingFeature.get to retrieve summarized categorical feature has
been fixed.

API Changes

• The datarobot package is now no longer a namespace package.

• datarobot.enums.BLENDER_METHOD.FORECAST_DISTANCE is removed (deprecated in 2.18.0).

Documentation Changes

• Updated Residuals charts documentation to reflect that the data rows include row numbers from the source dataset
for projects created in DataRobot 5.3 and newer.

2.5.21 2.18.0

New Features

• Residuals charts can now be retrieved for non-time-aware regression models.

• Deployment monitoring can now be used to retrieve service stats, service health, accuracy info, permissions, and
feature lists for deployments.

2.5. Changelog 699

https://packaging.python.org/guides/packaging-namespace-packages/

DataRobot Python API Documentation, Release 3.2.2

• Time series projects now support the Average by Forecast Distance blender, configured with more than
one Forecast Distance. The blender blends the selected models, selecting the best three models based on
the backtesting score for each Forecast Distance and averaging their predictions. The new blender method
FORECAST_DISTANCE_AVG has been added to datarobot.enums.BLENDER_METHOD.

• Deployment.submit_actuals can now be used to submit data about actual results from a deployed model,
which can be used to calculate accuracy metrics.

Enhancements

• Monotonic constraints are now supported for OTV projects. To that end, the parameters
monotonic_increasing_featurelist_id and monotonic_decreasing_featurelist_id can be
specified in calls to Model.train_datetime or Project.train_datetime.

• When retrieving information about features, information about summarized categorical variables is
now available in a new keySummary.

• For Word Clouds in multiclass projects, values of the target class for corresponding word or ngram can now be
passed using the new class parameter.

• Listing deployments using Deployment.list now support sorting and searching the results using the new
order_by and search parameters.

• You can now get the model associated with a model job by getting the model variable on the model job object.

• The Blueprint class can now retrieve the recommended_featurelist_id, which indicates which feature list
is recommended for this blueprint. If the field is not present, then there is no recommended feature list for this
blueprint.

• The Model class now can be used to retrieve the model_number.

• The method Model.get_supported_capabilities now has an extra field supportsCodeGeneration to
explain whether the model supports code generation.

• Calls to Project.start and Project.upload_dataset now support uploading data via S3 URI and path-
lib.Path objects.

• Errors upon connecting to DataRobot are now clearer when an incorrect API Token is used.

• The datarobot package is now a namespace package.

Deprecation Summary

• datarobot.enums.BLENDER_METHOD.FORECAST_DISTANCE is deprecated and will be removed in 2.19. Use
FORECAST_DISTANCE_ENET instead.

Documentation Changes

• Various typo and wording issues have been addressed.

• A new notebook showing regression-specific features is now been added to the examples.

• Documentation for Access lists has been added.

700 Chapter 2. Table of contents

https://packaging.python.org/guides/packaging-namespace-packages/

DataRobot Python API Documentation, Release 3.2.2

2.5.22 2.17.0

New Features

• Deployments can now be managed via the API by using the new Deployment class.

• Users can now list available prediction servers using PredictionServer.list.

• When specifying datetime partitioning settings , time series projects can now mark individ-
ual features as excluded from feature derivation using the FeatureSettings.do_not_derive attribute.
Any features not specified will be assigned according to the DatetimePartitioningSpecification.
default_to_do_not_derive value.

• Users can now submit multiple feature type transformations in a single batch request using Project.
batch_features_type_transform .

• Advanced Tuning for non-Eureqa models (beta feature) is now enabled by default for all users. As of v2.17, all
models are now supported other than blenders, open source, prime, scaleout, baseline and user-created.

• Information on feature clustering and the association strength between pairs of numeric or categorical features
is now available. Project.get_associations can be used to retrieve pairwise feature association statistics
and Project.get_association_matrix_details can be used to get a sample of the actual values used to
measure association strength.

Enhancements

• number_of_do_not_derive_features has been added to the datarobot.DatetimePartitioning class to spec-
ify the number of features that are marked as excluded from derivation.

• Users with PyYAML>=5.1 will no longer receive a warning when using the datarobot package

• It is now possible to use files with unicode names for creating projects and prediction jobs.

• Users can now embed DataRobot-generated content in a ComplianceDocTemplate using keyword tags. See
here for more details.

• The field calendar_name has been added to datarobot.DatetimePartitioning to display the name of the
calendar used for a project.

• Prediction intervals are now supported for start-end retrained models in a time series project.

• Previously, all backtests had to be run before prediction intervals for a time series project could be requested with
predictions. Now, backtests will be computed automatically if needed when prediction intervals are requested.

Bugfixes

• An issue affecting time series project creation for irregularly spaced dates has been fixed.

• ComplianceDocTemplate now supports empty text blocks in user sections.

• An issue when using Predictions.get to retrieve predictions metadata has been fixed.

2.5. Changelog 701

DataRobot Python API Documentation, Release 3.2.2

Documentation Changes

• An overview on working with class ComplianceDocumentation and ComplianceDocTemplate has been cre-
ated. See here for more details.

2.5.23 2.16.0

New Features

• Three new methods for Series Accuracy have been added to the DatetimeModel class.

– Start a request to calculate Series Accuracy with DatetimeModel.compute_series_accuracy

– Once computed, Series Accuracy can be retrieved as a pandas.DataFrame using DatetimeModel.
get_series_accuracy_as_dataframe

– Or saved as a CSV using DatetimeModel.download_series_accuracy_as_csv

• Users can now access prediction intervals data for each prediction with a DatetimeModel. For each model,
prediction intervals estimate the range of values DataRobot expects actual values of the target to fall within.
They are similar to a confidence interval of a prediction, but are based on the residual errors measured during
the backtesting for the selected model.

Enhancements

• Information on the effective feature derivation window is now available for time series projects to specify the
full span of historical data required at prediction time. It may be longer than the feature derivation window of
the project depending on the differencing settings used.

Additionally, more of the project partitioning settings are also available on the DatetimeModel class. The new
attributes are:

– effective_feature_derivation_window_start

– effective_feature_derivation_window_end

– forecast_window_start

– forecast_window_end

– windows_basis_unit

• Prediction metadata is now included in the return of Predictions.get

Documentation Changes

• Various typo and wording issues have been addressed.

• The example data that was meant to accompany the Time Series examples has been added to the zip file of the
download in the examples.

702 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.24 2.15.1

Enhancements

• CalendarFile.get_access_list has been added to the CalendarFile class to return a list of users with
access to a calendar file.

• A role attribute has been added to the CalendarFile class to indicate the access level a current user has to a
calendar file. For more information on the specific access levels, see the sharing documentation.

Bugfixes

• Previously, attempting to retrieve the calendar_id of a project without a set target would result in an error.
This has been fixed to return None instead.

2.5.25 2.15.0

New Features

• Previously available for only Eureqa models, Advanced Tuning methods and objects, including
Model.start_advanced_tuning_session, Model.get_advanced_tuning_parameters, Model.
advanced_tune, and AdvancedTuningSession, now support all models other than blender, open source, and
user-created models. Use of Advanced Tuning via API for non-Eureqa models is in beta and not available by
default, but can be enabled.

• Calendar Files for time series projects can now be created and managed through the CalendarFile class.

Enhancements

• The dataframe returned from datarobot.PredictionExplanations.get_all_as_dataframe() will now
have each class label class_X be the same from row to row.

• The client is now more robust to networking issues by default. It will retry on more errors and respects Retry-After
headers in HTTP 413, 429, and 503 responses.

• Added Forecast Distance blender for Time-Series projects configured with more than one Forecast Distance. It
blends the selected models creating separate linear models for each Forecast Distance.

• Project can now be shared with other users.

• Project.upload_dataset and Project.upload_dataset_from_data_source will return a
PredictionDataset with data_quality_warnings if potential problems exist around the uploaded
dataset.

• relax_known_in_advance_features_check has been added to Project.upload_dataset and Project.
upload_dataset_from_data_source to allow missing values from the known in advance features in the fore-
cast window at prediction time.

• cross_series_group_by_columns has been added to datarobot.DatetimePartitioning to allow users
the ability to indicate how to further split series into related groups.

• Information retrieval for ROC Curve has been extended to include fraction_predicted_as_positive,
fraction_predicted_as_negative, lift_positive and lift_negative

2.5. Changelog 703

DataRobot Python API Documentation, Release 3.2.2

Bugfixes

• Fixes an issue where the client would not be usable if it could not be sure it was compatible with the configured
server

API Changes

• Methods for creating datarobot.models.Project: create_from_mysql, create_from_oracle, and cre-
ate_from_postgresql, deprecated in 2.11, have now been removed. Use datarobot.models.Project.
create_from_data_source() instead.

• datarobot.FeatureSettings attribute apriori, deprecated in 2.11, has been removed. Use datarobot.
FeatureSettings.known_in_advance instead.

• datarobot.DatetimePartitioning attribute default_to_a_priori, deprecated in 2.11, has been removed. Use
datarobot.DatetimePartitioning.known_in_advance instead.

• datarobot.DatetimePartitioningSpecification attribute default_to_a_priori, deprecated in 2.11, has
been removed. Use datarobot.DatetimePartitioningSpecification.known_in_advance instead.

Deprecation Summary

Configuration Changes

• Now requires dependency on package requests to be at least version 2.21.

• Now requires dependency on package urllib3 to be at least version 1.24.

Documentation Changes

• Advanced model insights notebook extended to contain information on visualization of cumulative gains and lift
charts.

2.5.26 2.14.2

Bugfixes

• Fixed an issue where searches of the HTML documentation would sometimes hang indefinitely

Documentation Changes

• Python3 is now the primary interpreter used to build the docs (this does not affect the ability to use the package
with Python2)

704 Chapter 2. Table of contents

https://pypi.org/project/requests/
https://pypi.org/project/urllib3/

DataRobot Python API Documentation, Release 3.2.2

2.5.27 2.14.1

Documentation Changes

• Documentation for the Model Deployment interface has been removed after the corresponding interface was
removed in 2.13.0.

2.5.28 2.14.0

New Features

• The new method Model.get_supported_capabilities retrieves a summary of the capabilities supported by
a particular model, such as whether it is eligible for Prime and whether it has word cloud data available.

• New class for working with model compliance documentation feature of DataRobot: class
ComplianceDocumentation

• New class for working with compliance documentation templates: ComplianceDocTemplate

• New class FeatureHistogram has been added to retrieve feature histograms for a requested maximum bin count

• Time series projects now support binary classification targets.

• Cross series features can now be created within time series multiseries projects using
the use_cross_series_features and aggregation_type attributes of the datarobot.
DatetimePartitioningSpecification. See the Time Series documentation for more info.

Enhancements

• Client instantiation now checks the endpoint configuration and provides more informative error messages. It also
automatically corrects HTTP to HTTPS if the server responds with a redirect to HTTPS.

• Project.upload_dataset and Project.create now accept an optional parameter of dataset_filename
to specify a file name for the dataset. This is ignored for url and file path sources.

• New optional parameter fallback_to_parent_insights has been added to Model.get_lift_chart, Model.
get_all_lift_charts, Model.get_confusion_chart, Model.get_all_confusion_charts, Model.
get_roc_curve, and Model.get_all_roc_curves. When True, a frozen model with missing insights will
attempt to retrieve the missing insight data from its parent model.

• New number_of_known_in_advance_features attribute has been added to the datarobot.
DatetimePartitioning class. The attribute specifies number of features that are marked as known in
advance.

• Project.set_worker_count can now update the worker count on a project to the maximum number available
to the user.

• Recommended Models API can now be used to retrieve model recommendations for datetime partitioned projects

• Timeseries projects can now accept feature derivation and forecast windows intervals in terms of number of
the rows rather than a fixed time unit. DatetimePartitioningSpecification and Project.set_target
support new optional parameter windowsBasisUnit, either ‘ROW’ or detected time unit.

• Timeseries projects can now accept feature derivation intervals, forecast windows, forecast points and prediction
start/end dates in milliseconds.

• DataSources and DataStores can now be shared with other users.

2.5. Changelog 705

DataRobot Python API Documentation, Release 3.2.2

• Training predictions for datetime partitioned projects now support the new data subset
dr.enums.DATA_SUBSET.ALL_BACKTESTS for requesting the predictions for all backtest validation folds.

API Changes

• The model recommendation type “Recommended” (deprecated in version 2.13.0) has been removed.

Documentation Changes

• Example notebooks have been updated:
– Notebooks now work in Python 2 and Python 3

– A notebook illustrating time series capability has been added

– The financial data example has been replaced with an updated introductory example.

• To supplement the embedded Python notebooks in both the PDF and HTML docs bundles, the notebook files
and supporting data can now be downloaded from the HTML docs bundle.

• Fixed a minor typo in the code sample for get_or_request_feature_impact

2.5.29 2.13.0

New Features

• The new method Model.get_or_request_feature_impact functionality will attempt to request feature im-
pact and return the newly created feature impact object or the existing object so two calls are no longer required.

• New methods and objects, including Model.start_advanced_tuning_session, Model.
get_advanced_tuning_parameters, Model.advanced_tune, and AdvancedTuningSession, were
added to support the setting of Advanced Tuning parameters. This is currently supported for Eureqa models
only.

• New is_starred attribute has been added to the Model class. The attribute specifies whether a model has been
marked as starred by user or not.

• Model can be marked as starred or being unstarred with Model.star_model and Model.unstar_model.

• When listing models with Project.get_models, the model list can now be filtered by the is_starred value.

• A custom prediction threshold may now be configured for each model via Model.
set_prediction_threshold . When making predictions in binary classification projects, this value
will be used when deciding between the positive and negative classes.

• Project.check_blendable can be used to confirm if a particular group of models are eligible for blending as
some are not, e.g. scaleout models and datetime models with different training lengths.

• Individual cross validation scores can be retrieved for new models using Model.
get_cross_validation_scores.

706 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Enhancements

• Python 3.7 is now supported.

• Feature impact now returns not only the impact score for the features but also whether they were detected to be
redundant with other high-impact features.

• A new is_blocked attribute has been added to the Job class, specifying whether a job is blocked from execution
because one or more dependencies are not yet met.

• The Featurelist object now has new attributes reporting its creation time, whether it was created by a user or
by DataRobot, and the number of models using the featurelist, as well as a new description field.

• Featurelists can now be renamed and have their descriptions updated with Featurelist.update and
ModelingFeaturelist.update.

• Featurelists can now be deleted with Featurelist.delete and ModelingFeaturelist.delete.

• ModelRecommendation.get now accepts an optional parameter of type datarobot.enums.
RECOMMENDED_MODEL_TYPE which can be used to get a specific kind of recommendation.

• Previously computed predictions can now be listed and retrieved with the Predictions class, without requiring
a reference to the original PredictJob.

Bugfixes

• The Model Deployment interface which was previously visible in the client has been removed to allow the inter-
face to mature, although the raw API is available as a “beta” API without full backwards compatibility support.

API Changes

• Added support for retrieving the Pareto Front of a Eureqa model. See ParetoFront.

• A new recommendation type “Recommended for Deployment” has been added to ModelRecommendation
which is now returns as the default recommended model when available. See Model Recommendation.

Deprecation Summary

• The feature previously referred to as “Reason Codes” has been renamed to “Prediction Explanations”, to pro-
vide increased clarity and accessibility. The old ReasonCodes interface has been deprecated and replaced with
PredictionExplanations.

• The recommendation type “Recommended” is deprecated and will no longer be returned in v2.14 of the API.

Documentation Changes

• Added a new documentation section Model Recommendation.

• Time series projects support multiseries as well as single series data. They are now documented in the Time
Series Projects documentation.

2.5. Changelog 707

DataRobot Python API Documentation, Release 3.2.2

2.5.30 2.12.0

New Features

• Some models now have Missing Value reports allowing users with access to uncensored blueprints to retrieve a
detailed breakdown of how numeric imputation and categorical converter tasks handled missing values. See the
documentation for more information on the report.

2.5.31 2.11.0

New Features

• The new ModelRecommendation class can be used to retrieve the recommended models for a project.

• A new helper method cross_validate was added to class Model. This method can be used to request Model’s
Cross Validation score.

• Training a model with monotonic constraints is now supported. Training with monotonic constraints allows users
to force models to learn monotonic relationships with respect to some features and the target. This helps users
create accurate models that comply with regulations (e.g. insurance, banking). Currently, only certain blueprints
(e.g. xgboost) support this feature, and it is only supported for regression and binary classification projects.

• DataRobot now supports “Database Connectivity”, allowing databases to be used as the source of data for projects
and prediction datasets. The feature works on top of the JDBC standard, so a variety of databases conforming to
that standard are available; a list of databases with tested support for DataRobot is available in the user guide in
the web application. See Database Connectivity for details.

• Added a new feature to retrieve feature logs for time series projects. Check datarobot.
DatetimePartitioning.feature_log_list() and datarobot.DatetimePartitioning.
feature_log_retrieve() for details.

API Changes

• New attributes supporting monotonic constraints have been added to the AdvancedOptions, Project, Model,
and Blueprint classes. See monotonic constraints for more information on how to configure monotonic con-
straints.

• New parameters predictions_start_date and predictions_end_date added to Project.upload_dataset to sup-
port bulk predictions upload for time series projects.

Deprecation Summary

• Methods for creating datarobot.models.Project: create_from_mysql, create_from_oracle, and cre-
ate_from_postgresql, have been deprecated and will be removed in 2.14. Use datarobot.models.Project.
create_from_data_source() instead.

• datarobot.FeatureSettings attribute apriori, has been deprecated and will be removed in 2.14. Use
datarobot.FeatureSettings.known_in_advance instead.

• datarobot.DatetimePartitioning attribute default_to_a_priori, has been deprecated and will be removed
in 2.14. datarobot.DatetimePartitioning.known_in_advance instead.

• datarobot.DatetimePartitioningSpecification attribute default_to_a_priori, has been deprecated and
will be removed in 2.14. Use datarobot.DatetimePartitioningSpecification.known_in_advance in-
stead.

708 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Configuration Changes

• Retry settings compatible with those offered by urllib3’s Retry interface can now be configured. By default, we
will now retry connection errors that prevented requests from arriving at the server.

Documentation Changes

• “Advanced Model Insights” example has been updated to properly handle bin weights when rebinning.

2.5.32 2.9.0

New Features

• New ModelDeployment class can be used to track status and health of models deployed for predictions.

Enhancements

• DataRobot API now supports creating 3 new blender types - Random Forest, TensorFlow, LightGBM.

• Multiclass projects now support blenders creation for 3 new blender types as well as Average and ENET blenders.

• Models can be trained by requesting a particular row count using the new training_row_count argument with
Project.train, Model.train and Model.request_frozen_model in non-datetime partitioned projects, as an alterna-
tive to the previous option of specifying a desired percentage of the project dataset. Specifying model size by
row count is recommended when the float precision of sample_pct could be problematic, e.g. when training
on a small percentage of the dataset or when training up to partition boundaries.

• New attributes max_train_rows, scaleout_max_train_pct, and scaleout_max_train_rows have been
added to Project. max_train_rows specified the equivalent value to the existing max_train_pct as a row
count. The scaleout fields can be used to see how far scaleout models can be trained on projects, which for projects
taking advantage of scalable ingest may exceed the limits on the data available to non-scaleout blueprints.

• Individual features can now be marked as a priori or not a priori using the new feature_settings attribute when
setting the target or specifying datetime partitioning settings on time series projects. Any features not specified
in the feature_settings parameter will be assigned according to the default_to_a_priori value.

• Three new options have been made available in the datarobot.DatetimePartitioningSpecification
class to fine-tune how time-series projects derive modeling features. treat_as_exponential can control whether
data is analyzed as an exponential trend and transformations like log-transform are applied. differencing_method
can control which differencing method to use for stationary data. periodicities can be used to specify periodicities
occurring within the data. All are optional and defaults will be chosen automatically if they are unspecified.

API Changes

• Now training_row_count is available on non-datetime models as well as “rowCount” based datetime models.
It reports the number of rows used to train the model (equivalent to sample_pct).

• Features retrieved from Feature.get now include target_leakage.

2.5. Changelog 709

https://urllib3.readthedocs.io/en/latest/reference/urllib3.util.html#urllib3.util.retry.Retry

DataRobot Python API Documentation, Release 3.2.2

2.5.33 2.8.1

Bugfixes

• The documented default connect_timeout will now be correctly set for all configuration mechanisms, so that
requests that fail to reach the DataRobot server in a reasonable amount of time will now error instead of hang-
ing indefinitely. If you observe that you have started seeing ConnectTimeout errors, please configure your
connect_timeout to a larger value.

• Version of trafaret library this package depends on is now pinned to trafaret>=0.7,<1.1 since versions
outside that range are known to be incompatible.

2.5.34 2.8.0

New Features

• The DataRobot API supports the creation, training, and predicting of multiclass classification projects.
DataRobot, by default, handles a dataset with a numeric target column as regression. If your data has a numeric
cardinality of fewer than 11 classes, you can override this behavior to instead create a multiclass classification
project from the data. To do so, use the set_target function, setting target_type=’Multiclass’. If DataRobot recog-
nizes your data as categorical, and it has fewer than 11 classes, using multiclass will create a project that classifies
which label the data belongs to.

• The DataRobot API now includes Rating Tables. A rating table is an exportable csv representation of a model.
Users can influence predictions by modifying them and creating a new model with the modified table. See the
documentation for more information on how to use rating tables.

• scaleout_modeling_mode has been added to the AdvancedOptions class used when setting a project target. It can
be used to control whether scaleout models appear in the autopilot and/or available blueprints. Scaleout models
are only supported in the Hadoop environment with the corresponding user permission set.

• A new premium add-on product, Time Series, is now available. New projects can be created as time series
projects which automatically derive features from past data and forecast the future. See the time series documen-
tation for more information.

• The Feature object now returns the EDA summary statistics (i.e., mean, median, minimum, maximum, and
standard deviation) for features where this is available (e.g., numeric, date, time, currency, and length features).
These summary statistics will be formatted in the same format as the data it summarizes.

• The DataRobot API now supports Training Predictions workflow. Training predictions are made by a model for
a subset of data from original dataset. User can start a job which will make those predictions and retrieve them.
See the documentation for more information on how to use training predictions.

• DataRobot now supports retrieving a model blueprint chart and a model blueprint docs.

• With the introduction of Multiclass Classification projects, DataRobot needed a better way to explain the per-
formance of a multiclass model so we created a new Confusion Chart. The API now supports retrieving and
interacting with confusion charts.

710 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Enhancements

• DatetimePartitioningSpecification now includes the optional disable_holdout flag that can be used to disable the
holdout fold when creating a project with datetime partitioning.

• When retrieving reason codes on a project using an exposure column, predictions that are adjusted for exposure
can be retrieved.

• File URIs can now be used as sourcedata when creating a project or uploading a prediction dataset. The file URI
must refer to an allowed location on the server, which is configured as described in the user guide documentation.

• The advanced options available when setting the target have been extended to include the new parameter
‘events_count’ as a part of the AdvancedOptions object to allow specifying the events count column. See the
user guide documentation in the webapp for more information on events count.

• PredictJob.get_predictions now returns predicted probability for each class in the dataframe.

• PredictJob.get_predictions now accepts prefix parameter to prefix the classes name returned in the predictions
dataframe.

API Changes

• Add target_type parameter to set_target() and start(), used to override the project default.

2.5.35 2.7.2

Documentation Changes

• Updated link to the publicly hosted documentation.

2.5.36 2.7.1

Documentation Changes

• Online documentation hosting has migrated from PythonHosted to Read The Docs. Minor code changes have
been made to support this.

2.5.37 2.7.0

New Features

• Lift chart data for models can be retrieved using the Model.get_lift_chart and Model.get_all_lift_charts methods.

• ROC curve data for models in classification projects can be retrieved using the Model.get_roc_curve and
Model.get_all_roc_curves methods.

• Semi-automatic autopilot mode is removed.

• Word cloud data for text processing models can be retrieved using Model.get_word_cloud method.

• Scoring code JAR file can be downloaded for models supporting code generation.

2.5. Changelog 711

DataRobot Python API Documentation, Release 3.2.2

Enhancements

• A __repr__ method has been added to the PredictionDataset class to improve readability when using the client
interactively.

• Model.get_parameters now includes an additional key in the derived features it includes, showing the coefficients
for individual stages of multistage models (e.g. Frequency-Severity models).

• When training a DatetimeModel on a window of data, a time_window_sample_pct can be specified to take a
uniform random sample of the training data instead of using all data within the window.

• Installing of DataRobot package now has an “Extra Requirements” section that will install all of the dependencies
needed to run the example notebooks.

Documentation Changes

• A new example notebook describing how to visualize some of the newly available model insights including lift
charts, ROC curves, and word clouds has been added to the examples section.

• A new section for Common Issues has been added to Getting Started to help debug issues related to client
installation and usage.

2.5.38 2.6.1

Bugfixes

• Fixed a bug with Model.get_parameters raising an exception on some valid parameter values.

Documentation Changes

• Fixed sorting order in Feature Impact example code snippet.

2.5.39 2.6.0

New Features

• A new partitioning method (datetime partitioning) has been added. The recommended workflow is to preview the
partitioning by creating a DatetimePartitioningSpecification and passing it into DatetimePartitioning.generate,
inspect the results and adjust as needed for the specific project dataset by adjusting the DatetimePartitioningSpec-
ification and re-generating, and then set the target by passing the final DatetimePartitioningSpecification object
to the partitioning_method parameter of Project.set_target.

• When interacting with datetime partitioned projects, DatetimeModel can be used to access more information
specific to models in datetime partitioned projects. See the documentation for more information on differences
in the modeling workflow for datetime partitioned projects.

• The advanced options available when setting the target have been extended to include the new parameters ‘offset’
and ‘exposure’ (part of the AdvancedOptions object) to allow specifying offset and exposure columns to apply
to predictions generated by models within the project. See the user guide documentation in the webapp for more
information on offset and exposure columns.

• Blueprints can now be retrieved directly by project_id and blueprint_id via Blueprint.get.

712 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• Blueprint charts can now be retrieved directly by project_id and blueprint_id via BlueprintChart.get. If you
already have an instance of Blueprint you can retrieve its chart using Blueprint.get_chart.

• Model parameters can now be retrieved using ModelParameters.get. If you already have an instance of Model
you can retrieve its parameters using Model.get_parameters.

• Blueprint documentation can now be retrieved using Blueprint.get_documents. It will contain information about
the task, its parameters and (when available) links and references to additional sources.

• The DataRobot API now includes Reason Codes. You can now compute reason codes for prediction datasets. You
are able to specify thresholds on which rows to compute reason codes for to speed up computation by skipping
rows based on the predictions they generate. See the reason codes documentation for more information.

Enhancements

• A new parameter has been added to the AdvancedOptions used with Project.set_target. By specifying accuracy-
OptimizedMb=True when creating AdvancedOptions, longer-running models that may have a high accuracy will
be included in the autopilot and made available to run manually.

• A new option for Project.create_type_transform_feature has been added which explicitly truncates data when
casting numerical data as categorical data.

• Added 2 new blenders for projects that use MAD or Weighted MAD as a metric. The MAE blender uses BFGS
optimization to find linear weights for the blender that minimize mean absolute error (compared to the GLM
blender, which finds linear weights that minimize RMSE), and the MAEL1 blender uses BFGS optimization to
find linear weights that minimize MAE + a L1 penalty on the coefficients (compared to the ENET blender, which
minimizes RMSE + a combination of the L1 and L2 penalty on the coefficients).

Bugfixes

• Fixed a bug (affecting Python 2 only) with printing any model (including frozen and prime models) whose
model_type is not ascii.

• FrozenModels were unable to correctly use methods inherited from Model. This has been fixed.

• When calling get_result for a Job, ModelJob, or PredictJob that has errored, AsyncProcessUnsuccessfulError
will now be raised instead of JobNotFinished, consistently with the behavior of get_result_when_complete.

Deprecation Summary

• Support for the experimental Recommender Problems projects has been removed. Any code relying on Recom-
menderSettings or the recommender_settings argument of Project.set_target and Project.start will error.

• Project.update, deprecated in v2.2.32, has been removed in favor of specific updates: rename,
unlock_holdout, set_worker_count.

2.5. Changelog 713

DataRobot Python API Documentation, Release 3.2.2

Documentation Changes

• The link to Configuration from the Quickstart page has been fixed.

2.5.40 2.5.1

Bugfixes

• Fixed a bug (affecting Python 2 only) with printing blueprints whose names are not ascii.

• Fixed an issue where the weights column (for weighted projects) did not appear in the advanced_options of a
Project.

2.5.41 2.5.0

New Features

• Methods to work with blender models have been added. Use Project.blend method to create new blenders,
Project.get_blenders to get the list of existing blenders and BlenderModel.get to retrieve a model with blender-
specific information.

• Projects created via the API can now use smart downsampling when setting the target by pass-
ing smart_downsampled and majority_downsampling_rate into the AdvancedOptions object used with
Project.set_target. The smart sampling options used with an existing project will be available as part of
Project.advanced_options.

• Support for frozen models, which use tuning parameters from a parent model for more efficient training, has
been added. Use Model.request_frozen_model to create a new frozen model, Project.get_frozen_models to get
the list of existing frozen models and FrozenModel.get to retrieve a particular frozen model.

Enhancements

• The inferred date format (e.g. “%Y-%m-%d %H:%M:%S”) is now included in the Feature object. For non-date
features, it will be None.

• When specifying the API endpoint in the configuration, the client will now behave correctly for endpoints with
and without trailing slashes.

2.5.42 2.4.0

New Features

• The premium add-on product DataRobot Prime has been added. You can now approximate a model on the
leaderboard and download executable code for it. See documentation for further details, or talk to your account
representative if the feature is not available on your account.

• (Only relevant for on-premise users with a Standalone Scoring cluster.) Methods (request_transferable_export
and download_export) have been added to the Model class for exporting models (which will only work if model
export is turned on). There is a new class ImportedModel for managing imported models on a Standalone Scoring
cluster.

714 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

• It is now possible to create projects from a WebHDFS, PostgreSQL, Oracle or MySQL data source. For
more information see the documentation for the relevant Project classmethods: create_from_hdfs, cre-
ate_from_postgresql, create_from_oracle and create_from_mysql.

• Job.wait_for_completion, which waits for a job to complete without returning anything, has been added.

Enhancements

• The client will now check the API version offered by the server specified in configuration, and give a warning if
the client version is newer than the server version. The DataRobot server is always backwards compatible with
old clients, but new clients may have functionality that is not implemented on older server versions. This issue
mainly affects users with on-premise deployments of DataRobot.

Bugfixes

• Fixed an issue where Model.request_predictions might raise an error when predictions finished very quickly
instead of returning the job.

API Changes

• To set the target with quickrun autopilot, call Project.set_target with mode=AUTOPILOT_MODE.QUICK in-
stead of specifying quickrun=True.

Deprecation Summary

• Semi-automatic mode for autopilot has been deprecated and will be removed in 3.0. Use manual or fully auto-
matic instead.

• Use of the quickrun argument in Project.set_target has been deprecated and will be removed in 3.0. Use
mode=AUTOPILOT_MODE.QUICK instead.

Configuration Changes

• It is now possible to control the SSL certificate verification by setting the parameter ssl_verify in the config file.

Documentation Changes

• The “Modeling Airline Delay” example notebook has been updated to work with the new 2.3 enhancements.

• Documentation for the generic Job class has been added.

• Class attributes are now documented in the API Reference section of the documentation.

• The changelog now appears in the documentation.

• There is a new section dedicated to configuration, which lists all of the configuration options and their meanings.

2.5. Changelog 715

DataRobot Python API Documentation, Release 3.2.2

2.5.43 2.3.0

New Features

• The DataRobot API now includes Feature Impact, an approach to measuring the relevance of each feature that
can be applied to any model. The Model class now includes methods request_feature_impact (which creates and
returns a feature impact job) and get_feature_impact (which can retrieve completed feature impact results).

• A new improved workflow for predictions now supports first uploading a dataset via Project.upload_dataset,
then requesting predictions via Model.request_predictions. This allows us to better support predictions on larger
datasets and non-ascii files.

• Datasets previously uploaded for predictions (represented by the PredictionDataset class) can be listed from
Project.get_datasets and retrieve and deleted via PredictionDataset.get and PredictionDataset.delete.

• You can now create a new feature by re-interpreting the type of an existing feature in a project by using the
Project.create_type_transform_feature method.

• The Job class now includes a get method for retrieving a job and a cancel method for canceling a job.

• All of the jobs classes (Job, ModelJob, PredictJob) now include the following new methods: refresh (for re-
freshing the data in the job object), get_result (for getting the completed resource resulting from the job), and
get_result_when_complete (which waits until the job is complete and returns the results, or times out).

• A new method Project.refresh can be used to update Project objects with the latest state from the server.

• A new function datarobot.async.wait_for_async_resolution can be used to poll for the resolution of any generic
asynchronous operation on the server.

Enhancements

• The JOB_TYPE enum now includes FEATURE_IMPACT.

• The QUEUE_STATUS enum now includes ABORTED and COMPLETED.

• The Project.create method now has a read_timeout parameter which can be used to keep open the connection to
DataRobot while an uploaded file is being processed. For very large files this time can be substantial. Appropri-
ately raising this value can help avoid timeouts when uploading large files.

• The method Project.wait_for_autopilot has been enhanced to error if the project enters a state where autopilot
may not finish. This avoids a situation that existed previously where users could wait indefinitely on their project
that was not going to finish. However, users are still responsible to make sure a project has more than zero
workers, and that the queue is not paused.

• Feature.get now supports retrieving features by feature name. (For backwards compatibility, feature IDs are still
supported until 3.0.)

• File paths that have unicode directory names can now be used for creating projects and PredictJobs. The filename
itself must still be ascii, but containing directory names can have other encodings.

• Now raises more specific JobAlreadyRequested exception when we refuse a model fitting request as a duplicate.
Users can explicitly catch this exception if they want it to be ignored.

• A file_name attribute has been added to the Project class, identifying the file name associated with the original
project dataset. Note that if the project was created from a data frame, the file name may not be helpful.

• The connect timeout for establishing a connection to the server can now be set directly. This can be done in the
yaml configuration of the client, or directly in the code. The default timeout has been lowered from 60 seconds
to 6 seconds, which will make detecting a bad connection happen much quicker.

716 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

Bugfixes

• Fixed a bug (affecting Python 2 only) with printing features and featurelists whose names are not ascii.

API Changes

• Job class hierarchy is rearranged to better express the relationship between these objects. See documentation for
datarobot.models.job for details.

• Featurelist objects now have a project_id attribute to indicate which project they belong to. Directly accessing
the project attribute of a Featurelist object is now deprecated

• Support INI-style configuration, which was deprecated in v2.1, has been removed. yaml is the only supported
configuration format.

• The method Project.get_jobs method, which was deprecated in v2.1, has been removed. Users should use the
Project.get_model_jobs method instead to get the list of model jobs.

Deprecation Summary

• PredictJob.create has been deprecated in favor of the alternate workflow using Model.request_predictions.

• Feature.converter (used internally for object construction) has been made private.

• Model.fetch_resource_data has been deprecated and will be removed in 3.0. To fetch a model from its
ID, use Model.get.

• The ability to use Feature.get with feature IDs (rather than names) is deprecated and will be removed in 3.0.

• Instantiating a Project, Model, Blueprint, Featurelist, or Feature instance from a dict of data is now deprecated.
Please use the from_data classmethod of these classes instead. Additionally, instantiating a Model from a tuple
or by using the keyword argument data is also deprecated.

• Use of the attribute Featurelist.project is now deprecated. You can use the project_id attribute of a Featurelist
to instantiate a Project instance using Project.get.

• Use of the attributes Model.project, Model.blueprint, and Model.featurelist are all deprecated now to avoid use
of partially instantiated objects. Please use the ids of these objects instead.

• Using a Project instance as an argument in Featurelist.get is now deprecated. Please use a project_id instead.
Similarly, using a Project instance in Model.get is also deprecated, and a project_id should be used in its place.

Configuration Changes

• Previously it was possible (though unintended) that the client configuration could be mixed through environment
variables, configuration files, and arguments to datarobot.Client. This logic is now simpler - please see the
Getting Started section of the documentation for more information.

2.5. Changelog 717

DataRobot Python API Documentation, Release 3.2.2

2.5.44 2.2.33

Bugfixes

• Fixed a bug with non-ascii project names using the package with Python 2.

• Fixed an error that occurred when printing projects that had been constructed from an ID only or printing printing
models that had been constructed from a tuple (which impacted printing PredictJobs).

• Fixed a bug with project creation from non-ascii file names. Project creation from non-ascii file names is not
supported, so this now raises a more informative exception. The project name is no longer used as the file name
in cases where we do not have a file name, which prevents non-ascii project names from causing problems in
those circumstances.

• Fixed a bug (affecting Python 2 only) with printing projects, features, and featurelists whose names are not ascii.

2.5.45 2.2.32

New Features

• Project.get_features and Feature.get methods have been added for feature retrieval.

• A generic Job entity has been added for use in retrieving the entire queue at once. Calling Project.
get_all_jobs will retrieve all (appropriately filtered) jobs from the queue. Those can be cancelled di-
rectly as generic jobs, or transformed into instances of the specific job class using ModelJob.from_job and
PredictJob.from_job, which allow all functionality previously available via the ModelJob and PredictJob
interfaces.

• Model.train now supports featurelist_id and scoring_type parameters, similar to Project.train.

Enhancements

• Deprecation warning filters have been updated. By default, a filter will be added ensuring that usage of deprecated
features will display a warning once per new usage location. In order to hide deprecation warnings, a filter
like warnings.filterwarnings(‘ignore’, category=DataRobotDeprecationWarning) can be added to a script so
no such warnings are shown. Watching for deprecation warnings to avoid reliance on deprecated features is
recommended.

• If your client is misconfigured and does not specify an endpoint, the cloud production server is no longer used
as the default as in many cases this is not the correct default.

• This changelog is now included in the distributable of the client.

Bugfixes

• Fixed an issue where updating the global client would not affect existing objects with cached clients. Now the
global client is used for every API call.

• An issue where mistyping a filepath for use in a file upload has been resolved. Now an error will be raised if it
looks like the raw string content for modeling or predictions is just one single line.

718 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

API Changes

• Use of username and password to authenticate is no longer supported - use an API token instead.

• Usage of start_time and finish_time parameters in Project.get_models is not supported both in filtering
and ordering of models

• Default value of sample_pct parameter of Model.train method is now None instead of 100. If the default
value is used, models will be trained with all of the available training data based on project configuration, rather
than with entire dataset including holdout for the previous default value of 100.

• order_by parameter of Project.list which was deprecated in v2.0 has been removed.

• recommendation_settings parameter of Project.start which was deprecated in v0.2 has been removed.

• Project.status method which was deprecated in v0.2 has been removed.

• Project.wait_for_aim_stage method which was deprecated in v0.2 has been removed.

• Delay, ConstantDelay, NoDelay, ExponentialBackoffDelay, RetryManager classes from retrymodule
which were deprecated in v2.1 were removed.

• Package renamed to datarobot.

Deprecation Summary

• Project.update deprecated in favor of specific updates: rename, unlock_holdout, set_worker_count.

Documentation Changes

• A new use case involving financial data has been added to the examples directory.

• Added documentation for the partition methods.

2.5.46 2.1.31

Bugfixes

• In Python 2, using a unicode token to instantiate the client will now work correctly.

2.5.47 2.1.30

Bugfixes

• The minimum required version of trafaret has been upgraded to 0.7.1 to get around an incompatibility between
it and setuptools.

2.5. Changelog 719

DataRobot Python API Documentation, Release 3.2.2

2.5.48 2.1.29

Enhancements

• Minimal used version of requests_toolbelt package changed from 0.4 to 0.6

2.5.49 2.1.28

New Features

• Default to reading YAML config file from ~/.config/datarobot/drconfig.yaml

• Allow config_path argument to client

• wait_for_autopilot method added to Project. This method can be used to block execution until autopilot has
finished running on the project.

• Support for specifying which featurelist to use with initial autopilot in Project.set_target

• Project.get_predict_jobs method has been added, which looks up all prediction jobs for a project

• Project.start_autopilot method has been added, which starts autopilot on specified featurelist

• The schema for PredictJob in DataRobot API v2.1 now includes a message. This attribute has been added to
the PredictJob class.

• PredictJob.cancel now exists to cancel prediction jobs, mirroring ModelJob.cancel

• Project.from_async is a new classmethod that can be used to wait for an async resolution in project creation.
Most users will not need to know about it as it is used behind the scenes in Project.create and Project.
set_target, but power users who may run into periodic connection errors will be able to catch the new Projec-
tAsyncFailureError and decide if they would like to resume waiting for async process to resolve

Enhancements

• AUTOPILOT_MODE enum now uses string names for autopilot modes instead of numbers

Deprecation Summary

• ConstantDelay, NoDelay, ExponentialBackoffDelay, and RetryManager utils are now deprecated

• INI-style config files are now deprecated (in favor of YAML config files)

• Several functions in the utils submodule are now deprecated (they are being moved elsewhere and are not con-
sidered part of the public interface)

• Project.get_jobs has been renamed Project.get_model_jobs for clarity and deprecated

• Support for the experimental date partitioning has been removed in DataRobot API, so it is being removed from
the client immediately.

720 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

API Changes

• In several places where AppPlatformError was being raised, now TypeError, ValueError or
InputNotUnderstoodError are now used. With this change, one can now safely assume that when catch-
ing an AppPlatformError it is because of an unexpected response from the server.

• AppPlatformError has gained a two new attributes, status_code which is the HTTP status code of the unex-
pected response from the server, and error_code which is a DataRobot-defined error code. error_code is not
used by any routes in DataRobot API 2.1, but will be in the future. In cases where it is not provided, the instance
of AppPlatformError will have the attribute error_code set to None.

• Two new subclasses of AppPlatformError have been introduced, ClientError (for 400-level response status
codes) and ServerError (for 500-level response status codes). These will make it easier to build automated
tooling that can recover from periodic connection issues while polling.

• If a ClientError or ServerError occurs during a call to Project.from_async, then a
ProjectAsyncFailureError (a subclass of AsyncFailureError) will be raised. That exception will
have the status_code of the unexpected response from the server, and the location that was being polled to wait
for the asynchronous process to resolve.

2.5.50 2.0.27

New Features

• PredictJob class was added to work with prediction jobs

• wait_for_async_predictions function added to predict_job module

Deprecation Summary

• The order_by parameter of the Project.list is now deprecated.

2.5.51 0.2.26

Enhancements

• Projet.set_target will re-fetch the project data after it succeeds, keeping the client side in sync with the state
of the project on the server

• Project.create_featurelist now throws DuplicateFeaturesError exception if passed list of features
contains duplicates

• Project.get_models now supports snake_case arguments to its order_by keyword

2.5. Changelog 721

DataRobot Python API Documentation, Release 3.2.2

Deprecation Summary

• Project.wait_for_aim_stage is now deprecated, as the REST Async flow is a more reliable method of
determining that project creation has completed successfully

• Project.status is deprecated in favor of Project.get_status

• recommendation_settings parameter of Project.start is deprecated in favor of
recommender_settings

Bugfixes

• Project.wait_for_aim_stage changed to support Python 3

• Fixed incorrect value of SCORING_TYPE.cross_validation

• Models returned by Project.get_models will now be correctly ordered when the order_by keyword is used

2.5.52 0.2.25

• Pinned versions of required libraries

2.5.53 0.2.24

Official release of v0.2

2.5.54 0.1.24

• Updated documentation

• Renamed parameter name of Project.create and Project.start to project_name

• Removed Model.predict method

• wait_for_async_model_creation function added to modeljob module

• wait_for_async_status_service of Project class renamed to _wait_for_async_status_service

• Can now use auth_token in config file to configure SDK

2.5.55 0.1.23

• Fixes a method that pointed to a removed route

722 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.56 0.1.22

• Added featurelist_id attribute to ModelJob class

2.5.57 0.1.21

• Removes model attribute from ModelJob class

2.5.58 0.1.20

• Project creation raises AsyncProjectCreationError if it was unsuccessful

• Removed Model.list_prime_rulesets and Model.get_prime_ruleset methods

• Removed Model.predict_batch method

• Removed Project.create_prime_model method

• Removed PrimeRuleSet model

• Adds backwards compatibility bridge for ModelJob async

• Adds ModelJob.get and ModelJob.get_model

2.5.59 0.1.19

• Minor bugfixes in wait_for_async_status_service

2.5.60 0.1.18

• Removes submit_model from Project until server-side implementation is improved

• Switches training URLs for new resource-based route at /projects/<project_id>/models/

• Job renamed to ModelJob, and using modelJobs route

• Fixes an inconsistency in argument order for train methods

2.5.61 0.1.17

• wait_for_async_status_service timeout increased from 60s to 600s

2.5.62 0.1.16

• Project.create will now handle both async/sync project creation

2.5. Changelog 723

DataRobot Python API Documentation, Release 3.2.2

2.5.63 0.1.15

• All routes pluralized to sync with changes in API

• Project.get_jobs will request all jobs when no param specified

• dataframes from predict method will have pythonic names

• Project.get_status created, Project.status now deprecated

• Project.unlock_holdout created.

• Added quickrun parameter to Project.set_target

• Added modelCategory to Model schema

• Add permalinks feature to Project and Model objects.

• Project.create_prime_model created

2.5.64 0.1.14

• Project.set_worker_count fix for compatibility with API change in project update.

2.5.65 0.1.13

• Add positive class to set_target.

• Change attributes names of Project, Model, Job and Blueprint

– features in Model, Job and Blueprint are now processes

– dataset_id and dataset_name migrated to featurelist_id and featurelist_name.

– samplepct -> sample_pct

• Model has now blueprint, project, and featurlist attributes.

• Minor bugfixes.

2.5.66 0.1.12

• Minor fixes regarding rename Job attributes. features attributes now named processes, samplepct now is sam-
ple_pct.

2.5.67 0.1.11

(May 27, 2015)

• Minor fixes regarding migrating API from under_score names to camelCase.

724 Chapter 2. Table of contents

DataRobot Python API Documentation, Release 3.2.2

2.5.68 0.1.10

(May 20, 2015)

• Remove Project.upload_file, Project.upload_file_from_url and Project.attach_file methods. Moved all logic that
uploading file to Project.create method.

2.5.69 0.1.9

(May 15, 2015)

• Fix uploading file causing a lot of memory usage. Minor bugfixes.

genindex

2.5. Changelog 725

DataRobot Python API Documentation, Release 3.2.2

726 Chapter 2. Table of contents

PYTHON MODULE INDEX

d
datarobot.client, 219
datarobot.models.training_predictions, 629

727

DataRobot Python API Documentation, Release 3.2.2

728 Python Module Index

INDEX

A
Accuracy (class in datarobot.models.deployment), 329
AccuracyOverTime (class in

datarobot.models.deployment), 331
AccuracyOverTimePlot (class in

datarobot.models.datetime_trend_plots),
297

AccuracyOverTimePlotPreview (class in
datarobot.models.datetime_trend_plots),
298

AccuracyOverTimePlotsMetadata (class in
datarobot.models.datetime_trend_plots),
296

activate() (datarobot.models.Deployment method),
308

add() (datarobot.UseCase method), 636
add_to_project() (datarobot.models.user_blueprints.models.UserBlueprintAddToProjectMenu

class method), 647
add_to_project() (datarobot.UserBlueprint class

method), 644
advanced_tune() (datarobot.models.BlenderModel

method), 435
advanced_tune() (datarobot.models.DatetimeModel

method), 478
advanced_tune() (datarobot.models.Model method),

406
advanced_tune() (datarobot.models.PrimeModel

method), 412
advanced_tune() (datarobot.models.RatingTableModel

method), 501
AdvancedOptions (class in datarobot.helpers), 169
AdvancedTuningParamsType (class in

datarobot.models.model), 410
AdvancedTuningSession (class in

datarobot.models.advanced_tuning), 526
analyze_and_model() (datarobot.models.Project

method), 579
AnomalyAssessmentDataPoint (class in

datarobot.models), 634
AnomalyAssessmentExplanations (class in

datarobot.models.anomaly_assessment),
175

AnomalyAssessmentPredictionsPreview (class in
datarobot.models.anomaly_assessment), 176

AnomalyAssessmentPreviewBin (class in
datarobot.models), 634

AnomalyAssessmentRecord (class in
datarobot.models.anomaly_assessment),
172

AnomalyAssessmentRecordMetadata (class in
datarobot.models), 634

AnomalyOverTimePlot (class in
datarobot.models.datetime_trend_plots),
302

AnomalyOverTimePlotPreview (class in
datarobot.models.datetime_trend_plots),
303

AnomalyOverTimePlotsMetadata (class in
datarobot.models.datetime_trend_plots),
301

APIObject (class in datarobot.models.api_object), 168
Application (class in datarobot), 178
apply_bias_mitigation() (datarobot.models.Project

method), 613
apply_time_series_data_prep_and_score()

(datarobot.models.BatchPredictionJob class
method), 183

apply_time_series_data_prep_and_score_to_file()
(datarobot.models.BatchPredictionJob class
method), 185

as_dataframe() (datarobot.models.PairwiseConditionalProbabilities
method), 352

as_dataframe() (datarobot.models.PairwiseCorrelations
method), 350

as_dataframe() (datarobot.models.PairwiseJointProbabilities
method), 351

assign_training_data()
(datarobot.CustomInferenceModel method),
238

AutomatedDocument (class in
datarobot.models.automated_documentation),
213

729

DataRobot Python API Documentation, Release 3.2.2

B
Backtest (class in datarobot.helpers.partitioning_methods),

547
BacktestSpecification (class in datarobot), 537
batch_features_type_transform()

(datarobot.models.Project method), 609
BatchMonitoringJob (class in datarobot.models), 194
BatchMonitoringJobDefinition (class in

datarobot.models), 198
BatchPredictionJob (class in datarobot.models), 180
BatchPredictionJobDefinition (class in

datarobot.models), 188
BiasAndFairnessSettings (class in

datarobot.models.deployment.deployment),
335

BiasMitigationFeatureInfo (class in
datarobot.models.model), 410

blend() (datarobot.models.Project method), 599
BlenderModel (class in datarobot.models), 434
Blueprint (class in datarobot.models), 204
BlueprintChart (class in datarobot.models), 205
BlueprintTaskDocument (class in datarobot.models),

205
bucket_sample_sizes

(datarobot.models.deployment.AccuracyOverTime
property), 332

bucket_values (datarobot.models.deployment.AccuracyOverTime
property), 332

bucket_values (datarobot.models.deployment.ServiceStatsOverTime
property), 327

C
calculate_feature_impact()

(datarobot.CustomModelVersion method),
248

calculate_prediction_intervals()
(datarobot.models.DatetimeModel method),
469

CalendarFile (class in datarobot), 207
cancel() (datarobot.CustomModelTest method), 240
cancel() (datarobot.CustomModelVersionDependencyBuild

method), 251
cancel() (datarobot.models.BatchMonitoringJob

method), 197
cancel() (datarobot.models.FeatureImpactJob method),

381
cancel() (datarobot.models.Job method), 376
cancel() (datarobot.models.ModelJob method), 529
cancel() (datarobot.models.PredictJob method), 554
cancel() (datarobot.models.ShapMatrixJob method),

379
cancel() (datarobot.models.TrainingPredictionsJob

method), 378

cancel_dependency_build()
(datarobot.CustomTaskVersion method),
265

ChallengerModelsSettings (class in
datarobot.models.deployment.deployment),
334

check_blendable() (datarobot.models.Project
method), 600

ClassListMode (class in datarobot.models), 565
ClassMappingAggregationSettings (class in

datarobot.helpers), 219
Client() (in module datarobot.client), 219
client_configuration() (in module

datarobot.client), 220
clone_project() (datarobot.models.Project method),

610
clone_project_blueprint()

(datarobot.UserBlueprint class method),
642

clone_user_blueprint() (datarobot.UserBlueprint
class method), 642

Cluster (class in datarobot.models.cluster), 223
Cluster (class in datarobot.models.model), 77
ClusteringModel (class in datarobot.models), 221
ClusteringModel (class in datarobot.models.model), 75
ClusterInsight (class in

datarobot.models.cluster_insight), 224
ClusterInsight (class in datarobot.models.model), 78
clusters (datarobot.models.ClusteringModel property),

222
clusters (datarobot.models.model.ClusteringModel

property), 76
collect_payload() (datarobot.DatetimePartitioningSpecification

method), 536
collect_payload() (datarobot.FeatureSettings

method), 538
collect_payload() (datarobot.helpers.partitioning_methods.DatetimePartitioningId

method), 547
collect_payload() (datarobot.models.segmentation.SegmentationTask

method), 625
collect_payload() (datarobot.SegmentationTask

method), 623
CombinedModel (class in datarobot), 620
completed_resource_url

(datarobot.models.JobStatusResult property),
204

ComplianceDocTemplate (class in
datarobot.models.compliance_doc_template),
225

compute() (datarobot.models.anomaly_assessment.AnomalyAssessmentRecord
class method), 174

compute() (datarobot.models.cluster_insight.ClusterInsight
class method), 224

compute() (datarobot.models.model.ClusterInsight

730 Index

DataRobot Python API Documentation, Release 3.2.2

class method), 78
compute() (datarobot.models.visualai.ImageActivationMap

class method), 653
compute() (datarobot.models.visualai.ImageEmbedding

class method), 652
compute_datetime_trend_plots()

(datarobot.models.DatetimeModel method),
469

compute_insights() (datarobot.models.ClusteringModel
method), 221

compute_insights() (datarobot.models.model.ClusteringModel
method), 75

compute_samples() (datarobot.models.visualai.ImageAugmentationList
method), 657

compute_series_accuracy()
(datarobot.models.DatetimeModel method),
465

ConfusionChart (class in
datarobot.models.confusion_chart), 228

Connector (class in datarobot), 267
construct_duration_string() (in module

datarobot.helpers.partitioning_methods),
549

copy() (datarobot.CustomTask class method), 258
copy_custom_model()

(datarobot.CustomInferenceModel class
method), 236

CountryCode (class in datarobot.models.calendar_file),
213

create() (datarobot.CalendarFile class method), 207
create() (datarobot.Connector class method), 268
create() (datarobot.CustomInferenceModel class

method), 235
create() (datarobot.CustomModelTest class method),

239
create() (datarobot.CustomTask class method), 259
create() (datarobot.DataDriver class method), 266
create() (datarobot.DataEngineQueryGenerator class

method), 293
create() (datarobot.DataSource class method), 275
create() (datarobot.DataStore class method), 270
create() (datarobot.ExecutionEnvironment class

method), 252
create() (datarobot.ExecutionEnvironmentVersion

class method), 254
create() (datarobot.ExternalScores class method), 338
create() (datarobot.models.BatchMonitoringJobDefinition

class method), 198
create() (datarobot.models.BatchPredictionJobDefinition

class method), 189
create() (datarobot.models.compliance_doc_template.ComplianceDocTemplate

class method), 226
create() (datarobot.models.data_slice.DataSlice class

method), 659

create() (datarobot.models.ImportedModel class
method), 498

create() (datarobot.models.PayoffMatrix class
method), 550

create() (datarobot.models.Project class method), 572
create() (datarobot.models.RatingTable class method),

616
create() (datarobot.models.RelationshipsConfiguration

class method), 357
create() (datarobot.models.SecondaryDatasetConfigurations

class method), 364
create() (datarobot.models.segmentation.SegmentationTask

class method), 625
create() (datarobot.models.ShapImpact class method),

627
create() (datarobot.models.ShapMatrix class method),

564
create() (datarobot.models.visualai.ImageAugmentationList

class method), 655
create() (datarobot.PredictionExplanations class

method), 559
create() (datarobot.PredictionExplanationsInitialization

class method), 558
create() (datarobot.SegmentationTask class method),

623
create() (datarobot.UseCase class method), 636
create() (datarobot.UserBlueprint class method), 641
create_azure() (datarobot.models.Credential class

method), 231
create_basic() (datarobot.models.Credential class

method), 230
create_calendar_from_country_code()

(datarobot.CalendarFile class method),
209

create_calendar_from_dataset()
(datarobot.CalendarFile class method),
208

create_clean() (datarobot.CustomModelVersion class
method), 241

create_clean() (datarobot.CustomTaskVersion class
method), 262

create_dataset() (datarobot.DataEngineQueryGenerator
method), 294

create_dataset() (datarobot.DataSource method),
278

create_featurelist() (datarobot.models.Dataset
method), 287

create_featurelist() (datarobot.models.Project
method), 593

create_from_custom_model_version()
(datarobot.models.Deployment class method),
305

create_from_custom_task_version_id()
(datarobot.UserBlueprint class method),

Index 731

DataRobot Python API Documentation, Release 3.2.2

641
create_from_data_source()

(datarobot.models.Dataset class method),
282

create_from_data_source()
(datarobot.models.Project class method),
574

create_from_dataset() (datarobot.models.Project
class method), 574

create_from_file() (datarobot.models.Dataset class
method), 280

create_from_hdfs() (datarobot.models.Project class
method), 573

create_from_in_memory_data()
(datarobot.models.Dataset class method),
281

create_from_json_file()
(datarobot.models.compliance_doc_template.ComplianceDocTemplate
class method), 226

create_from_learning_model()
(datarobot.models.Deployment class method),
304

create_from_previous()
(datarobot.CustomModelVersion class
method), 244

create_from_previous()
(datarobot.CustomTaskVersion class method),
262

create_from_query_generator()
(datarobot.models.Dataset class method),
283

create_from_rating_table()
(datarobot.models.RatingTableModel class
method), 501

create_from_url() (datarobot.models.Dataset class
method), 281

create_gcp() (datarobot.models.Credential class
method), 232

create_interaction_feature()
(datarobot.models.Project method), 610

create_model() (datarobot.models.pareto_front.Solution
method), 532

create_model() (datarobot.models.RatingTable
method), 617

create_modeling_featurelist()
(datarobot.models.Project method), 594

create_oauth() (datarobot.models.Credential class
method), 230

create_project() (datarobot.models.Dataset method),
288

create_s3() (datarobot.models.Credential class
method), 231

create_segmented_project_from_clustering_model()
(datarobot.models.Project class method), 575

create_type_transform_feature()
(datarobot.models.Project method), 592

create_version_from_data_source()
(datarobot.models.Dataset class method),
290

create_version_from_file()
(datarobot.models.Dataset class method),
289

create_version_from_in_memory_data()
(datarobot.models.Dataset class method),
289

create_version_from_url()
(datarobot.models.Dataset class method),
290

Credential (class in datarobot.models), 229
cross_validate() (datarobot.CombinedModel

method), 622
cross_validate() (datarobot.models.BlenderModel

method), 436
cross_validate() (datarobot.models.DatetimeModel

method), 464
cross_validate() (datarobot.models.Model method),

406
cross_validate() (datarobot.models.PrimeModel

method), 413
cross_validate() (datarobot.models.RatingTableModel

method), 502
CustomInferenceModel (class in datarobot), 233
CustomModelFileItem (class in

datarobot.models.custom_model_version),
233

CustomModelTest (class in datarobot), 238
CustomModelVersion (class in datarobot), 240
CustomModelVersionConversion (class in

datarobot.models), 248
CustomModelVersionDependencyBuild (class in

datarobot), 250
CustomTask (class in datarobot), 257
CustomTaskFileItem (class in

datarobot.models.custom_task_version),
261

CustomTaskVersion (class in datarobot), 261

D
DataDriver (class in datarobot), 265
DataEngineQueryGenerator (class in datarobot), 293
datarobot.client

module, 219
datarobot.models.training_predictions

module, 629
Dataset (class in datarobot.models), 279
DatasetDefinition (class in

datarobot.helpers.feature_discovery), 359
DatasetDetails (class in datarobot), 291

732 Index

DataRobot Python API Documentation, Release 3.2.2

DatasetFeature (class in datarobot.models), 346
DatasetFeatureHistogram (class in

datarobot.models), 348
DatasetFeaturelist (class in datarobot), 370
DataSlice (class in datarobot.models.data_slice), 659
DataSliceSizeInfo (class in

datarobot.models.data_slice), 663
DataSource (class in datarobot), 274
DataSourceParameters (class in datarobot), 278
DataStore (class in datarobot), 269
datetime_partitioning_log_list()

(datarobot.DatetimePartitioning class method),
546

datetime_partitioning_log_retrieve()
(datarobot.DatetimePartitioning class method),
546

DatetimeModel (class in datarobot.models), 461
DatetimePartitioning (class in datarobot), 539
DatetimePartitioningId (class in

datarobot.helpers.partitioning_methods),
546

DatetimePartitioningSpecification (class in
datarobot), 533

deactivate() (datarobot.models.Deployment method),
308

delete() (datarobot.CalendarFile class method), 211
delete() (datarobot.Connector method), 269
delete() (datarobot.CustomInferenceModel method),

237
delete() (datarobot.CustomTask method), 260
delete() (datarobot.DataDriver method), 267
delete() (datarobot.DatasetFeaturelist method), 370
delete() (datarobot.DataSource method), 276
delete() (datarobot.DataStore method), 271
delete() (datarobot.ExecutionEnvironment method),

253
delete() (datarobot.models.anomaly_assessment.AnomalyAssessmentRecord

method), 174
delete() (datarobot.models.automated_documentation.AutomatedDocument

method), 216
delete() (datarobot.models.BatchMonitoringJobDefinition

method), 203
delete() (datarobot.models.BatchPredictionJob

method), 188
delete() (datarobot.models.BatchPredictionJobDefinition

method), 193
delete() (datarobot.models.BlenderModel method),

436
delete() (datarobot.models.compliance_doc_template.ComplianceDocTemplate

method), 227
delete() (datarobot.models.Credential method), 229
delete() (datarobot.models.data_slice.DataSlice

method), 660
delete() (datarobot.models.Dataset class method), 283

delete() (datarobot.models.DatetimeModel method),
478

delete() (datarobot.models.Deployment method), 308
delete() (datarobot.models.Featurelist method), 371
delete() (datarobot.models.ImportedModel method),

499
delete() (datarobot.models.Model method), 386
delete() (datarobot.models.ModelingFeaturelist

method), 374
delete() (datarobot.models.PayoffMatrix class

method), 552
delete() (datarobot.models.PredictionDataset method),

557
delete() (datarobot.models.PrimeModel method), 413
delete() (datarobot.models.Project method), 579
delete() (datarobot.models.RatingTableModel

method), 502
delete() (datarobot.models.RelationshipsConfiguration

method), 359
delete() (datarobot.models.SecondaryDatasetConfigurations

method), 365
delete() (datarobot.PredictionExplanations method),

562
delete() (datarobot.PredictionExplanationsInitialization

method), 558
delete() (datarobot.UseCase class method), 636
delete() (datarobot.UserBlueprint class method), 643
delete_monitoring_data()

(datarobot.models.Deployment method),
324

DeleteFeatureListResult (class in
datarobot.models.featurelist), 374

Deployment (class in datarobot.models), 304
DeploymentGrantSharedRoleWithId (class in

datarobot.models.deployment), 333
DeploymentGrantSharedRoleWithUsername (class in

datarobot.models.deployment), 334
DeploymentListFilters (class in

datarobot.models.deployment), 325
DeploymentSharedRole (class in

datarobot.models.deployment), 333
DiscardedFeaturesInfo (class in

datarobot.models.restore_discarded_features),
375

DocumentOption (class in
datarobot.models.automated_documentation),
218

download() (datarobot.CustomModelVersion method),
247

download() (datarobot.CustomTaskVersion method),
264

download() (datarobot.ExecutionEnvironmentVersion
method), 255

download() (datarobot.models.automated_documentation.AutomatedDocument

Index 733

DataRobot Python API Documentation, Release 3.2.2

method), 215
download() (datarobot.models.BatchMonitoringJob

method), 194
download() (datarobot.models.BatchPredictionJob

method), 188
download() (datarobot.models.PrimeFile method), 570
download() (datarobot.models.RatingTable method),

617
download_dependency_build_log()

(datarobot.CustomTaskVersion method),
265

download_export() (datarobot.models.BlenderModel
method), 436

download_export() (datarobot.models.DatetimeModel
method), 478

download_export() (datarobot.models.Model method),
396

download_export() (datarobot.models.PrimeModel
method), 413

download_export() (datarobot.models.RatingTableModel
method), 502

download_feature_discovery_dataset()
(datarobot.models.Project method), 611

download_feature_discovery_recipe_sqls()
(datarobot.models.Project method), 611

download_latest_version()
(datarobot.CustomInferenceModel method),
235

download_latest_version() (datarobot.CustomTask
method), 260

download_multicategorical_data_format_errors()
(datarobot.models.Project method), 612

download_prediction_results()
(datarobot.models.Deployment method),
323

download_scoring_code()
(datarobot.models.BlenderModel method),
436

download_scoring_code()
(datarobot.models.DatetimeModel method),
479

download_scoring_code()
(datarobot.models.Deployment method),
323

download_scoring_code() (datarobot.models.Model
method), 404

download_scoring_code()
(datarobot.models.PrimeModel method),
413

download_scoring_code()
(datarobot.models.RatingTableModel method),
502

download_series_accuracy_as_csv()
(datarobot.models.DatetimeModel method),

464
download_to_csv() (datarobot.models.Predictions

method), 568
download_to_csv() (datarobot.models.training_predictions.TrainingPredictions

method), 633
download_to_csv() (datarobot.PredictionExplanations

method), 562
download_training_artifact()

(datarobot.models.BlenderModel method),
436

download_training_artifact()
(datarobot.models.DatetimeModel method),
479

download_training_artifact()
(datarobot.models.Model method), 409

download_training_artifact()
(datarobot.models.PrimeModel method),
413

download_training_artifact()
(datarobot.models.RatingTableModel method),
502

DriftTrackingSettings (class in
datarobot.models.deployment.deployment),
335

DuplicateImage (class in datarobot.models.visualai),
651

E
EligibilityResult (class in

datarobot.helpers.eligibility_result), 615
encrypted_string() (datarobot.models.Project class

method), 573
ExecutionEnvironment (class in datarobot), 252
ExecutionEnvironmentVersion (class in datarobot),

254
ExternalBaselineValidationInfo (class in

datarobot.models.external_baseline_validation),
337

ExternalLiftChart (class in datarobot), 339
ExternalRocCurve (class in datarobot), 340
ExternalScores (class in datarobot), 338

F
FairnessScoresOverTime (class in

datarobot.models.deployment.bias_and_fairness),
332

Feature (class in datarobot.models), 341
feature_log_list() (datarobot.DatetimePartitioning

class method), 544
feature_log_retrieve()

(datarobot.DatetimePartitioning class method),
544

FeatureAssociationFeaturelists (class in
datarobot.models), 355

734 Index

DataRobot Python API Documentation, Release 3.2.2

FeatureAssociationMatrix (class in
datarobot.models), 353

FeatureAssociationMatrixDetails (class in
datarobot.models), 354

FeatureDict (class in
datarobot.models.deployment.deployment),
334

FeatureDrift (class in datarobot.models.deployment),
328

FeatureEffectMetadata (class in datarobot.models),
369

FeatureEffectMetadataDatetime (class in
datarobot.models), 369

FeatureEffectMetadataDatetimePerBacktest
(class in datarobot.models), 369

FeatureEffects (class in datarobot.models), 368
FeatureHistogram (class in datarobot.models), 348
FeatureImpactJob (class in datarobot.models), 380
FeatureLineage (class in datarobot.models), 362
Featurelist (class in datarobot.models), 370
FeatureRestorationStatus (class in

datarobot.models.restore_discarded_features),
375

FeatureSettings (class in datarobot), 538
FeatureSettingsPayload (class in

datarobot.helpers.partitioning_methods),
549

find_anomalous_regions()
(datarobot.models.anomaly_assessment.AnomalyAssessmentPredictionsPreview
method), 178

ForecastDateSettings (class in
datarobot.models.deployment.deployment),
334

ForecastVsActualPlot (class in
datarobot.models.datetime_trend_plots),
300

ForecastVsActualPlotPreview (class in
datarobot.models.datetime_trend_plots),
301

ForecastVsActualPlotsMetadata (class in
datarobot.models.datetime_trend_plots),
299

from_async() (datarobot.models.Project class method),
575

from_data() (datarobot.models.api_object.APIObject
class method), 168

from_data() (datarobot.models.BlenderModel class
method), 436

from_data() (datarobot.models.Blueprint class
method), 205

from_data() (datarobot.models.Dataset class method),
291

from_data() (datarobot.models.DatetimeModel class
method), 479

from_data() (datarobot.models.Deployment class
method), 325

from_data() (datarobot.models.Feature class method),
344

from_data() (datarobot.models.Featurelist class
method), 371

from_data() (datarobot.models.Model class method),
410

from_data() (datarobot.models.PayoffMatrix class
method), 552

from_data() (datarobot.models.PrimeModel class
method), 413

from_data() (datarobot.models.Project class method),
614

from_data() (datarobot.models.RatingTableModel
class method), 502

from_data() (datarobot.models.segmentation.SegmentationTask
class method), 625

from_data() (datarobot.SegmentationTask class
method), 623

from_job() (datarobot.models.ModelJob class method),
528

from_job() (datarobot.models.PredictJob class
method), 553

from_server_data() (datarobot.CustomModelVersion
class method), 241

from_server_data() (datarobot.CustomTask class
method), 257

from_server_data() (datarobot.CustomTaskVersion
class method), 262

from_server_data() (datarobot.DataSource class
method), 277

from_server_data() (datarobot.DataStore class
method), 273

from_server_data() (datarobot.models.api_object.APIObject
class method), 168

from_server_data() (datarobot.models.Blueprint
class method), 205

from_server_data() (datarobot.models.Dataset class
method), 291

from_server_data() (datarobot.models.Deployment
class method), 325

from_server_data() (datarobot.models.Feature class
method), 345

from_server_data() (datarobot.models.FeatureEffects
class method), 369

from_server_data() (datarobot.models.Featurelist
class method), 372

from_server_data() (datarobot.models.lift_chart.LiftChart
class method), 382

from_server_data() (datarobot.models.pareto_front.ParetoFront
class method), 531

from_server_data() (datarobot.models.PayoffMatrix
class method), 552

Index 735

DataRobot Python API Documentation, Release 3.2.2

from_server_data() (datarobot.models.Project class
method), 614

from_server_data() (datarobot.models.roc_curve.RocCurve
class method), 619

FrozenModel (class in datarobot.models), 496

G
generate() (datarobot.DatetimePartitioning class

method), 542
generate() (datarobot.models.automated_documentation.AutomatedDocument

method), 215
generate_optimized()

(datarobot.DatetimePartitioning class method),
543

get() (datarobot.Application class method), 179
get() (datarobot.CalendarFile class method), 210
get() (datarobot.CombinedModel class method), 620
get() (datarobot.Connector class method), 268
get() (datarobot.CustomInferenceModel class method),

234
get() (datarobot.CustomModelTest class method), 239
get() (datarobot.CustomModelVersion class method),

246
get() (datarobot.CustomTask class method), 258
get() (datarobot.CustomTaskVersion class method), 263
get() (datarobot.DataDriver class method), 266
get() (datarobot.DataEngineQueryGenerator class

method), 294
get() (datarobot.DatasetDetails class method), 292
get() (datarobot.DatasetFeaturelist class method), 370
get() (datarobot.DataSource class method), 275
get() (datarobot.DataStore class method), 270
get() (datarobot.DatetimePartitioning class method),

543
get() (datarobot.ExecutionEnvironment class method),

253
get() (datarobot.ExecutionEnvironmentVersion class

method), 255
get() (datarobot.ExternalLiftChart class method), 340
get() (datarobot.ExternalRocCurve class method), 341
get() (datarobot.ExternalScores class method), 339
get() (datarobot.models.anomaly_assessment.AnomalyAssessmentExplanations

class method), 176
get() (datarobot.models.anomaly_assessment.AnomalyAssessmentPredictionsPreview

class method), 178
get() (datarobot.models.BatchMonitoringJob class

method), 194
get() (datarobot.models.BatchMonitoringJobDefinition

class method), 198
get() (datarobot.models.BatchPredictionJob class

method), 187
get() (datarobot.models.BatchPredictionJobDefinition

class method), 189

get() (datarobot.models.BlenderModel class method),
435

get() (datarobot.models.Blueprint class method), 204
get() (datarobot.models.BlueprintChart class method),

206
get() (datarobot.models.compliance_doc_template.ComplianceDocTemplate

class method), 226
get() (datarobot.models.Credential class method), 229
get() (datarobot.models.CustomModelVersionConversion

class method), 249
get() (datarobot.models.data_slice.DataSlice class

method), 662
get() (datarobot.models.Dataset class method), 283
get() (datarobot.models.DatasetFeatureHistogram class

method), 348
get() (datarobot.models.DatetimeModel class method),

463
get() (datarobot.models.Deployment class method), 306
get() (datarobot.models.deployment.Accuracy class

method), 330
get() (datarobot.models.deployment.AccuracyOverTime

class method), 331
get() (datarobot.models.deployment.bias_and_fairness.FairnessScoresOverTime

class method), 333
get() (datarobot.models.deployment.PredictionsOverTime

class method), 329
get() (datarobot.models.deployment.ServiceStats class

method), 325
get() (datarobot.models.deployment.ServiceStatsOverTime

class method), 326
get() (datarobot.models.deployment.TargetDrift class

method), 327
get() (datarobot.models.external_baseline_validation.ExternalBaselineValidationInfo

class method), 337
get() (datarobot.models.Feature class method), 343
get() (datarobot.models.FeatureAssociationFeaturelists

class method), 355
get() (datarobot.models.FeatureAssociationMatrix class

method), 353
get() (datarobot.models.FeatureAssociationMatrixDetails

class method), 354
get() (datarobot.models.FeatureHistogram class

method), 348
get() (datarobot.models.FeatureImpactJob class

method), 380
get() (datarobot.models.FeatureLineage class method),

363
get() (datarobot.models.Featurelist class method), 371
get() (datarobot.models.FrozenModel class method),

497
get() (datarobot.models.ImportedModel class method),

498
get() (datarobot.models.InteractionFeature class

method), 349

736 Index

DataRobot Python API Documentation, Release 3.2.2

get() (datarobot.models.Job class method), 376
get() (datarobot.models.missing_report.MissingValuesReport

class method), 383
get() (datarobot.models.Model class method), 385
get() (datarobot.models.ModelBlueprintChart class

method), 206
get() (datarobot.models.ModelingFeature class

method), 346
get() (datarobot.models.ModelingFeaturelist class

method), 373
get() (datarobot.models.ModelJob class method), 529
get() (datarobot.models.ModelRecommendation class

method), 618
get() (datarobot.models.MulticategoricalHistogram

class method), 349
get() (datarobot.models.PairwiseConditionalProbabilities

class method), 352
get() (datarobot.models.PairwiseCorrelations class

method), 350
get() (datarobot.models.PairwiseJointProbabilities

class method), 351
get() (datarobot.models.PayoffMatrix class method),

551
get() (datarobot.models.prediction_explanations.PredictionExplanationsPage

class method), 563
get() (datarobot.models.PredictionDataset class

method), 557
get() (datarobot.models.Predictions class method), 568
get() (datarobot.models.PredictJob class method), 553
get() (datarobot.models.PrimeModel class method), 412
get() (datarobot.models.Project class method), 572
get() (datarobot.models.RatingTable class method), 616
get() (datarobot.models.RatingTableModel class

method), 501
get() (datarobot.models.RelationshipsConfiguration

method), 358
get() (datarobot.models.SecondaryDatasetConfigurations

method), 365
get() (datarobot.models.segmentation.SegmentationTask

class method), 626
get() (datarobot.models.ShapImpact class method), 627
get() (datarobot.models.ShapMatrix class method), 565
get() (datarobot.models.ShapMatrixJob class method),

379
get() (datarobot.models.training_predictions.TrainingPredictions

class method), 632
get() (datarobot.models.TrainingPredictionsJob class

method), 377
get() (datarobot.models.visualai.Image class method),

651
get() (datarobot.models.visualai.ImageAugmentationOptions

class method), 655
get() (datarobot.PredictionExplanations class method),

559

get() (datarobot.PredictionExplanationsInitialization
class method), 558

get() (datarobot.SegmentationTask class method), 624
get() (datarobot.UseCase class method), 635
get() (datarobot.UserBlueprint class method), 641
get_access_list() (datarobot.CalendarFile class

method), 213
get_access_list() (datarobot.CustomTask method),

260
get_access_list() (datarobot.DataSource method),

277
get_access_list() (datarobot.DataStore method),

273
get_access_list() (datarobot.models.Project

method), 608
get_accuracy() (datarobot.models.Deployment

method), 320
get_accuracy_over_time()

(datarobot.models.Deployment method),
321

get_accuracy_over_time_plot()
(datarobot.models.DatetimeModel method),
470

get_accuracy_over_time_plot_preview()
(datarobot.models.DatetimeModel method),
471

get_accuracy_over_time_plots_metadata()
(datarobot.models.DatetimeModel method),
470

get_active_combined_model()
(datarobot.models.Project method), 601

get_advanced_tuning_parameters()
(datarobot.models.BlenderModel method),
436

get_advanced_tuning_parameters()
(datarobot.models.DatetimeModel method),
479

get_advanced_tuning_parameters()
(datarobot.models.Model method), 407

get_advanced_tuning_parameters()
(datarobot.models.PrimeModel method),
413

get_advanced_tuning_parameters()
(datarobot.models.RatingTableModel method),
502

get_all() (datarobot.models.ModelRecommendation
class method), 618

get_all_as_dataframe()
(datarobot.models.Predictions method),
568

get_all_as_dataframe()
(datarobot.models.training_predictions.TrainingPredictions
method), 633

get_all_as_dataframe()

Index 737

DataRobot Python API Documentation, Release 3.2.2

(datarobot.PredictionExplanations method),
561

get_all_confusion_charts()
(datarobot.models.BlenderModel method),
438

get_all_confusion_charts()
(datarobot.models.DatetimeModel method),
481

get_all_confusion_charts()
(datarobot.models.Model method), 402

get_all_confusion_charts()
(datarobot.models.PrimeModel method),
415

get_all_confusion_charts()
(datarobot.models.RatingTableModel method),
504

get_all_feature_impacts()
(datarobot.models.BlenderModel method),
439

get_all_feature_impacts()
(datarobot.models.DatetimeModel method),
481

get_all_feature_impacts()
(datarobot.models.Model method), 391

get_all_feature_impacts()
(datarobot.models.PrimeModel method),
416

get_all_feature_impacts()
(datarobot.models.RatingTableModel method),
504

get_all_features() (datarobot.models.Dataset
method), 286

get_all_jobs() (datarobot.models.Project method),
600

get_all_lift_charts()
(datarobot.models.BlenderModel method),
439

get_all_lift_charts()
(datarobot.models.DatetimeModel method),
481

get_all_lift_charts() (datarobot.models.Model
method), 399

get_all_lift_charts()
(datarobot.models.PrimeModel method),
416

get_all_lift_charts()
(datarobot.models.RatingTableModel method),
505

get_all_multiclass_lift_charts()
(datarobot.models.BlenderModel method),
440

get_all_multiclass_lift_charts()
(datarobot.models.DatetimeModel method),
482

get_all_multiclass_lift_charts()
(datarobot.models.Model method), 400

get_all_multiclass_lift_charts()
(datarobot.models.PrimeModel method),
417

get_all_multiclass_lift_charts()
(datarobot.models.RatingTableModel method),
505

get_all_residuals_charts()
(datarobot.models.BlenderModel method),
440

get_all_residuals_charts()
(datarobot.models.DatetimeModel method),
482

get_all_residuals_charts()
(datarobot.models.Model method), 401

get_all_residuals_charts()
(datarobot.models.PrimeModel method),
417

get_all_residuals_charts()
(datarobot.models.RatingTableModel method),
506

get_all_roc_curves()
(datarobot.models.BlenderModel method),
440

get_all_roc_curves()
(datarobot.models.DatetimeModel method),
483

get_all_roc_curves() (datarobot.models.Model
method), 403

get_all_roc_curves()
(datarobot.models.PrimeModel method),
417

get_all_roc_curves()
(datarobot.models.RatingTableModel method),
506

get_allowed_country_codes()
(datarobot.CalendarFile class method),
210

get_anomaly_assessment_records()
(datarobot.models.DatetimeModel method),
476

get_anomaly_over_time_plot()
(datarobot.models.DatetimeModel method),
474

get_anomaly_over_time_plot_preview()
(datarobot.models.DatetimeModel method),
475

get_anomaly_over_time_plots_metadata()
(datarobot.models.DatetimeModel method),
474

get_api_parameters()
(datarobot.models.ClassListMode method),
566

738 Index

DataRobot Python API Documentation, Release 3.2.2

get_api_parameters()
(datarobot.models.TopPredictionsMode
method), 566

get_as_dataframe() (datarobot.models.Dataset
method), 288

get_as_dataframe() (datarobot.models.deployment.AccuracyOverTime
class method), 331

get_as_dataframe() (datarobot.models.ShapMatrix
method), 565

get_association_featurelists()
(datarobot.models.Project method), 590

get_association_id_settings()
(datarobot.models.Deployment method),
315

get_association_matrix_details()
(datarobot.models.Project method), 591

get_associations() (datarobot.models.Project
method), 590

get_available_tasks()
(datarobot.models.user_blueprints.models.UserBlueprintAvailableTasks
class method), 648

get_available_tasks() (datarobot.UserBlueprint
class method), 644

get_bias_and_fairness_settings()
(datarobot.models.Deployment method),
314

get_bias_mitigated_models()
(datarobot.models.Project method), 613

get_bias_mitigation_feature_info()
(datarobot.models.Project method), 614

get_blenders() (datarobot.models.Project method),
601

get_blueprints() (datarobot.models.Project method),
589

get_build_info() (datarobot.CustomModelVersionDependencyBuild
class method), 251

get_build_log() (datarobot.ExecutionEnvironmentVersion
method), 255

get_calculated_prediction_intervals()
(datarobot.models.DatetimeModel method),
469

get_challenger_models_settings()
(datarobot.models.Deployment method),
313

get_chart() (datarobot.models.Blueprint method), 205
get_client() (in module datarobot.client), 220
get_combined_models() (datarobot.models.Project

method), 601
get_confusion_chart()

(datarobot.models.BlenderModel method),
441

get_confusion_chart()
(datarobot.models.DatetimeModel method),
483

get_confusion_chart() (datarobot.models.Model
method), 402

get_confusion_chart()
(datarobot.models.PrimeModel method),
418

get_confusion_chart()
(datarobot.models.RatingTableModel method),
507

get_cross_class_accuracy_scores()
(datarobot.models.BlenderModel method),
441

get_cross_class_accuracy_scores()
(datarobot.models.DatetimeModel method),
484

get_cross_class_accuracy_scores()
(datarobot.models.Model method), 410

get_cross_class_accuracy_scores()
(datarobot.models.PrimeModel method),
418

get_cross_class_accuracy_scores()
(datarobot.models.RatingTableModel method),
507

get_cross_series_properties()
(datarobot.models.Feature method), 343

get_cross_validation_scores()
(datarobot.models.BlenderModel method),
441

get_cross_validation_scores()
(datarobot.models.DatetimeModel method),
464

get_cross_validation_scores()
(datarobot.models.Model method), 406

get_cross_validation_scores()
(datarobot.models.PrimeModel method),
418

get_cross_validation_scores()
(datarobot.models.RatingTableModel method),
507

get_data_disparity_insights()
(datarobot.models.BlenderModel method),
442

get_data_disparity_insights()
(datarobot.models.DatetimeModel method),
484

get_data_disparity_insights()
(datarobot.models.Model method), 410

get_data_disparity_insights()
(datarobot.models.PrimeModel method),
419

get_data_disparity_insights()
(datarobot.models.RatingTableModel method),
508

get_dataset() (datarobot.models.Project method), 585
get_datasets() (datarobot.models.Project method),

Index 739

DataRobot Python API Documentation, Release 3.2.2

585
get_datetime_models() (datarobot.models.Project

method), 584
get_default() (datarobot.models.compliance_doc_template.ComplianceDocTemplate

class method), 226
get_dependency_build()

(datarobot.CustomTaskVersion method),
265

get_details() (datarobot.models.Dataset method),
286

get_discarded_features()
(datarobot.models.Project method), 591

get_documents() (datarobot.models.Blueprint
method), 205

get_drift_tracking_settings()
(datarobot.models.Deployment method),
315

get_explanations() (datarobot.models.anomaly_assessment.AnomalyAssessmentRecord
method), 174

get_explanations_data_in_regions()
(datarobot.models.anomaly_assessment.AnomalyAssessmentRecord
method), 175

get_fairness_insights()
(datarobot.models.BlenderModel method),
442

get_fairness_insights()
(datarobot.models.DatetimeModel method),
484

get_fairness_insights() (datarobot.models.Model
method), 409

get_fairness_insights()
(datarobot.models.PrimeModel method),
419

get_fairness_insights()
(datarobot.models.RatingTableModel method),
508

get_fairness_scores_over_time()
(datarobot.models.Deployment method),
321

get_feature_drift() (datarobot.models.Deployment
method), 319

get_feature_effect()
(datarobot.models.BlenderModel method),
442

get_feature_effect()
(datarobot.models.DatetimeModel method),
467

get_feature_effect() (datarobot.models.Model
method), 394

get_feature_effect()
(datarobot.models.PrimeModel method),
419

get_feature_effect()
(datarobot.models.RatingTableModel method),

508
get_feature_effect_metadata()

(datarobot.models.BlenderModel method),
443

get_feature_effect_metadata()
(datarobot.models.DatetimeModel method),
466

get_feature_effect_metadata()
(datarobot.models.Model method), 393

get_feature_effect_metadata()
(datarobot.models.PrimeModel method),
420

get_feature_effect_metadata()
(datarobot.models.RatingTableModel method),
508

get_feature_effects_multiclass()
(datarobot.models.BlenderModel method),
443

get_feature_effects_multiclass()
(datarobot.models.DatetimeModel method),
468

get_feature_effects_multiclass()
(datarobot.models.Model method), 394

get_feature_effects_multiclass()
(datarobot.models.PrimeModel method),
420

get_feature_effects_multiclass()
(datarobot.models.RatingTableModel method),
509

get_feature_impact()
(datarobot.CustomModelVersion method),
247

get_feature_impact()
(datarobot.models.BlenderModel method),
443

get_feature_impact()
(datarobot.models.DatetimeModel method),
477

get_feature_impact() (datarobot.models.Model
method), 390

get_feature_impact()
(datarobot.models.PrimeModel method),
420

get_feature_impact()
(datarobot.models.RatingTableModel method),
509

get_featurelist_by_name()
(datarobot.models.Project method), 593

get_featurelists() (datarobot.models.Dataset
method), 287

get_featurelists() (datarobot.models.Project
method), 590

get_features() (datarobot.models.Deployment
method), 310

740 Index

DataRobot Python API Documentation, Release 3.2.2

get_features() (datarobot.models.Project method),
590

get_features_used()
(datarobot.models.BlenderModel method),
444

get_features_used()
(datarobot.models.DatetimeModel method),
484

get_features_used() (datarobot.models.Model
method), 385

get_features_used() (datarobot.models.PrimeModel
method), 421

get_features_used()
(datarobot.models.RatingTableModel method),
510

get_file() (datarobot.models.Dataset method), 287
get_forecast_vs_actual_plot()

(datarobot.models.DatetimeModel method),
472

get_forecast_vs_actual_plot_preview()
(datarobot.models.DatetimeModel method),
473

get_forecast_vs_actual_plots_metadata()
(datarobot.models.DatetimeModel method),
472

get_frozen_child_models()
(datarobot.models.BlenderModel method),
445

get_frozen_child_models()
(datarobot.models.DatetimeModel method),
484

get_frozen_child_models()
(datarobot.models.Model method), 405

get_frozen_child_models()
(datarobot.models.PrimeModel method),
422

get_frozen_child_models()
(datarobot.models.RatingTableModel method),
510

get_frozen_models() (datarobot.models.Project
method), 601

get_histogram() (datarobot.models.DatasetFeature
method), 347

get_histogram() (datarobot.models.Feature method),
345

get_input_data() (datarobot.DatetimePartitioning
class method), 546

get_input_types() (datarobot.models.user_blueprints.models.UserBlueprintAvailableInput
class method), 647

get_input_types() (datarobot.UserBlueprint class
method), 643

get_json() (datarobot.models.Blueprint method), 204
get_labelwise_roc_curves()

(datarobot.models.BlenderModel method),

445
get_labelwise_roc_curves()

(datarobot.models.DatetimeModel method),
485

get_labelwise_roc_curves()
(datarobot.models.Model method), 404

get_labelwise_roc_curves()
(datarobot.models.PrimeModel method),
422

get_labelwise_roc_curves()
(datarobot.models.RatingTableModel method),
510

get_latest() (datarobot.models.CustomModelVersionConversion
class method), 250

get_latest_explanations()
(datarobot.models.anomaly_assessment.AnomalyAssessmentRecord
method), 174

get_leaderboard_ui_permalink()
(datarobot.models.BlenderModel method),
445

get_leaderboard_ui_permalink()
(datarobot.models.DatetimeModel method),
485

get_leaderboard_ui_permalink()
(datarobot.models.Model method), 387

get_leaderboard_ui_permalink()
(datarobot.models.PrimeModel method),
422

get_leaderboard_ui_permalink()
(datarobot.models.Project method), 607

get_leaderboard_ui_permalink()
(datarobot.models.RatingTableModel method),
511

get_lift_chart() (datarobot.models.BlenderModel
method), 445

get_lift_chart() (datarobot.models.DatetimeModel
method), 485

get_lift_chart() (datarobot.models.Model method),
399

get_lift_chart() (datarobot.models.PrimeModel
method), 422

get_lift_chart() (datarobot.models.RatingTableModel
method), 511

get_log() (datarobot.CustomModelTest method), 240
get_log() (datarobot.CustomModelVersionDependencyBuild

method), 251
get_log_tail() (datarobot.CustomModelTest method),

240
get_metrics() (datarobot.models.Project method), 595
get_missing_report_info()

(datarobot.models.BlenderModel method),
446

get_missing_report_info()
(datarobot.models.DatetimeModel method),

Index 741

DataRobot Python API Documentation, Release 3.2.2

485
get_missing_report_info()

(datarobot.models.Model method), 405
get_missing_report_info()

(datarobot.models.PrimeModel method),
423

get_missing_report_info()
(datarobot.models.RatingTableModel method),
511

get_model() (datarobot.models.ModelJob class
method), 529

get_model() (datarobot.models.ModelRecommendation
method), 618

get_model_blueprint_chart()
(datarobot.models.BlenderModel method),
446

get_model_blueprint_chart()
(datarobot.models.DatetimeModel method),
486

get_model_blueprint_chart()
(datarobot.models.Model method), 405

get_model_blueprint_chart()
(datarobot.models.PrimeModel method),
423

get_model_blueprint_chart()
(datarobot.models.RatingTableModel method),
512

get_model_blueprint_documents()
(datarobot.models.BlenderModel method),
446

get_model_blueprint_documents()
(datarobot.models.DatetimeModel method),
486

get_model_blueprint_documents()
(datarobot.models.Model method), 405

get_model_blueprint_documents()
(datarobot.models.PrimeModel method),
423

get_model_blueprint_documents()
(datarobot.models.RatingTableModel method),
512

get_model_blueprint_json()
(datarobot.models.BlenderModel method),
446

get_model_blueprint_json()
(datarobot.models.DatetimeModel method),
486

get_model_blueprint_json()
(datarobot.models.Model method), 404

get_model_blueprint_json()
(datarobot.models.PrimeModel method),
423

get_model_blueprint_json()
(datarobot.models.RatingTableModel method),

512
get_model_jobs() (datarobot.models.Project method),

601
get_modeling_featurelists()

(datarobot.models.Project method), 591
get_modeling_features() (datarobot.models.Project

method), 590
get_models() (datarobot.models.Project method), 583
get_multicategorical_histogram()

(datarobot.models.Feature method), 344
get_multiclass_feature_impact()

(datarobot.models.BlenderModel method),
446

get_multiclass_feature_impact()
(datarobot.models.DatetimeModel method),
486

get_multiclass_feature_impact()
(datarobot.models.Model method), 392

get_multiclass_feature_impact()
(datarobot.models.PrimeModel method),
423

get_multiclass_feature_impact()
(datarobot.models.RatingTableModel method),
512

get_multiclass_lift_chart()
(datarobot.models.BlenderModel method),
446

get_multiclass_lift_chart()
(datarobot.models.DatetimeModel method),
486

get_multiclass_lift_chart()
(datarobot.models.Model method), 400

get_multiclass_lift_chart()
(datarobot.models.PrimeModel method),
423

get_multiclass_lift_chart()
(datarobot.models.RatingTableModel method),
512

get_multilabel_lift_charts()
(datarobot.models.BlenderModel method),
447

get_multilabel_lift_charts()
(datarobot.models.DatetimeModel method),
487

get_multilabel_lift_charts()
(datarobot.models.Model method), 400

get_multilabel_lift_charts()
(datarobot.models.PrimeModel method),
424

get_multilabel_lift_charts()
(datarobot.models.RatingTableModel method),
512

get_multiseries_names() (datarobot.models.Project
method), 613

742 Index

DataRobot Python API Documentation, Release 3.2.2

get_multiseries_properties()
(datarobot.models.Feature method), 343

get_num_iterations_trained()
(datarobot.models.BlenderModel method),
447

get_num_iterations_trained()
(datarobot.models.DatetimeModel method),
487

get_num_iterations_trained()
(datarobot.models.Model method), 386

get_num_iterations_trained()
(datarobot.models.PrimeModel method),
424

get_num_iterations_trained()
(datarobot.models.RatingTableModel method),
513

get_number_of_explained_classes()
(datarobot.PredictionExplanations method),
561

get_optimized() (datarobot.DatetimePartitioning
class method), 543

get_options() (datarobot.models.Project method), 572
get_or_request_feature_effect()

(datarobot.models.BlenderModel method),
447

get_or_request_feature_effect()
(datarobot.models.DatetimeModel method),
468

get_or_request_feature_effect()
(datarobot.models.Model method), 395

get_or_request_feature_effect()
(datarobot.models.PrimeModel method),
424

get_or_request_feature_effect()
(datarobot.models.RatingTableModel method),
513

get_or_request_feature_effects_multiclass()
(datarobot.models.BlenderModel method), 448

get_or_request_feature_effects_multiclass()
(datarobot.models.DatetimeModel method),
469

get_or_request_feature_effects_multiclass()
(datarobot.models.Model method), 395

get_or_request_feature_effects_multiclass()
(datarobot.models.PrimeModel method), 425

get_or_request_feature_effects_multiclass()
(datarobot.models.RatingTableModel method),
513

get_or_request_feature_impact()
(datarobot.models.BlenderModel method),
448

get_or_request_feature_impact()
(datarobot.models.DatetimeModel method),
478

get_or_request_feature_impact()
(datarobot.models.Model method), 393

get_or_request_feature_impact()
(datarobot.models.PrimeModel method),
425

get_or_request_feature_impact()
(datarobot.models.RatingTableModel method),
514

get_pairwise_conditional_probabilities()
(datarobot.models.Feature method), 344

get_pairwise_correlations()
(datarobot.models.Feature method), 344

get_pairwise_joint_probabilities()
(datarobot.models.Feature method), 344

get_parameter_names()
(datarobot.models.advanced_tuning.AdvancedTuningSession
method), 527

get_parameters() (datarobot.models.advanced_tuning.AdvancedTuningSession
method), 527

get_parameters() (datarobot.models.BlenderModel
method), 448

get_parameters() (datarobot.models.DatetimeModel
method), 487

get_parameters() (datarobot.models.Model method),
398

get_parameters() (datarobot.models.PrimeModel
method), 425

get_parameters() (datarobot.models.RatingTableModel
method), 514

get_pareto_front() (datarobot.models.BlenderModel
method), 448

get_pareto_front() (datarobot.models.DatetimeModel
method), 487

get_pareto_front() (datarobot.models.Model
method), 402

get_pareto_front() (datarobot.models.PrimeModel
method), 425

get_pareto_front() (datarobot.models.RatingTableModel
method), 514

get_predict_jobs() (datarobot.models.Project
method), 602

get_prediction_explanations_page()
(datarobot.PredictionExplanations method),
562

get_prediction_intervals_settings()
(datarobot.models.Deployment method),
317

get_prediction_results()
(datarobot.models.Deployment method),
322

get_prediction_warning_settings()
(datarobot.models.Deployment method),
316

get_predictions() (datarobot.models.PredictJob

Index 743

DataRobot Python API Documentation, Release 3.2.2

class method), 554
get_predictions_by_forecast_date_settings()

(datarobot.models.Deployment method), 312
get_predictions_data_collection_settings()

(datarobot.models.Deployment method), 316
get_predictions_over_time()

(datarobot.models.Deployment method),
320

get_predictions_preview()
(datarobot.models.anomaly_assessment.AnomalyAssessmentRecord
method), 174

get_prime_eligibility()
(datarobot.models.BlenderModel method),
448

get_prime_eligibility()
(datarobot.models.DatetimeModel method),
487

get_prime_eligibility() (datarobot.models.Model
method), 395

get_prime_eligibility()
(datarobot.models.PrimeModel method),
425

get_prime_eligibility()
(datarobot.models.RatingTableModel method),
514

get_prime_files() (datarobot.models.Project
method), 585

get_prime_models() (datarobot.models.Project
method), 585

get_projects() (datarobot.models.Dataset method),
288

get_rating_table_models()
(datarobot.models.Project method), 608

get_rating_tables() (datarobot.models.Project
method), 608

get_recommendation()
(datarobot.models.ModelRecommendation
class method), 618

get_relationships_configuration()
(datarobot.models.Project method), 611

get_residuals_chart()
(datarobot.models.BlenderModel method),
449

get_residuals_chart()
(datarobot.models.DatetimeModel method),
488

get_residuals_chart() (datarobot.models.Model
method), 401

get_residuals_chart()
(datarobot.models.PrimeModel method),
426

get_residuals_chart()
(datarobot.models.RatingTableModel method),
514

get_result() (datarobot.models.FeatureImpactJob
method), 381

get_result() (datarobot.models.Job method), 376
get_result() (datarobot.models.ModelJob method),

529
get_result() (datarobot.models.PredictJob method),

554
get_result() (datarobot.models.ShapMatrixJob

method), 379
get_result() (datarobot.models.TrainingPredictionsJob

method), 378
get_result_when_complete()

(datarobot.models.FeatureImpactJob method),
381

get_result_when_complete() (datarobot.models.Job
method), 377

get_result_when_complete()
(datarobot.models.ModelJob method), 530

get_result_when_complete()
(datarobot.models.PredictJob method), 555

get_result_when_complete()
(datarobot.models.ShapMatrixJob method),
380

get_result_when_complete()
(datarobot.models.StatusCheckJob method),
203

get_result_when_complete()
(datarobot.models.TrainingPredictionsJob
method), 378

get_roc_curve() (datarobot.models.BlenderModel
method), 449

get_roc_curve() (datarobot.models.DatetimeModel
method), 488

get_roc_curve() (datarobot.models.Model method),
403

get_roc_curve() (datarobot.models.PrimeModel
method), 426

get_roc_curve() (datarobot.models.RatingTableModel
method), 515

get_rows() (datarobot.PredictionExplanations
method), 560

get_rulesets() (datarobot.models.BlenderModel
method), 450

get_rulesets() (datarobot.models.DatetimeModel
method), 488

get_rulesets() (datarobot.models.Model method),
396

get_rulesets() (datarobot.models.PrimeModel
method), 427

get_rulesets() (datarobot.models.RatingTableModel
method), 515

get_secondary_dataset_config()
(datarobot.models.Deployment method),
322

744 Index

DataRobot Python API Documentation, Release 3.2.2

get_segment_analysis_settings()
(datarobot.models.Deployment method),
313

get_segments_as_csv() (datarobot.CombinedModel
method), 621

get_segments_as_dataframe()
(datarobot.CombinedModel method), 621

get_segments_info() (datarobot.CombinedModel
method), 621

get_segments_models() (datarobot.models.Project
method), 601

get_series_accuracy_as_dataframe()
(datarobot.models.DatetimeModel method),
464

get_series_clusters()
(datarobot.models.DatetimeModel method),
465

get_service_stats() (datarobot.models.Deployment
method), 318

get_service_stats_over_time()
(datarobot.models.Deployment method),
319

get_shared_roles() (datarobot.DataStore method),
273

get_shared_roles() (datarobot.UseCase method),
638

get_size_info() (datarobot.models.data_slice.DataSlice
method), 661

get_status() (datarobot.models.BatchMonitoringJob
method), 197

get_status() (datarobot.models.BatchPredictionJob
method), 188

get_status() (datarobot.models.Project method), 595
get_status() (datarobot.models.StatusCheckJob

method), 203
get_supported_capabilities()

(datarobot.models.BlenderModel method),
450

get_supported_capabilities()
(datarobot.models.DatetimeModel method),
489

get_supported_capabilities()
(datarobot.models.Model method), 386

get_supported_capabilities()
(datarobot.models.PrimeModel method),
427

get_supported_capabilities()
(datarobot.models.RatingTableModel method),
516

get_target_drift() (datarobot.models.Deployment
method), 319

get_task_names() (datarobot.models.advanced_tuning.AdvancedTuningSession
method), 526

get_top_model() (datarobot.models.Project method),

584
get_uri() (datarobot.models.BlenderModel method),

450
get_uri() (datarobot.models.Dataset method), 279
get_uri() (datarobot.models.DatetimeModel method),

489
get_uri() (datarobot.models.Deployment method), 308
get_uri() (datarobot.models.Model method), 386
get_uri() (datarobot.models.PrimeModel method), 427
get_uri() (datarobot.models.Project method), 607
get_uri() (datarobot.models.RatingTableModel

method), 516
get_word_cloud() (datarobot.models.BlenderModel

method), 450
get_word_cloud() (datarobot.models.DatetimeModel

method), 489
get_word_cloud() (datarobot.models.Model method),

404
get_word_cloud() (datarobot.models.PrimeModel

method), 427
get_word_cloud() (datarobot.models.RatingTableModel

method), 516
GroupCV (class in datarobot), 532
GroupTVH (class in datarobot), 533

H
HoldoutData (class in

datarobot.models.custom_model_version),
256

I
id (datarobot.models.dataset.ProjectLocation property),

293
Image (class in datarobot.models.visualai), 650
ImageActivationMap (class in

datarobot.models.visualai), 653
ImageAugmentationList (class in

datarobot.models.visualai), 655
ImageAugmentationOptions (class in

datarobot.models.visualai), 654
ImageAugmentationSample (class in

datarobot.models.visualai), 657
ImageEmbedding (class in datarobot.models.visualai),

652
ImportedModel (class in datarobot.models), 498
initialize_anomaly_assessment()

(datarobot.models.DatetimeModel method),
476

initialize_model_compliance()
(datarobot.models.automated_documentation.AutomatedDocument
method), 214

insights (datarobot.models.ClusteringModel property),
222

Index 745

DataRobot Python API Documentation, Release 3.2.2

insights (datarobot.models.model.ClusteringModel
property), 76

InteractionFeature (class in datarobot.models), 348
is_model_compliance_initialized

(datarobot.models.automated_documentation.AutomatedDocument
property), 214

is_multiclass() (datarobot.PredictionExplanations
method), 560

is_unsupervised_clustering_or_multiclass()
(datarobot.PredictionExplanations method),
560

iterate() (datarobot.models.Dataset class method),
284

iterate_all_features() (datarobot.models.Dataset
method), 286

iterate_rows() (datarobot.models.training_predictions.TrainingPredictions
method), 633

J
Job (class in datarobot.models), 376
JobStatusResult (class in datarobot.models), 203

L
LabelwiseRocCurve (class in

datarobot.models.roc_curve), 619
LiftChart (class in datarobot.models.lift_chart), 382
list() (datarobot.Application class method), 179
list() (datarobot.CalendarFile class method), 210
list() (datarobot.Connector class method), 268
list() (datarobot.CustomInferenceModel class

method), 234
list() (datarobot.CustomModelTest class method), 239
list() (datarobot.CustomModelVersion class method),

246
list() (datarobot.CustomTask class method), 257
list() (datarobot.CustomTaskVersion class method),

263
list() (datarobot.DataDriver class method), 265
list() (datarobot.DataSource class method), 275
list() (datarobot.DataStore class method), 270
list() (datarobot.ExecutionEnvironment class method),

252
list() (datarobot.ExecutionEnvironmentVersion class

method), 254
list() (datarobot.ExternalLiftChart class method), 339
list() (datarobot.ExternalRocCurve class method), 340
list() (datarobot.ExternalScores class method), 339
list() (datarobot.models.anomaly_assessment.AnomalyAssessmentRecord

class method), 173
list() (datarobot.models.BatchMonitoringJobDefinition

class method), 198
list() (datarobot.models.BatchPredictionJobDefinition

class method), 189

list() (datarobot.models.cluster.Cluster class method),
223

list() (datarobot.models.compliance_doc_template.ComplianceDocTemplate
class method), 227

list() (datarobot.models.Credential class method), 229
list() (datarobot.models.CustomModelVersionConversion

class method), 250
list() (datarobot.models.data_slice.DataSlice class

method), 659
list() (datarobot.models.Dataset class method), 284
list() (datarobot.models.Deployment class method),

305
list() (datarobot.models.deployment.FeatureDrift class

method), 328
list() (datarobot.models.ImportedModel class

method), 499
list() (datarobot.models.model.Cluster class method),

77
list() (datarobot.models.PayoffMatrix class method),

550
list() (datarobot.models.Predictions class method),

568
list() (datarobot.models.Project class method), 578
list() (datarobot.models.SecondaryDatasetConfigurations

class method), 366
list() (datarobot.models.segmentation.SegmentationTask

class method), 626
list() (datarobot.models.ShapMatrix class method),

565
list() (datarobot.models.training_predictions.TrainingPredictions

class method), 632
list() (datarobot.models.visualai.DuplicateImage class

method), 651
list() (datarobot.models.visualai.ImageActivationMap

class method), 654
list() (datarobot.models.visualai.ImageAugmentationList

class method), 656
list() (datarobot.models.visualai.ImageAugmentationSample

class method), 657
list() (datarobot.models.visualai.ImageEmbedding

class method), 653
list() (datarobot.models.visualai.SampleImage class

method), 651
list() (datarobot.PredictionExplanations class

method), 560
list() (datarobot.PredictionServer class method), 569
list() (datarobot.SegmentationTask class method), 623
list() (datarobot.SegmentInfo class method), 624
list() (datarobot.UseCase class method), 635
list() (datarobot.UserBlueprint class method), 640
list_advanced_options() (datarobot.models.Project

method), 606
list_applications() (datarobot.UseCase method),

639

746 Index

DataRobot Python API Documentation, Release 3.2.2

list_available_document_types()
(datarobot.models.automated_documentation.AutomatedDocument
class method), 214

list_by_status() (datarobot.models.BatchPredictionJob
class method), 188

list_datasets() (datarobot.UseCase method), 638
list_datetime_partition_spec()

(datarobot.models.Project method), 615
list_generated_documents()

(datarobot.models.automated_documentation.AutomatedDocument
class method), 217

list_projects() (datarobot.UseCase method), 638
list_shared_roles() (datarobot.models.Deployment

method), 324
list_shared_roles() (datarobot.UserBlueprint class

method), 645

M
metric_baselines (datarobot.models.deployment.Accuracy

property), 330
metric_values (datarobot.models.deployment.Accuracy

property), 330
MissingValuesReport (class in

datarobot.models.missing_report), 383
Model (class in datarobot.models), 384
ModelBlueprintChart (class in datarobot.models), 206
ModelingFeature (class in datarobot.models), 345
ModelingFeaturelist (class in datarobot.models), 372
ModelJob (class in datarobot.models), 528
ModelRecommendation (class in datarobot.models), 618
models() (datarobot.models.visualai.ImageActivationMap

class method), 654
models() (datarobot.models.visualai.ImageEmbedding

class method), 652
modify() (datarobot.models.Dataset method), 285
module

datarobot.client, 219
datarobot.models.training_predictions,

629
most_frequent() (datarobot.models.word_cloud.WordCloud

method), 658
most_important() (datarobot.models.word_cloud.WordCloud

method), 658
MulticategoricalHistogram (class in

datarobot.models), 349

N
ngrams_per_class() (datarobot.models.word_cloud.WordCloud

method), 658

O
open_in_browser() (datarobot.models.BlenderModel

method), 450

open_in_browser() (datarobot.models.Dataset
method), 291

open_in_browser() (datarobot.models.DatetimeModel
method), 489

open_in_browser() (datarobot.models.Deployment
method), 325

open_in_browser() (datarobot.models.Model method),
410

open_in_browser() (datarobot.models.PrimeModel
method), 427

open_in_browser() (datarobot.models.Project
method), 615

open_in_browser() (datarobot.models.RatingTableModel
method), 516

open_in_browser() (datarobot.rest.RESTClientObject
method), 221

open_leaderboard_browser()
(datarobot.models.Project method), 607

open_model_browser()
(datarobot.models.BlenderModel method),
451

open_model_browser()
(datarobot.models.DatetimeModel method),
490

open_model_browser() (datarobot.models.Model
method), 387

open_model_browser()
(datarobot.models.PrimeModel method),
428

open_model_browser()
(datarobot.models.RatingTableModel method),
516

P
PairwiseConditionalProbabilities (class in

datarobot.models), 351
PairwiseCorrelations (class in datarobot.models),

350
PairwiseJointProbabilities (class in

datarobot.models), 350
ParetoFront (class in datarobot.models.pareto_front),

531
pause_autopilot() (datarobot.models.Project

method), 596
PayoffMatrix (class in datarobot.models), 550
percent_changes (datarobot.models.deployment.Accuracy

property), 330
Periodicity (class in datarobot), 538
predict_batch() (datarobot.models.Deployment

method), 307
PredictionDataset (class in datarobot.models), 556
PredictionExplanations (class in datarobot), 558
PredictionExplanationsInitialization (class in

datarobot), 558

Index 747

DataRobot Python API Documentation, Release 3.2.2

PredictionExplanationsPage (class in
datarobot.models.prediction_explanations),
563

PredictionExplanationsRow (class in
datarobot.models.prediction_explanations),
562

PredictionIntervalsSettings (class in
datarobot.models.deployment.deployment),
336

Predictions (class in datarobot.models), 566
PredictionServer (class in datarobot), 569
PredictionsOverTime (class in

datarobot.models.deployment), 329
PredictionWarningSettings (class in

datarobot.models.deployment.deployment),
336

PredictJob (class in datarobot.models), 553
prep_payload() (datarobot.DatetimePartitioningSpecification

method), 536
prep_payload() (datarobot.helpers.partitioning_methods.DatetimePartitioningId

method), 547
prepare_prediction_dataset()

(datarobot.DataEngineQueryGenerator
method), 295

prepare_prediction_dataset_from_catalog()
(datarobot.DataEngineQueryGenerator
method), 295

PrimeFile (class in datarobot.models), 570
PrimeModel (class in datarobot.models), 411
Project (class in datarobot.models), 570
ProjectLocation (class in datarobot.models.dataset),

293

R
RandomCV (class in datarobot), 532
RandomTVH (class in datarobot), 532
RatingTable (class in datarobot.models), 616
RatingTableModel (class in datarobot.models), 499
recommended_model() (datarobot.models.Project

method), 584
refresh() (datarobot.CustomInferenceModel method),

237
refresh() (datarobot.CustomModelTest method), 240
refresh() (datarobot.CustomModelVersion method),

247
refresh() (datarobot.CustomModelVersionDependencyBuild

method), 251
refresh() (datarobot.CustomTask method), 260
refresh() (datarobot.CustomTaskVersion method), 264
refresh() (datarobot.ExecutionEnvironment method),

253
refresh() (datarobot.ExecutionEnvironmentVersion

method), 256

refresh() (datarobot.models.FeatureImpactJob
method), 382

refresh() (datarobot.models.Job method), 377
refresh() (datarobot.models.ModelJob method), 530
refresh() (datarobot.models.PredictJob method), 555
refresh() (datarobot.models.Project method), 579
refresh() (datarobot.models.ShapMatrixJob method),

379
refresh() (datarobot.models.TrainingPredictionsJob

method), 378
RegionExplanationsData (class in datarobot.models),

634
Relationship (class in

datarobot.helpers.feature_discovery), 360
RelationshipsConfiguration (class in

datarobot.models), 355
remove() (datarobot.UseCase method), 637
rename() (datarobot.models.Project method), 603
rename() (datarobot.models.RatingTable method), 617
replace() (datarobot.models.RelationshipsConfiguration

method), 359
replace_model() (datarobot.models.Deployment

method), 308
request_approximation()

(datarobot.models.BlenderModel method),
451

request_approximation()
(datarobot.models.DatetimeModel method),
490

request_approximation() (datarobot.models.Model
method), 396

request_approximation()
(datarobot.models.RatingTableModel method),
516

request_bias_mitigation_feature_info()
(datarobot.models.Project method), 614

request_cross_class_accuracy_scores()
(datarobot.models.BlenderModel method),
451

request_cross_class_accuracy_scores()
(datarobot.models.DatetimeModel method),
490

request_cross_class_accuracy_scores()
(datarobot.models.Model method), 410

request_cross_class_accuracy_scores()
(datarobot.models.PrimeModel method),
428

request_cross_class_accuracy_scores()
(datarobot.models.RatingTableModel method),
517

request_data_disparity_insights()
(datarobot.models.BlenderModel method),
451

request_data_disparity_insights()

748 Index

DataRobot Python API Documentation, Release 3.2.2

(datarobot.models.DatetimeModel method),
490

request_data_disparity_insights()
(datarobot.models.Model method), 409

request_data_disparity_insights()
(datarobot.models.PrimeModel method),
428

request_data_disparity_insights()
(datarobot.models.RatingTableModel method),
517

request_download_validation()
(datarobot.models.PrimeModel method),
412

request_external_test()
(datarobot.models.BlenderModel method),
451

request_external_test()
(datarobot.models.DatetimeModel method),
490

request_external_test() (datarobot.models.Model
method), 393

request_external_test()
(datarobot.models.PrimeModel method),
428

request_external_test()
(datarobot.models.RatingTableModel method),
517

request_fairness_insights()
(datarobot.models.BlenderModel method),
451

request_fairness_insights()
(datarobot.models.DatetimeModel method),
490

request_fairness_insights()
(datarobot.models.Model method), 409

request_fairness_insights()
(datarobot.models.PrimeModel method),
428

request_fairness_insights()
(datarobot.models.RatingTableModel method),
517

request_feature_effect()
(datarobot.models.BlenderModel method),
452

request_feature_effect()
(datarobot.models.DatetimeModel method),
467

request_feature_effect() (datarobot.models.Model
method), 393

request_feature_effect()
(datarobot.models.PrimeModel method),
428

request_feature_effect()
(datarobot.models.RatingTableModel method),

517
request_feature_effects_multiclass()

(datarobot.models.BlenderModel method),
452

request_feature_effects_multiclass()
(datarobot.models.DatetimeModel method),
468

request_feature_effects_multiclass()
(datarobot.models.Model method), 394

request_feature_effects_multiclass()
(datarobot.models.PrimeModel method),
429

request_feature_effects_multiclass()
(datarobot.models.RatingTableModel method),
518

request_feature_impact()
(datarobot.models.BlenderModel method),
452

request_feature_impact()
(datarobot.models.DatetimeModel method),
477

request_feature_impact() (datarobot.models.Model
method), 392

request_feature_impact()
(datarobot.models.PrimeModel method),
429

request_feature_impact()
(datarobot.models.RatingTableModel method),
518

request_frozen_datetime_model()
(datarobot.CombinedModel method), 622

request_frozen_datetime_model()
(datarobot.models.BlenderModel method),
453

request_frozen_datetime_model()
(datarobot.models.DatetimeModel method),
490

request_frozen_datetime_model()
(datarobot.models.Model method), 397

request_frozen_datetime_model()
(datarobot.models.RatingTableModel method),
518

request_frozen_model() (datarobot.CombinedModel
method), 622

request_frozen_model()
(datarobot.models.BlenderModel method),
454

request_frozen_model() (datarobot.models.Model
method), 397

request_frozen_model()
(datarobot.models.RatingTableModel method),
519

request_lift_chart()
(datarobot.models.BlenderModel method),

Index 749

DataRobot Python API Documentation, Release 3.2.2

454
request_lift_chart()

(datarobot.models.DatetimeModel method),
491

request_lift_chart() (datarobot.models.Model
method), 398

request_lift_chart()
(datarobot.models.PrimeModel method),
429

request_lift_chart()
(datarobot.models.RatingTableModel method),
520

request_model() (datarobot.models.Ruleset method),
620

request_predictions()
(datarobot.models.BlenderModel method),
454

request_predictions()
(datarobot.models.DatetimeModel method),
492

request_predictions() (datarobot.models.Model
method), 389

request_predictions()
(datarobot.models.PrimeModel method),
430

request_predictions()
(datarobot.models.RatingTableModel method),
520

request_residuals_chart()
(datarobot.models.BlenderModel method),
455

request_residuals_chart()
(datarobot.models.DatetimeModel method),
493

request_residuals_chart()
(datarobot.models.Model method), 402

request_residuals_chart()
(datarobot.models.PrimeModel method),
431

request_residuals_chart()
(datarobot.models.RatingTableModel method),
521

request_roc_curve()
(datarobot.models.BlenderModel method),
456

request_roc_curve()
(datarobot.models.DatetimeModel method),
493

request_roc_curve() (datarobot.models.Model
method), 399

request_roc_curve() (datarobot.models.PrimeModel
method), 431

request_roc_curve()
(datarobot.models.RatingTableModel method),

522
request_size() (datarobot.models.data_slice.DataSlice

method), 660
request_training_predictions()

(datarobot.models.BlenderModel method),
456

request_training_predictions()
(datarobot.models.DatetimeModel method),
464

request_training_predictions()
(datarobot.models.Model method), 405

request_training_predictions()
(datarobot.models.PrimeModel method),
432

request_training_predictions()
(datarobot.models.RatingTableModel method),
522

request_transferable_export()
(datarobot.models.BlenderModel method),
457

request_transferable_export()
(datarobot.models.DatetimeModel method),
494

request_transferable_export()
(datarobot.models.Model method), 396

request_transferable_export()
(datarobot.models.PrimeModel method),
432

request_transferable_export()
(datarobot.models.RatingTableModel method),
522

RequiredMetadataKey (class in
datarobot.models.execution_environment),
248

restart_segment() (datarobot.models.Project
method), 613

RESTClientObject (class in datarobot.rest), 221
restore() (datarobot.models.restore_discarded_features.DiscardedFeaturesInfo

class method), 375
restore_discarded_features()

(datarobot.models.Project method), 592
retrain() (datarobot.CombinedModel method), 622
retrain() (datarobot.models.BlenderModel method),

457
retrain() (datarobot.models.DatetimeModel method),

465
retrain() (datarobot.models.Model method), 389
retrain() (datarobot.models.PrimeModel method), 433
retrain() (datarobot.models.RatingTableModel

method), 523
retrieve() (datarobot.models.restore_discarded_features.DiscardedFeaturesInfo

class method), 375
retrieve_samples() (datarobot.models.visualai.ImageAugmentationList

method), 656

750 Index

DataRobot Python API Documentation, Release 3.2.2

RocCurve (class in datarobot.models.roc_curve), 619
RocCurveEstimatedMetric (class in

datarobot.models), 634
Ruleset (class in datarobot.models), 620
run() (datarobot.models.advanced_tuning.AdvancedTuningSession

method), 528
run() (datarobot.models.BatchMonitoringJob class

method), 194
run_conversion() (datarobot.models.CustomModelVersionConversion

class method), 248
run_on_schedule() (datarobot.models.BatchMonitoringJobDefinition

method), 201
run_on_schedule() (datarobot.models.BatchPredictionJobDefinition

method), 192
run_once() (datarobot.models.BatchMonitoringJobDefinition

method), 202
run_once() (datarobot.models.BatchPredictionJobDefinition

method), 193

S
SampleImage (class in datarobot.models.visualai), 651
schemas() (datarobot.DataStore method), 272
SchemasResponse (class in

datarobot.models.data_store), 296
score() (datarobot.models.BatchPredictionJob class

method), 180
score_azure() (datarobot.models.BatchPredictionJob

class method), 186
score_backtests() (datarobot.models.DatetimeModel

method), 463
score_from_existing()

(datarobot.models.BatchPredictionJob class
method), 187

score_gcp() (datarobot.models.BatchPredictionJob
class method), 186

score_pandas() (datarobot.models.BatchPredictionJob
class method), 187

score_s3() (datarobot.models.BatchPredictionJob
class method), 186

score_to_file() (datarobot.models.BatchPredictionJob
class method), 184

search_catalog() (datarobot.models.user_blueprints.models.UserBlueprintCatalogSearch
class method), 650

search_catalog() (datarobot.UserBlueprint class
method), 646

SecondaryDataset (class in
datarobot.helpers.feature_discovery), 367

SecondaryDatasetConfigurations (class in
datarobot.models), 363

sections_to_json_file()
(datarobot.models.compliance_doc_template.ComplianceDocTemplate
method), 227

SegmentAnalysisSettings (class in
datarobot.models.deployment.deployment),

335
SegmentationTask (class in datarobot), 622
SegmentationTask (class in

datarobot.models.segmentation), 624
SegmentationTaskCreatedResponse (class in

datarobot.models.segmentation), 626
SegmentInfo (class in datarobot), 624
ServiceStats (class in datarobot.models.deployment),

325
ServiceStatsOverTime (class in

datarobot.models.deployment), 326
set_advanced_options() (datarobot.models.Project

method), 603
set_client() (in module datarobot.client), 220
set_datetime_partitioning()

(datarobot.models.Project method), 615
set_options() (datarobot.models.Project method), 571
set_parameter() (datarobot.models.advanced_tuning.AdvancedTuningSession

method), 527
set_partitioning_method()

(datarobot.models.Project method), 606
set_prediction_threshold()

(datarobot.models.BlenderModel method),
458

set_prediction_threshold()
(datarobot.models.DatetimeModel method),
494

set_prediction_threshold()
(datarobot.models.Model method), 409

set_prediction_threshold()
(datarobot.models.PrimeModel method),
433

set_prediction_threshold()
(datarobot.models.RatingTableModel method),
523

set_project_description()
(datarobot.models.Project method), 603

set_segment_champion() (datarobot.CombinedModel
class method), 621

set_target() (datarobot.models.Project method), 581
set_worker_count() (datarobot.models.Project

method), 603
ShapImpact (class in datarobot.models), 627
ShapleyFeatureContribution (class in

datarobot.models), 634
ShapMatrix (class in datarobot.models), 564
ShapMatrixJob (class in datarobot.models), 379
share() (datarobot.CalendarFile class method), 212
share() (datarobot.CustomTask method), 260
share() (datarobot.DataSource method), 277
share() (datarobot.DataStore method), 273
share() (datarobot.models.Dataset method), 285
share() (datarobot.models.Project method), 608
share() (datarobot.UseCase method), 637

Index 751

DataRobot Python API Documentation, Release 3.2.2

SharingAccess (class in datarobot), 628
SharingRole (class in datarobot.models.sharing), 629
Solution (class in datarobot.models.pareto_front), 531
star_model() (datarobot.models.BlenderModel

method), 458
star_model() (datarobot.models.DatetimeModel

method), 494
star_model() (datarobot.models.Model method), 409
star_model() (datarobot.models.PrimeModel method),

433
star_model() (datarobot.models.RatingTableModel

method), 524
start() (datarobot.models.Project class method), 576
start_advanced_tuning_session()

(datarobot.models.BlenderModel method),
458

start_advanced_tuning_session()
(datarobot.models.DatetimeModel method),
494

start_advanced_tuning_session()
(datarobot.models.Model method), 408

start_advanced_tuning_session()
(datarobot.models.PrimeModel method),
433

start_advanced_tuning_session()
(datarobot.models.RatingTableModel method),
524

start_autopilot() (datarobot.models.Project
method), 596

start_build() (datarobot.CustomModelVersionDependencyBuild
class method), 251

start_dependency_build()
(datarobot.CustomTaskVersion method),
264

start_dependency_build_and_wait()
(datarobot.CustomTaskVersion method),
264

start_prepare_model_for_deployment()
(datarobot.models.Project method), 600

status (datarobot.models.JobStatusResult property),
204

status_id (datarobot.models.JobStatusResult prop-
erty), 204

StatusCheckJob (class in datarobot.models), 203
stop_conversion() (datarobot.models.CustomModelVersionConversion

class method), 249
StratifiedCV (class in datarobot), 532
StratifiedTVH (class in datarobot), 533
submit_actuals() (datarobot.models.Deployment

method), 310
submit_actuals_from_catalog_async()

(datarobot.models.Deployment method),
311

T
tables() (datarobot.DataStore method), 272
TablesResponse (class in

datarobot.models.data_store), 296
TargetDrift (class in datarobot.models.deployment),

327
test() (datarobot.DataStore method), 271
TestResponse (class in datarobot.models.data_store),

296
to_dataframe() (datarobot.DatetimePartitioning

method), 545
to_dataframe() (datarobot.helpers.partitioning_methods.Backtest

method), 549
to_dataframe() (datarobot.models.MulticategoricalHistogram

method), 349
to_dataset() (datarobot.DatasetDetails method), 293
to_graphviz() (datarobot.models.BlueprintChart

method), 206
to_graphviz() (datarobot.models.ModelBlueprintChart

method), 206
to_specification() (datarobot.DatetimePartitioning

method), 545
to_specification() (datarobot.helpers.partitioning_methods.Backtest

method), 548
TopPredictionsMode (class in datarobot.models), 566
train() (datarobot.CombinedModel method), 621
train() (datarobot.models.BlenderModel method), 458
train() (datarobot.models.Model method), 387
train() (datarobot.models.Project method), 597
train() (datarobot.models.RatingTableModel method),

524
train_datetime() (datarobot.CombinedModel

method), 622
train_datetime() (datarobot.models.BlenderModel

method), 459
train_datetime() (datarobot.models.DatetimeModel

method), 495
train_datetime() (datarobot.models.Model method),

388
train_datetime() (datarobot.models.Project method),

598
train_datetime() (datarobot.models.RatingTableModel

method), 525
TrainingData (class in

datarobot.models.custom_model_version),
256

TrainingPredictions (class in
datarobot.models.training_predictions), 631

TrainingPredictionsIterator (class in
datarobot.models.training_predictions), 629

TrainingPredictionsJob (class in datarobot.models),
377

752 Index

DataRobot Python API Documentation, Release 3.2.2

U
un_delete() (datarobot.models.Dataset class method),

284
unlock_holdout() (datarobot.models.Project method),

603
unpause_autopilot() (datarobot.models.Project

method), 596
unstar_model() (datarobot.models.BlenderModel

method), 460
unstar_model() (datarobot.models.DatetimeModel

method), 496
unstar_model() (datarobot.models.Model method),

409
unstar_model() (datarobot.models.PrimeModel

method), 434
unstar_model() (datarobot.models.RatingTableModel

method), 526
update() (datarobot.Connector method), 269
update() (datarobot.CustomInferenceModel method),

236
update() (datarobot.CustomModelVersion method), 247
update() (datarobot.CustomTask method), 259
update() (datarobot.CustomTaskVersion method), 264
update() (datarobot.DataDriver method), 267
update() (datarobot.DatasetFeaturelist method), 370
update() (datarobot.DataSource method), 276
update() (datarobot.DataStore method), 271
update() (datarobot.DatetimePartitioningSpecification

method), 536
update() (datarobot.ExecutionEnvironment method),

253
update() (datarobot.helpers.partitioning_methods.DatetimePartitioningId

method), 547
update() (datarobot.models.BatchMonitoringJobDefinition

method), 200
update() (datarobot.models.BatchPredictionJobDefinition

method), 191
update() (datarobot.models.compliance_doc_template.ComplianceDocTemplate

method), 227
update() (datarobot.models.Credential method), 232
update() (datarobot.models.Dataset method), 285
update() (datarobot.models.Deployment method), 308
update() (datarobot.models.Featurelist method), 372
update() (datarobot.models.ImportedModel method),

499
update() (datarobot.models.ModelingFeaturelist

method), 373
update() (datarobot.models.PayoffMatrix class

method), 551
update() (datarobot.models.visualai.ImageAugmentationList

method), 656
update() (datarobot.UseCase method), 636
update() (datarobot.UserBlueprint class method), 643
update_association_id_settings()

(datarobot.models.Deployment method),
316

update_bias_and_fairness_settings()
(datarobot.models.Deployment method),
314

update_challenger_models_settings()
(datarobot.models.Deployment method),
313

update_cluster_name()
(datarobot.models.ClusteringModel method),
223

update_cluster_name()
(datarobot.models.model.ClusteringModel
method), 76

update_cluster_names()
(datarobot.models.ClusteringModel method),
222

update_cluster_names()
(datarobot.models.model.ClusteringModel
method), 76

update_drift_tracking_settings()
(datarobot.models.Deployment method),
315

update_individual_options()
(datarobot.helpers.AdvancedOptions method),
172

update_multiple_names()
(datarobot.models.cluster.Cluster class
method), 223

update_multiple_names()
(datarobot.models.model.Cluster class
method), 77

update_name() (datarobot.CalendarFile class method),
211

update_name() (datarobot.models.cluster.Cluster class
method), 224

update_name() (datarobot.models.model.Cluster class
method), 77

update_prediction_intervals_settings()
(datarobot.models.Deployment method),
318

update_prediction_warning_settings()
(datarobot.models.Deployment method),
317

update_predictions_by_forecast_date_settings()
(datarobot.models.Deployment method), 312

update_predictions_data_collection_settings()
(datarobot.models.Deployment method), 316

update_secondary_dataset_config()
(datarobot.models.Deployment method),
321

update_segment_analysis_settings()
(datarobot.models.Deployment method),
314

Index 753

DataRobot Python API Documentation, Release 3.2.2

update_shared_roles()
(datarobot.models.Deployment method),
325

update_shared_roles() (datarobot.UserBlueprint
class method), 646

upload() (datarobot.models.Dataset class method), 279
upload_dataset() (datarobot.models.Project method),

585
upload_dataset_from_catalog()

(datarobot.models.Project method), 588
upload_dataset_from_data_source()

(datarobot.models.Project method), 587
url (datarobot.models.dataset.ProjectLocation prop-

erty), 293
UseCase (class in datarobot), 634
UseCaseReferenceEntity (class in

datarobot.models.use_cases.use_case), 639
UseCaseUser (class in

datarobot.models.use_cases.use_case), 639
UserBlueprint (class in datarobot), 639
UserBlueprintAddToProjectMenu (class in

datarobot.models.user_blueprints.models),
647

UserBlueprintAvailableInput (class in
datarobot.models.user_blueprints.models),
647

UserBlueprintAvailableTasks (class in
datarobot.models.user_blueprints.models),
648

UserBlueprintCatalogSearch (class in
datarobot.models.user_blueprints.models),
649

UserBlueprintSharedRolesResponseValidator
(class in datarobot.models.user_blueprints.models),
649

UserBlueprintValidateTaskParameters (class in
datarobot.models.user_blueprints.models), 648

UserCV (class in datarobot), 532
UserTVH (class in datarobot), 533

V
validate_blueprint() (datarobot.UserBlueprint

class method), 645
validate_external_time_series_baseline()

(datarobot.models.Project method), 612
validate_replacement_model()

(datarobot.models.Deployment method),
309

validate_task_parameters()
(datarobot.models.user_blueprints.models.UserBlueprintValidateTaskParameters
class method), 648

validate_task_parameters()
(datarobot.UserBlueprint class method),
644

VertexContextItem (class in
datarobot.models.user_blueprints.models),
649

W
wait_for_async_model_creation() (in module

datarobot.models.modeljob), 528
wait_for_async_predictions() (in module

datarobot.models.predict_job), 552
wait_for_autopilot() (datarobot.models.Project

method), 602
wait_for_completion()

(datarobot.models.FeatureImpactJob method),
382

wait_for_completion() (datarobot.models.Job
method), 377

wait_for_completion() (datarobot.models.ModelJob
method), 530

wait_for_completion()
(datarobot.models.PredictJob method), 555

wait_for_completion()
(datarobot.models.ShapMatrixJob method),
380

wait_for_completion()
(datarobot.models.StatusCheckJob method),
203

wait_for_completion()
(datarobot.models.TrainingPredictionsJob
method), 379

WordCloud (class in datarobot.models.word_cloud), 657
WordCloudNgram (class in

datarobot.models.word_cloud), 658

754 Index

	Getting started
	Table of contents
	Getting started
	User Guide
	Data
	Datasets
	Create a dataset
	Use datasets

	Get information from a dataset
	Retrieve datasets
	Manage datasets
	Manage dataset feature lists
	Use credential data

	Database Connectivity
	Creating Drivers
	Creating DataStores
	Creating DataSources
	Creating Projects
	Creating Predictions

	Feature Discovery
	Register a primary dataset to start a project
	Register secondary datasets in the AI Catalog
	Create dataset definitions and relationships using helper functions
	Create a relationship configuration
	Create a Feature Discovery project
	Create secondary dataset configuration for predictions
	Make predictions with a trained model
	Common Errors
	Dataset registration Failed
	Relationship configuration errors

	Configure relationships
	Dataset definitions and relationships using helper functions
	Dataset definition and relationship using a dictionary
	Retrieving relationship configuration
	Update details of a relationship configuration
	Delete relationships configuration
	Secondary dataset configuration
	Secondary datasets using helper functions
	Create secondary datasets with dict
	Create a secondary dataset configuration
	Retrieve a secondary dataset configuration
	List all secondary dataset configurations

	Modeling
	Projects
	Create a Project
	Select Modeling Parameters
	Target
	Metric
	Partitioning Method
	Queue Mode
	Weights
	Offsets
	Exposure

	Start Modeling
	Clone a Project

	Interact with a Project
	List Projects
	Get an existing project
	Get feature association statistics for an existing project
	Get whether your featurelists have association statistics
	Get a Project’s featurelist by name
	Create Project featurelists
	Get values for a pair of features in an existing project
	Update a project
	Delete a project
	Wait for Autopilot to Finish
	Play/Pause the autopilot
	Start autopilot on another Featurelist
	Start preparing a specific model for deployment

	Further reading
	Using Credential Data

	Models
	Start Training a Model
	List Finished Models
	Retrieve a Known Model
	Retrieve the highest scoring model for a given metric
	Train a Model on a Different Sample Size
	Cross-Validating a Model
	Find the Features Used
	Feature Impact
	Feature Effects
	Predict new data
	Model IDs vs. Blueprint IDs
	Model parameters
	Create a Blender
	Lift chart retrieval
	ROC curve retrieval
	Residuals chart retrieval
	Word Cloud
	Scoring Code
	Get a model blueprint chart
	Get a model missing values report
	Get a blueprint’s documentation
	Request training predictions
	Advanced Tuning
	SHAP Impact
	Number of Iterations Trained

	Blueprints
	Quick Reference
	List Blueprints
	Get a blueprint
	Get a blueprint chart
	Get a blueprint’s documentation
	Blueprint Attributes
	Create a Model from a Blueprint

	Specialized workflows
	Datetime Partitioned Projects
	Setting Up a Datetime Partitioned Project
	Configuring Backtests
	Modeling with a Datetime Partitioned Project
	Accuracy Over Time Plots
	Dates, Datetimes, and Durations

	Time Series Projects
	Setting Up A Time Series Project
	Feature Derivation Window
	Forecast Window
	Multiseries Projects
	Feature Settings
	Modeling Data and Time Series Features
	Restoring Discarded Features
	Making Predictions
	Calendars
	Datetime Trend Plots
	Prediction Intervals
	Partial History Predictions
	External Baseline Predictions
	Time Series Data Prep

	Visual AI Projects
	Create a Visual AI Project
	Target
	Other Parameters
	Start Modeling
	Interact with a Visual AI Project
	List Sample Images
	List Duplicate Images
	Activation Maps
	Compute Activation Maps
	List Activation Maps
	Image Embeddings
	Compute Image Embeddings
	List Image Embeddings
	Image Augmentation
	Create Image Augmentation List
	List Image Augmentation Lists
	Compute and Retrieve Image Augmentation Samples
	List Image Augmentation Samples
	Configure Augmentations to Use During Training
	Determine Available Transformations for Augmentations
	Converting images to base64-encoded strings for predictions
	License

	Unsupervised Projects (Anomaly Detection)
	Creating Unsupervised Projects
	Creating Time Series Unsupervised Projects
	Unsupervised Project Metrics
	Estimating Accuracy of Unsupervised Anomaly Detection Datetime Partitioned Models
	Explaining Unsupervised Time Series Anomaly Detection Models Predictions
	Assessing Unsupervised Anomaly Detection Models on External Test Set
	Requesting External Scores and Insights (Time Series)
	Requesting External Scores and Insights for AutoML models
	Retrieving External Scores and Insights

	Unsupervised Projects (Clustering)
	Creating Unsupervised Projects
	Unsupervised Clustering Project Metric
	Retrieving information about Clusters
	Working with Clusters Insights
	Working with Clusters
	Clustering Classes Reference
	ClusteringModel
	Cluster
	ClusterInsight

	Segmented Modeling Projects
	Segment
	Segmentation Task
	Combined Model
	Starting a Segmentation Project with a User Defined Segment ID
	Working with Combined Models

	Composable ML
	Manage Custom Tasks
	Manage Custom Task Versions
	Create Custom Task Version
	List Custom Task Versions
	Retrieve Custom Task Version
	Update Custom Task Version
	Download Custom Task Version
	Preparing a Custom Task Version for Use

	Monotonic Constraints
	Creating featurelists
	Specify default monotonic constraints for a project
	Retrieve models and blueprints using monotonic constraints
	Train a model with specific monotonic constraints

	Working with binary data
	Preparing data for training
	Preparing data for predictions
	Processing images
	Installation
	Processing images
	Custom image transformations
	Custom request headers
	Handling errors
	Processing other binary files

	Model Insights
	Prediction Explanations
	Quick Reference
	List Prediction Explanations
	Initialize Prediction Explanations
	Compute Prediction Explanations
	Retrieving Prediction Explanations
	Adjusted Predictions In Prediction Explanations
	Multiclass/Clustering Prediction Explanation Modes
	SHAP based prediction explanations

	Rating Table
	Download A Rating Table
	Uploading A Rating Table

	Automated Documentation
	Check Available Document Types
	Generate Automated Documents
	Download Automated Documents
	List Previously Generated Automated Documents
	Delete Automated Documents

	External Testset
	Requesting External Scores and Insights
	Retrieving External Metric Scores and Insights
	Retrieving External Metric Scores
	Retrieving External Lift Chart
	Retrieving External Multiclass Lift Chart
	Retrieving External ROC Curve
	Retrieving Multiclass Confusion Matrix
	Retrieving Residuals Chart

	Jobs
	Checking the Contents of the Queue
	Cancelling a Job
	Retrieving Results From a Job
	Model Jobs

	Get an existing ModelJob
	Get a created model
	wait_for_async_model_creation function

	DataRobot Prime
	Approximate a Model
	Prime Models vs. Models
	Retrieving Code from a PrimeModel

	Model Recommendation
	Retrieve all recommendations
	Retrieve a default recommendation
	Retrieve a specific recommendation
	Get recommended model

	Predictions
	Predictions
	Starting predictions generation
	Listing Predictions
	Get an existing PredictJob
	Get generated predictions
	Wait for and Retrieve results
	Get previously generated predictions
	Training predictions

	Quick reference

	Batch Predictions
	Make batch predictions with a deployment
	Scoring local CSV files
	Scoring from and to S3
	Scoring from and to Azure Cloud Storage
	Scoring from and to Google Cloud Platform
	Wiring a Batch Prediction Job manually
	Supported intake types
	Local file intake
	S3 CSV intake
	JDBC intake
	BigQuery intake
	AI Catalog intake
	Supported output types
	Local file output
	S3 CSV output
	JDBC output
	BigQuery output

	Copying a previously submitted job
	Scoring an in-memory Pandas DataFrame
	Batch Prediction Job Definitions
	Job Definitions
	Executing a job definition
	Manual job execution
	Scheduled job execution

	The Schedule payload
	Disabling a scheduled job

	MLOps
	Deployments
	Manage Deployments
	Create a Deployment
	List Deployments
	Retrieve a Deployment
	Update a Deployment
	Delete a Deployment
	Activate or deactivate a Deployment
	Make batch predictions with a deployment

	Model Replacement
	Validation

	Monitoring
	Service Stats
	Data Drift
	Predictions Over Time
	Accuracy
	Delete Data

	Settings
	Drift Tracking Settings
	Association ID Settings
	Predictions By Forecast Date
	Challenger Models Settings
	Segment Analysis Settings
	Predictions Data Collection Settings
	Prediction Warning Settings
	Secondary Dataset Config Settings
	Share deployments
	Access levels
	Sharing

	Custom Models
	Manage Execution Environments
	Create Execution Environment
	List Execution Environments
	Retrieve Execution Environment
	Update Execution Environment
	Delete Execution Environment
	Get Execution Environment build log

	Manage Custom Models
	Create Custom Inference Model
	List Custom Inference Models
	Retrieve Custom Inference Model
	Update Custom Model
	Download latest revision of Custom Inference Model
	Assign training data to Custom Inference Model

	Manage Custom Model Versions
	Create Custom Model Version
	Create a custom model version with training data
	Enable training data assignment for custom model versions
	Assign training data for structured models
	Assign training data for unstructured models
	Remove training data
	List Custom Model Versions
	Retrieve Custom Model Version
	Update Custom Model Version
	Download Custom Model Version
	Start Custom Model Inference Legacy Conversion
	Monitor Custom Model Inference Legacy Conversion Process
	Stop a Custom Model Inference Legacy Conversion
	Calculate Custom ModelVersion feature impact
	Retrieve Custom Inference Image feature impact

	Preparing a Custom Model Version for Use
	Starting the Dependency Build

	Manage Custom Model Tests
	Create Custom Model Test
	List Custom Model Tests
	Retrieve Custom Model Test

	Administration
	Credentials
	List credentials
	Basic credentials
	S3 credentials
	OAUTH credentials
	Credential Data

	Sharing
	Access Levels
	Examples

	Use Cases
	Use Cases
	Add to a Use Case
	Configuration
	Sharing
	Overview
	Examples

	API Reference
	API Object
	Advanced Options
	Anomaly Assessment
	Application
	Batch Predictions
	Batch Monitoring
	Status Check Job
	Blueprint
	Calendar File
	Automated Documentation
	Class Mapping Aggregation Settings
	Client Configuration
	Clustering
	Compliance Documentation Templates
	Confusion Chart
	Credentials
	Custom Models
	Custom Tasks
	Database Connectivity
	Datasets
	Data Engine Query Generator
	Data Store
	Datetime Trend Plots
	Deployment
	External Baseline Validation
	External Scores and Insights
	Feature
	Feature Association
	Feature Association Matrix Details
	Feature Association Featurelists
	Feature Discovery
	Relationships Configuration
	Dataset Definition
	Relationship
	Feature Lineage
	Secondary Dataset Configurations
	Secondary Dataset

	Feature Effects
	Feature List
	Restoring Discarded Features
	Job
	Lift Chart
	Missing Values Report
	Models
	Model
	PrimeModel
	BlenderModel
	DatetimeModel
	Frozen Model
	Imported Model
	RatingTableModel
	Combined Model
	Advanced Tuning

	ModelJob
	Pareto Front
	Partitioning
	PayoffMatrix
	PredictJob
	Prediction Dataset
	Prediction Explanations
	Predictions
	PredictionServer
	PrimeFile
	Project
	Rating Table
	Recommended Models
	ROC Curve
	Ruleset
	Segmented Modeling
	SHAP
	SharingAccess
	SharingRole
	Training Predictions
	Types
	Use Cases
	User Blueprints
	VisualAI
	Word Cloud
	Data Slices

	Examples
	Changelog
	3.2.2
	Bugfixes

	3.2.1
	New Features
	Bugfixes

	3.2.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Deprecation Summary
	Documentation Changes
	Experimental changes

	3.1.1
	Configuration Changes

	3.1.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Experimental changes
	Documentation Changes

	3.0.3
	Bugfixes

	3.0.2
	Bugfixes
	Deprecation Summary

	3.0.1
	Bugfixes

	3.0.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Experimental changes

	2.29.0b0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.28.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.27.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.26.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.25.0
	New Features
	Enhancements
	Bugfixes
	API Changes

	2.24.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.23.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Documentation Changes

	2.22.1
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.21.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary

	2.20.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.19.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Documentation Changes

	2.18.0
	New Features
	Enhancements
	Deprecation Summary
	Documentation Changes

	2.17.0
	New Features
	Enhancements
	Bugfixes
	Documentation Changes

	2.16.0
	New Features
	Enhancements
	Documentation Changes

	2.15.1
	Enhancements
	Bugfixes

	2.15.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.14.2
	Bugfixes
	Documentation Changes

	2.14.1
	Documentation Changes

	2.14.0
	New Features
	Enhancements
	API Changes
	Documentation Changes

	2.13.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Documentation Changes

	2.12.0
	New Features

	2.11.0
	New Features
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.9.0
	New Features
	Enhancements
	API Changes

	2.8.1
	Bugfixes

	2.8.0
	New Features
	Enhancements
	API Changes

	2.7.2
	Documentation Changes

	2.7.1
	Documentation Changes

	2.7.0
	New Features
	Enhancements
	Documentation Changes

	2.6.1
	Bugfixes
	Documentation Changes

	2.6.0
	New Features
	Enhancements
	Bugfixes
	Deprecation Summary
	Documentation Changes

	2.5.1
	Bugfixes

	2.5.0
	New Features
	Enhancements

	2.4.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes
	Documentation Changes

	2.3.0
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Configuration Changes

	2.2.33
	Bugfixes

	2.2.32
	New Features
	Enhancements
	Bugfixes
	API Changes
	Deprecation Summary
	Documentation Changes

	2.1.31
	Bugfixes

	2.1.30
	Bugfixes

	2.1.29
	Enhancements

	2.1.28
	New Features
	Enhancements
	Deprecation Summary
	API Changes

	2.0.27
	New Features
	Deprecation Summary

	0.2.26
	Enhancements
	Deprecation Summary
	Bugfixes

	0.2.25
	0.2.24
	0.1.24
	0.1.23
	0.1.22
	0.1.21
	0.1.20
	0.1.19
	0.1.18
	0.1.17
	0.1.16
	0.1.15
	0.1.14
	0.1.13
	0.1.12
	0.1.11
	0.1.10
	0.1.9

	Python Module Index
	Index

